THE UNIVERSITY OF SHEFFIELD

DEPARTMENT OF COMPUTER SCIENCE

AUTUMN SEMESTER 1999-00
 2 HOURS

THEORY OF MACHINES

Answer THREE questions.

All questions carry equal weight. Figures in square brackets indicate the percentage of available marks allocated to each part of a question.

1. a) Compare finite automata and Turing machines by:
(i) explaining informally what each is and how they differ;
(ii) giving a formal definition of each and making it clear how transitions are defined for each.
(iii) explaining the difference between them in terms of the classes of language in the Chomsky hierarchy that each accepts.
b) Consider the set of all languages over the alphabet $\{0,1\}$:
(i) Write a regular expression that represents the language of strings containing at least two 0's and draw a transition diagram for a finite automaton that accepts this language.
(ii) Write a regular expression that represents the language of strings in which the number of 0 s is even and draw a transition diagram for a finite automaton that accepts this language.
(iii) Draw a transition diagram for a finite automaton that accepts the union of the languages in (i) and (ii).
c) Consider the grammar G with rewrite rules:

$$
\begin{aligned}
S & \rightarrow A c B \\
A & \rightarrow a B c A a \\
A & \rightarrow a \\
B & \rightarrow b A c B b \\
B & \rightarrow b
\end{aligned}
$$

Construct a transition diagram for a pushdown automaton which accepts strings in the language generated by G.
2. a) Using any of the building block single tape Turing machines:

1. $\quad L, R$, and x;
2. the searching machines $R_{x}, R_{\neg x}, L_{x}$, and $L_{\neg x}$; or
3. the shifting machines S_{R} and S_{L},
construct a composite single tape Turing machine that decides the language

$$
L=\left\{w \in\{a, b, *\}^{*} \mid w \text { has the form } v * v, v \in\{a, b\}^{*}\right\}
$$

Explain the strategy your machine uses.
b) What is a Universal Turing machine and how would you design one ?
c) What is the halting problem and why is it significant ?
3. a) The class of primitive recursive functions is defined in terms of a set of initial functions and a set of construction operations for building new functions from existing functions.
(i) Specify each initial function in terms of its input and output.
(ii) Specify each construction operation by showing how in each case the operation generates a new function from more basic given functions.
(iii) Show that the function $f: \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ defined by

$$
f(x, y)=\min (x, y) \quad(\text { the minimum of } x \text { and } y)
$$

is primitive recursive. You may assume that the functions plus, $\neg, e q, q u o$, monus and mult have been shown to be primitive recursive, if you find it useful to do so.
(iv) Show how the multiplication function mult : $\mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$ can be defined using primitive recursion with the constant functions $K_{m}^{n}: \mathbf{N}^{\mathbf{n}} \rightarrow \mathbf{N}$ and the plus function plus : $\mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$.
Use your definition to compute the value of $2 * 3$.
b) The class of partial recursive functions is a larger class of functions than the primitive recursive functions because it increases the set of function construction operations to include minimalization.
(i) Define minimalization.
(ii) What is the value of $f(4)$ if f is defined by

$$
f(x)=\mu y[\operatorname{monus}(x, \operatorname{pred}(y))=0] ?
$$

Show how you have derived your answer.
4. a) Define the classes of languages P and $N P$, making clear what the difference is. $[10 \%$]
b) (i) What is a polynomial reduction from a language L_{1} over an alphabet Σ_{1} to a language L_{2} over an alphabet Σ_{2} ?
(ii) What is the problem of propositional satisfiability ?
(iii) State Cook's Theorem and explain its significance.
[20\%]
c) Show that the language consisting of all palindromes in $\{x, y\}^{*}$ is in P. (A palindrome is a string that is the same written backwards as forwards.)

