
Graphical User Interfaces
in an Engineering
Educational Environment

CHRISTOPHER DEPCIK, DENNIS N. ASSANIS

1231 Beal Avenue, 2032 W. E. Lay Automotive Laboratory, University of Michigan, Ann Arbor, Michigan 48109

Received 4 March 2004; accepted 7 September 2004

ABSTRACT: Graphical user interfaces (GUIs) are being increasingly used in the classroom

to provide users of computer simulations with a friendly and visual approach to specifying all

input parameters and increased configuration flexibility. In this study, the authors first

describe a number of software and language options that are available to build GUIs.

Subsequently, a comprehensive comparative assessment of possible alternatives is under-

taken in the light of a benchmark educational program used in a course on computational fluid

dynamics (CFD) at the University of Michigan. For the GUIs presented, their educational value

with respect to flexible data entry and post-processing of results has been demonstrated. In

addition, the authors offer recommendations for pros and cons of available options in terms of

platform independence, ease of programming, facilitation of interaction with students, and

flexibility.�2005 Wiley Periodicals, Inc. Comput Appl Eng Educ 13: 48�59, 2005; Published online in Wiley

InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20029

Keywords: graphical user interfaces; classroom; programming; benchmark; visual post-

processing

INTRODUCTION

Graphical user interfaces (GUIs) are being increas-

ingly used in the classroom to provide users of

computer simulations with a friendly and visual

approach to specifying all input parameters, thus

making it easier to describe what is needed to run a

simulation. While this can be effectively done in a

command-line fashion, prompting the user for suc-

cessive input parameters like DOS programs, a GUI

allows the user to see everything at once. Hence, data

entry becomes much easier because of the visual aid

instead of trying to remember all of the different

command-line prompts, or specifying inputs in non-

descript, text input files.

The most important benefit of a GUI is that it can

post-process the results of the simulation providing

the user with instant feedback. This is especially

important when performing parametric studies where

variables are changed over a certain range. A visual

illustration of how results change as a function of

various variables, or parametric sweeps, reinforces the

lessons learned in the classroom. While command-

line programs can write data to a text-file, this file

would have to be opened within another program
Correspondence to C. Depcik (depcikc@umich.edu).

� 2005 Wiley Periodicals Inc.

48

delaying this transmission of knowledge. This instant

feedback is particularly valuable when programming

and debugging, as something new typically never

works right the first time according to Murphy’s Law

[1]. A GUI may even make it possible to open-up the

range of system or cycle configurations that a student

can study under one unifying programming environ-

ment, versus using multiple, hard-wired codes dedi-

cated codes for studies of each new configuration [2].

GUIs utilize high-level languages to communicate

with operating system software, like Windows1, to

provide the user with an aesthetically pleasing inter-

face. GUIs can bewritten invirtually anyprogramming

language and even cross-pollinated with a couple of

different languages, in mixed-language programming.

It would seem that given a firm grasp of a program-

ming language, it should be straightforward to build a

GUI with that language; however, this is not always

the case. While a number of studies have compared

high-level programming languages and their compu-

tational speed [3�5], comparative studies on their

potential for creating GUIs are relatively sparse

[6�8].

In this study, the authors describe a number of

software and language options that are available to

build GUIs and undertake a comprehensive compara-

tive assessment of possible alternatives in the light of

a benchmark educational program used in a course on

computational fluid dynamics (CFD) at the University

of Michigan. More specifically, the following lan-

guages were studied, with their representative soft-

ware in parenthesis:

* FORTRAN (Visual Fortran 6.62),
* C/Cþþ (Visual Cþþ 6/73),
* Java4 (Visual Jþþ 6/73),
* MATLAB5 (MATLAB R13),
* Basic (Visual Basic 6/73).

The software listed above does not constitute a

full list of available options, as other programs such as

Metrowerks Codewarrior6 and Sun Java Studio do

exist for compilation of the different languages.

However, the GUIs developed by using the above list

are representative of those that can be developed by

other programs.

While for a specific application, a certain langu-

age may have concrete advantages. It should be

emphasized that this assessment is not undertaken

with the objective to proclaim the best language for

programming GUIs for all classroom applications in

engineering. Multiple factors would ultimately enter

an individual’s choice of the best option, including

prior familiarity with an underlying programming

language, since it may otherwise be overwhelming to

learn a language while also building a GUI at the same

time. Instead, this study explores and assesses the pros

and cons of different available options to give the

reader a solid background for making an informed

choice prior to moving into GUI programming for

classroom applications.

COMPARISON OF LANGUAGES

To learn about the different GUI programming

options, a benchmark program was used. To illustrate

the educational nature of GUIs, the program chosen

was a driven cavity flow problem used in a course on

CFD at the University of Michigan. This problem is

illustrated in Figure 1 where the flow inside the box is

driven by a plate moving at a constant velocity U. The

governing equations of motion for the flow within the

box are the incompressible two-dimensional Navier-

Stokes equations:

@u

@x
þ @v

@y
¼ 0 ðcontinuityÞ; ð1Þ

1Windows1 is a registered trademark program of Microsoft
Corporation.

2Visual Fortran1 is a registered trademark program of Compaq
Computer Corporation.

3Visual Basic1, Visual Cþþ1, and Visual Jþþ1 are registered
trademark programs of Microsoft Corporation.

4Java1 is a registered trademark program of Sun Microsystems.
5MATLAB1 is a registered trademark program of The Math-

works, Inc.
6Metrowerks Codewarrior is a registered trademark program of

Motorola.

Figure 1 Driven cavity problem used as benchmark

to measure the computational efficiency of each lower-

level language. [Color figure can be viewed in the

online issue, which is available at www.interscience.

wiley.com.]

GRAPHICAL USER INTERFACES 49

@u

@t
þ u

@u

@x
þ v

@u

@y

¼ � 1

r
@p

@x
þ n

@2u

@x2
þ @2u

@y2

� �
ðx�momentumÞ;

ð2Þ

@v

@t
þ u

@v

@x
þ v

@v

@y

¼ � 1

r
@p

@x
þ n

@2v

@x2
þ @2v

@y2

� �
ðy�momentumÞ;

ð3Þ

where u is the velocity in the x-direction, v is the velo-

city in the y-direction, r is the density, p is the pressure,
and n is the kinematic viscosity. For the incompressible

flow Navier-Stokes equations, the energy equation

does not need to be solved to find the velocity field

unlike the compressible form of the equations. The

energy equation is a function of the velocity field, but

its solution was not important for the purposes

presented in this study.

To simplify the numerical calculation, the above

three equations of motion can be combined into

streamfunction (c) and vorticity (o) format as follows:

@2c
@x2

þ @2c
@y2

¼ �o; ð4Þ

@o
@t

þ u
@o
@x

þ v
@o
@y

¼ n
@2o
@x2

þ @2o
@y2

� �
; ð5Þ

The solution of the above equations occurs via the

Successive Overrelaxation (SOR) method [9], which

is used to increase the convergence rate of an iterative

method by propagating the corrections ðDcn ¼
cnþ1 � cnÞ faster throughout the mesh:

cnþ1
i;j ¼ b

4
ðcn

iþ1; j þ cnþ1
i�1; j þ cnþ1

i; j�1 þ h2on
i; jÞ

þ ð1� bÞcn
i; j ð6Þ

where 1 < b < 2;

onþ1
i;j ¼ 1

h
vniþ1;j � vni;j þ uni;j � uni;jþ1

� �
; ð7Þ

with h equal to the discretization in the x- and y-

direction for a symmetric grid (side length¼ L). The

time-step for the simulation is calculated as:

Dt � h2

4n
: ð8Þ

Since this problem is quite computationally

intensive, it provides for a good comparison of the

run-times of the different programming languages. As

with most engineering problems, a premium is often

put on fast run-time for quick turnaround of results. In

this study, the computational efficiency of FORTRAN

and C/Cþþ, often used by the engineering community,

is compared to Java and MATLAB. It is often a good

idea to perform self benchmarking because you will be

able to understand your own limitations in regards to

programming efficiency and compiler use [10].

The main benefit of using this problem is that it

provides a nice graphical description of the results

when plotting the streamfunction and vorticity

(evident in later figures). This is invaluable because

when programming the simulation the students

immediately know if they have coded it correctly. In

addition, it will help inform the students when they

choose the wrong parameters. For instance, if they do

not calculate the time-step according to Equation (8),

the wrong solution will be immediately displayed.

Therefore, incorporating the streamfunction and

vorticity graphs within our GUI will reinforce

important CFD lessons.

Grid sizes of 10 � 10, 20 � 20, and 40 � 40

were used to solve the problem and generate run-times

for the different languages. The run-time was calcu-

lated by using the clock function in the respective

language for the amount of time taken in only the

computationally intensive incompressible 2-D N-S

solver. Table 1 gives the different time-step and

number of steps needed for convergence of the simu-

lation based on grid size. Table 2 has the results of the

computational run-time of the different languages as a

function of the grid size. The computer used ran

Windows XP Professional and had a Pentium 4

processor running at 2.26 GHz with 1.00 GB of RAM.

The results of the computational run-time show

that the fastest language was C/Cþþ whereas the

slowest was MATLAB. For the 10 � 10 grids, both

FORTRAN and C/Cþþ ran so fast that there was no

difference between the clock settings; hence the not

available results in the table. The results for MATLAB

are to be expected because of the fact that its code

is not compiled before running unlike all the other

languages. Instead, the user creates a text file with

the MATLAB code which the program then runs as a

script.

Release 13 of MATLAB added the option of

converting the code into C or Cþþ (mcc), which is

Table 1 Run Conditions for the Driven Cavity Flow

Problem That Ensure an Equilibrium Final Condition

(b¼ 1.5, m¼ 0.1, L¼ 1).

Grid size Time-step Number of steps

10 � 10 0.01543 1,000

20 � 20 0.00346 1,500

40 � 40 0.00050 3,000

50 DEPCIK AND ASSANIS

then compiled with a dedicated C/Cþþ compiler.

When performing this action within MATLAB, the

run-time actually increased even though the same C/

Cþþ compiler was used as with the dedicated C/

Cþþ code. This is a known bug with the MATLAB

Compiler 3.0 used within MATLAB R13 [11]. It is

interesting to see that creating the C/Cþþ puts a lot of

overhead into the code increasing the total number of

lines along with the complexity. In the newest version

of MATLAB, R14 not yet analyzed by the authors, the

release notes state that this C/Cþþ feature has been

eliminated and there is no speed difference between a

compiled application and running it in MATLAB. To

speed up the code, there is an option within

MATLAB, called the Just-In-Time Accelerator, which

can be used to analyze the code to find ways to

optimize its computational efficiency.

If a run-time result is counterintuitive to the

reader’s personal experience, maybe that C/Cþþ is

faster than FORTRAN, it may be because of the

compiler, optimization options, and/or programming

technique. The authors are sure that people can write

code that runs faster than the above, but that was not

the point. This study is meant to help explain how well

a single engineer can write and build GUIs with a

number of different languages. By comparing code

from a number of different sources, the results would

not be as instructive.

IMPORTANT CONCEPTS

Before describing the GUIs, a few important concepts

need to be explained to help the reader understand

options present in the different programs. These

concepts give the reader the ability to further under-

stand the ease and difficulty of programming GUIs

given their own background.

Mixed-Language Issues

From the above comparisons, it may not be beneficial

to build a GUI completely in a language, like

MATLAB or Basic, due to their relatively slow run-

times. As a result, it would be advantageous to be able

to mix languages, like one for the GUI and the other

for the computational code. The only instance of

perfect compatibility found by the authors comes with

Visual Fortran 6.6 and Visual Cþþ 6, where

FORTRAN and Cþþ code can be compiled at the

same time when building a GUI; providing both

programs are installed7. This compilation was done by

simply adjusting a number of compiler settings.

To use mixed-language programs with the other

software programs certain middleman files need to be

built. On a Windows environment, these are dynami-

cally linked libraries (dll). Essentially these are exter-

nal subroutines instead of the internal subroutines or

functions typically used by programmers. They are

placed in the same directory as the executable pro-

gram (the actual GUI program) and are called in

virtually the same way as internal subroutines. How-

ever, they have a specific format in the function call

header that is needed to utilize them. In a Visual Basic

example that follows in a later section, the authors

have two versions. In one version, the GUI built-in

Visual Basic calls a dll written in FORTRAN.

MATLAB is slightly different from the facet that

the dll is actually built within the MATLAB program.

In this case, they call it a mex file and to use this

feature, MATLAB has to be setup by the user to find

the compiler that will be used to create the mex file.

So, instead of compiling a dll separately with the

software of choice, MATLAB will do this for you

providing you tell them which compiler to use [12].

Direct Calls Versus API Libraries

There are two ways of writing GUI code, one is the

brute force method (direct calls) and the other is more

elegant (API libraries). In the direct call method, the

user calls the Windows functions that are written in

the respective software language. In this approach, the

programmer is responsible for ‘‘mapping’’ all the

Table 2 Computational Run-Time in Seconds of Each Different Programming Language for

the Driven Cavity Flow Problem With Standard Deviation in Parenthesis

Language 10 � 10 20 � 20 40 � 40

C/Cþþ N/A 0.2684 (0.0060) 20.36 (0.03)

FORTRAN N/A 0.2912 (0.0075) 22.88 (0.06)

Java 0.0156 (0.0005) 0.4401 (0.0073) 31.12 (0.30)

Basic 0.0345 (0.0063) 1.1940 (0.0166) 86.51 (0.18)

MATLAB 0.3931 (0.0850) 6.9953 (1.5483) 368.33 (20.07)

mcc 1.4035 (0.0108) 51.619 (0.411) 3681.44 (8.74)

7Visual Fortran 6.6 does not support Visual Cþþ 7 (or .NET);
however, Intel Visual Fortran 81 (a trademark program of the Intel
Corporation) is supposed to be the replacement for Visual Fortran 6.6.

GRAPHICAL USER INTERFACES 51

windows calls to and from the program. This means

that the programmer has to account for all mouse-

movements, keyboard pressings, calls from other

windows that are open, etc. . . . From the authors’

experience, this is a complicated way of building

GUIs and can result in crashing the code (and

Windows) if not careful.

An API, or Application Programming Interfaces,

library makes up an ‘‘application framework’’ on

which the programmer builds an application. At a very

general level, the framework defines the skeleton of

an application and supplies standard user-interface

implementations that can be placed onto the skeleton

[13]. The user then has to fill in the rest of this

skeleton with simulation specific items. This library

alleviates the burden on the programmer because it

has already done a lot of the ‘‘mapping.’’ It is a more

graceful way of building code, however, based on the

programming language as explained later, this map-

ping may be easy to learn or somewhat complicated.

Platform Independence

Java is truly the only programming language that

provides complete architecture neutrality. It is an

interpreted language, so it can run on any platform

that has the Java interpreter and run-time environ-

ment. The Java interpreter translates compiled byte-

code, so a compiler is still used to create a compiled

code. But this compiled code can be read on any

machine with the Java interpreter (one compiled code,

many machines). At this point, the reader might think,

why bother with all the other programs then, here is

one that everyone can use. However, there are three

issues with this.

The first issue is that Java programs run slower

than FORTRAN or C/Cþþ programs as seen above

and explained in [14]. However, this is a function of

the compiler, so eventually Java might become as fast

as the more established languages.

The second issue is that Java is relatively new, so

most existing code would have to be rewritten in Java.

There are separate programs that can change your code

from one language to another similar to the function-

ality presented inMATLAB.Aprime example of this is

f2c, which converts FORTRAN to C [15]. However,

while these programs generally work, the converted

code in the new language can be very difficult to read

and not well organized. This was experienced with the

MATLAB conversion in an earlier section. Since Java

is completely anObject-Oriented Programming (OOP)

language, this conversion is sure to be messy. OOP

forces the user to confine themselves to certain

standards (classes and inheritance), limiting some of

the freedom a user might be accustomed to (ex: global

variables not allowed). It is possible to link with

external subroutines through a Java Native Interface

(JNI); however, these codes would then become

platform dependent. For example, dlls created in

Windows do not work on a Macintosh platform.

The last problem involves post-processing the

data. In the case of all GUIs that were built in this study,

a third-party program was incorporated into the GUI

language to provide the graphing capabilities. This was

done because the authors did notwant towrite their own

graphing software and have to make it aesthetically

pleasing, which can require a large amount of excess

effort. Instead, the compiled code calls an API that

encompasses the graphing calls very neatly. This

graphing software is operating system dependent and

can only be installed on a Windows machine. To

provide for platform independence, the userwould have

to create (or find) a Java graphing package.

There are some software programs that can create

GUIs for multiple platforms. Metrowerks Codewar-

rior does allow for Windows and Macintosh programs

to be created at the same time using C/Cþþ code.

However, this code must be written using the direct

call method. REALbasic8 for the Macintosh has the

ability to import Visual Basic programs through a

program called VBCleaner. While untried by the

authors, previous experience with converters like f2c

and mcc creates some skepticism of the ability to

cleanly port this code to the other platform.

GUI BUILDS

In this section, GUIs are built using the different

languages previously mentioned. The GUIs built are

of the simple form-based type where all input and

output are shown in a single window. These GUIs are

similar to the calculator program that comes with the

Windows operating system. All GUIs can run as

stand-alone (executable) applications easily installed

on other Windows machines.

Visual Fortran

To create the GUI with Visual Fortran shown in

Figure 2, a palette is given that allows the user to place

the representative entry fields (ex: X Grid Points) and

buttons (ex: RUN) on a blank form. While this is quite

easy to do, implementing the functionality behind the

code is much harder. This is the ability of the code to

grab the data from the GUI and implement it in the

8REALbasic is a registered trademark program of Real Software,
Inc.

52 DEPCIK AND ASSANIS

N-S solver when the RUN button is pushed. In Visual

Fortran, the code has to be written in the direct call

method, which is the most difficult to understand and

program correctly. With the lack of assistance outside

the online help and sample code provided with the

program, this can create a lot of chaos for the

programmer.

Visual Basic

Visual Basic has previously been used by engineers to

create customized software [16�18]. In these studies,

the authors explain the increased visual aspect of

GUIs and their advantages in engineering. This is

particular important for this study due to the driven

cavity flow problem and its numerical solution.

Creating the GUI with Visual Basic shown in

Figure 3 is as easy as the Visual Fortran program. A

palette is again given thast allows the user to place the

representative entry fields and buttons on a blank

form. However, unlike Visual Fortran, Visual Basic

incorporates a number of APIs, which makes it easy to

incorporate the logic behind the GUI. It is also

important to note that there is a plethora of books

available in building GUIs using Visual Basic ([5] was

the one used by the authors) along with ample online

examples and help that come with the program.

To demonstrate the ability to create a mixed-

language program with Visual Basic, the authors

created a separate Visual Basic GUI where the

computational intensive code written as FORTRAN

was incorporated as a dll. This was relatively easy to do

and to access the FORTRAN codewithin Visual Basic;

only one line of code was needed. In all of the GUIs

written in their native languages, the ability to see the

graphs change in real-time was included. However

when using a dll, this is not possible because to update

the graph in real-time, the program would have to exit

the dll to update the GUI and then re-enter the dll to

continue the operation. This would require some

creative structuring of the dll to implement this feature.

Visual Cþþ
Visual Cþþ has been used previously to create GUIs

for engineering applications [19,20,21]. In this

section, its use is documented in the creation of a

two similar GUIs; one utilizing the direct call method

and the other using APIs in the form of Microsoft

Foundation Classes (MFC). In the direct call method

shown in Figure 4; all GUI fields had to be written out

explicitly telling Windows where to place the field,

how big to make it, and what it should look like. This

increases the level of complexity and makes it harder

to build an aesthetically pleasing GUI. In addition,

similar to Visual Fortran, all functionality of the GUIs

has to be written by the programmer through the direct

call method [22].

Figure 2 Driven cavity flow GUI created with Visual Fortran (streamfunction shown).

[Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com.]

GRAPHICAL USER INTERFACES 53

Using the MFC approach, creating the GUI in

Figure 5 is exactly the same as the Visual Fortran

method. In fact, Visual Cþþ and Visual Fortran

programs both use the same Integrated Development

Environment (IDE) as part of a bigger program called

Visual Studio9. This explains the ability to compile

FORTRAN and C/Cþþ code at the same time as

previously mentioned. However, unlike the API use

within Visual Basic, the logic behind MFC is of the

Document-View architecture (one Document control-

ling many Views). This is best explained from the fact

that in the Visual Basic program there is only one file

that the user needs to control, whereas in the Visual

Cþþ program there are many (more than six) that the

user must understand to truly allow a fully featured

program. There are a number of books written on the

MFC approach ([23] was used by the authors),

however, it is more complicated than the Visual Basic

approach. From the authors’ experience, learning this

approach can take a significant amount of time. Yet if

the reader wishes to build a program with multiple

Windows incorporating all the bells and whistles that

Windows has to offer, the MFC approach is what is

typically used. This can be seen in the first author’s

doctoral dissertation where a catalyst model was built

using Visual Cþþ [24].

In Figure 6, the authors demonstrate how the GUIs

can be used for instant feedback of incorrect input

parameters. In this case, the time-step entered is higher

than the minimum allowed according to Equation (8)

causing the solution to numerically disintegrate.

Visual Jþþ
Typical use of Java is to create applets for web-based

applications and even for web-based tutorials [25]. In

this section, a stand-alone GUI application is created

in Java using Visual Jþþ. Creating the GUI shown in

Figure 7, is as easy as Visual Basic and Visual Cþþ
(MFC), but incorporating the logic behind the GUI is

slightly more complicated than the Visual Basic

example because of the OOP nature of the Java

language. However, it is easier than building the GUI

in Visual Cþþ. Most of the Windows messaging is

built-in and the rest is not difficult to implement (fol-

lows along same lines as Visual Basic). Unlike Visual

Basic and Visual Cþþ, there is little help available for

Visual Jþþ ([26] used by the authors), because of its

relatively new status on the marketplace.

In Figure 7, the vorticity is shown instead of the

streamfunction, and the graph is altered slightly to

demonstrate that with the third-party graphing soft-

ware used, the user has the ability to change the

graph while running the simulation. This feature can

help the student with a further understanding of the

results.

Figure 3 Driven cavity flowGUI created with Visual Basic (streamfunction shown). [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

9In the newest version of Visual Studio (7 or .NET), Visual Basic,
and Visual Jþþ have been included with Visual Cþþ in the IDE.

54 DEPCIK AND ASSANIS

MATLAB

Several studies have described MATLAB GUIs as a

platform for academic research and education [27,28].

To help build a GUI, MATLAB provides a manual

aptly named GUIDE (Graphical User Interface

Development Environment) [29]. This manual gives

the programmer an idea of how to properly design the

Figure 4 Driven cavity flow GUI created with Visual Cþþ utilizing the direct calling

method (streamfunction shown). [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 5 Driven cavity flow GUI created with Visual Cþþ utilizing the MFC libraries

(streamfunction shown). [Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]

GRAPHICAL USER INTERFACES 55

GUI, but lacks some information on the calls needed

for implementation of the GUI features. Little

information on building GUIs with MATLAB exists

outside the program ([30] is one resource found by the

authors), unlike Visual Cþþ and Visual Basic.

Using only the MATLAB manual, building the

GUI shown in Figure 8 and implementing the code

behind it was difficult. Most of the Windows message

handling has been incorporated, but calls to and from

the GUI, such as what happens when selecting an item

Figure 6 Illustration of incorrect input data (time-step) used in solving incompressible 2-

D Navier-Stokes simulation (streamfunction shown). [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 7 Driven cavity flow GUI created with Visual Jþþ (vorticity shown). [Color figure

can be viewed in the online issue, which is available at www.interscience.wiley.com.]

56 DEPCIK AND ASSANIS

from a list, still need to be handled by the program-

mer. This is where the lack of available references

caused a problem.

A great advantage for MATLAB is that it already

has all of the graphing features needed. Instead of

having to incorporate a third-party program, all

post-processing of the data can be done directly by

MATLAB. MATLAB R13 also allows the user to

create stand alone versions of the GUIs using C/Cþþ
Math and Graphics Libraries. When doing so, it was

found that the code will run slower resulting from the

same computational bug mentioned in the Compar-

ison of Languages section. MATLAB R14 uses a new

feature, named MATLAB Component Run-time

(MCR), to build stand alone programs that enable

the execution of compiled M-files instead of creating

and compiling C/Cþþ files.

If a user wished to distribute proprietaryMATLAB

code, the mex function previously mentioned can be

used to ‘‘hide’’ this code. In this case, the GUI created

in MATLAB would utilize the functionality of mex

files instead of the traditional text-based input files. The

user also has the option of creating preparsed code

(pcode) that hides the proprietary algorithms.

CONCLUSIONS

In this study, the authors described a number of

software and language options that are available to

build GUIs and undertook a comprehensive compara-

tive assessment of possible alternatives. For the GUIs

presented, their educational value with respect to

flexible data entry and post-processing of results has

been demonstrated. Clearly, for a specific application,

a certain language may have concrete advantages and

multiple factors would ultimately enter an individual’s

choice of the best option. Nevertheless, our study can

provide valuable insight to the reader for making an

informed choice prior to moving into GUI program-

ming for classroom applications. In particular, the

following findings can be useful in this context:

* If platform independence is the main goal, then

Java should be used as the interface software as

well as the underlying programming language.

However, to get the full benefit of a GUI, the

programmer would have to find compatible plot-

ting software that is also platform independent.
* If someone desires to quickly build a GUI and

computational speed is not an issue, then Visual

Basic seems to be the best software choice. How-

ever, if the simulation to be built is anticipated to

be numerically expensive, it would be best to

include dlls built in Cþþ or FORTRAN for the

guts of the underlying code. This is also relevant

if a large library of existing code is already

available. However, the real-time plotting ability

of the simulation could be lost in translation.
* If a professor wishes to collaborate with students

on a GUI, MATLAB might be the best choice.

Since engineering students are typically familiar

with MATLAB, subroutines written by the

students can be easily checked with MATLAB’s

graphing capabilities. The GUI can then call the

students subroutines without having to worry

about compiling and linking the separate codes.
* If a Windows simulation is needed with multiple

windows and lots of flexibility, it would be best

Figure 8 Driven cavity flow GUI created with MATLAB (streamfunction shown). [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

GRAPHICAL USER INTERFACES 57

to learn the MFC and build the GUI with Visual

Cþþ. This is by far the most powerful method

for building GUIs, but it comes at the cost of

increased complexity. With Visual Fortran, the

user also gets the benefit of true mixed-language

programming.

All GUIs developed in this study are available to

the reader. For more information, please contact the

communicating author at depcikc@umich.edu. Using

this study and looking at the GUI codes created can

help the reader make an educated decision about how

to begin GUI programming.

REFERENCES

[1] Air Force Flight Test Center History Office, Murphy’s

law was invented here, www.edwards.af.mil/history/

docs_html/tidbits/Murphy’s_law.html, 2004.

[2] C. Depcik, Open-ended thermodynamic cycle simula-

tion, M.S. thesis, Mechanical Engineering, University

of Michigan, Ann Arbor, 2000.

[3] D. A. Wheeler, Ada, C, Cþþ, and Java vs. the

Steelman, www.adahome.com/History/Steelman/

steeltab.htm, 1996.

[4] J. R. Cary, S. G. Shasharina, J. C. Cummings, J. V. W.

Reynders, and P. J. Hinker, Comparison of Cþþ and

Fortran 90 for object-oriented scientific programming,

Comput Phys Commun 105 (1997), 20�36.

[5] B. Mösli, A comparison of Cþþ, Fortran 90 and

Oberon-2 for scientific programming, Proceedings of

GISI 95, pp 740�748, Zürich, September 18�20,

1995.

[6] J. Surveyer, Java and Visual Basic: Programming’s new

breed, www.hubcanada.com/story_2269_22, 1999.

[7] F. Balena, Programming Microsoft Visual Basic 6.0,

Microsoft Press, Washington, 1999.

[8] A. M. Al-Rawi, Comparison between high level

languages for power engineering education, Proceed-

ings of the 29th Universities Power Engineering

Conference, pp 894�897, Galway, September 1994.

[9] C. Hirsch, Numerical computation of internal and

external flows, Vol. 1: Fundamentals of Numerical

Discretization, Wiley, Chichester, 1988.

[10] R. P. Weicker, A detailed look at some popular

benchmarks, Parallel Comput 17 (1991), 1153�1172.

[11] The MathWorks, Inc., Solution Number: 1-19XG3,

http://www.mathworks.com/support/solutions/data/1-

19XG3.html, The MathWorks, Nantick, MA, 2004.

[12] The MathWorks, Inc., Application program interface

guide, The MathWorks, Nantick, MA, 2001.

[13] Microsoft Corporation, Using the classes to write

applications for windows, msdn.microsoft.com/

library/default.asp?url¼/library/en-us/vccore98/html/

_core_using_the_classes_to_write_applications_for_

windows.asp, 2004.

[14] J. R. Jackson and A. L. McClellan, Java by example,

Sun Microsystems Press, California, 1999.

[15] S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L.

Schryer, A Fortran-to-C converter, AT&T Bell Labora-

tories, Computing Science Technical Report No. 149,

1995.

[16] K. Ng, W. M. Presz, Jr., and M. Khosrowjerdi,

Engineering analysis and simulation using Visual

Basic, Proceedings of 1994 ASME International CIE

Conference, pp 897�912, Minneapolis, September

11�14, 1994.

[17] A. B. Savery, Creating Windows based engineering

software applications using Microsoft Visual Basic,

Comput Civil Eng 1 (1995), 99�106.

[18] D. E. Torres and J. L. Anders, Using Microsoft Visual

Basic to write engineering applications, Proceedings of

the Petroleum Computer Conference, Society of

Petroleum Engineers, pp 291�299, Houston, June

11�14, 1995.

[19] W. L. Whipple, Walking through an application with

Visual Cþþ, Proceedings of the ELECTRO’96, IEEE,

pp 359�364, Somerset, April 30�May 2, 1996.

[20] Y. Tao, Design patterns for developing GUI applica-

tions, Proc Front Educ Conf 1 (1999), 11a3-11.

[21] G. Antonio, R. Fiutem, E. Merlo, and P. Tonella,

Application and user interface migration from Basic to

Visual Cþþ, Proceedings of the 1995 ISEE Interna-

tional Conference on Software Maintenance, IEEE, pp

76�85, Opio, October 17�20, 1995.

[22] C. Petzold, Programming Windows, the definitive

guide to the win32 API, Microsoft Press, Redmond,

WA, 1998.

[23] D. J. Kruglinski, S. Wingo, and G. Shepherd, Pro-

gramming Visual Cþþ, Microsoft Press, Redmond,

WA, 1998.

[24] C. Depcik, Modeling reacting gases and after treatment

devices for internal combustion engines, Mechanical

Engineering, University of Michigan, Ann Arbor, 2003.

[25] D. Cole, R. Wainwright, and D. Schoenefeld, Using

Java to develop web based tutorials, Proceedings of the

29th ACM SIGCSE Technical Symposium on Com-

puter Science Education, ITiCSE, pp 92�96, Atlanta,

February 26�March 1, 1998.

[26] S. R. Davis, Programming Microsoft Visual Jþþ 6.0,

Microsoft Press, Redmond, WA, 1999.

[27] S. Manson, C. DeMarco, R. Lasseter, and F. Alvarado,

MATLAB GUI power flow, Proceedings of the 31st

Universities Power Engineering Conference, pp

646�649, Iraklio, September 18�20, 1996.

[28] A. Azemi and E. E. Yaz, Using graphical user interface

capabilities of MATLAB in advanced engineering

courses, The 38th IEEE Conference on Decision and

Control (CDC), IEEE, pp 359�363, Phoenix, Decem-

ber 7�10, 1999.

[29] The MathWorks, Inc., Creating graphical user inter-

faces, The MathWorks, Nantick, MA, 2002.

[30] P. Marchand, Graphics and GUIs with MATLAB, CRC

Press, Boca Raton, FL, 1999.

58 DEPCIK AND ASSANIS

BIOGRAPHIES

Christopher Depcik received his BS degree

in mechanical engineering from the Univer-

sity of Florida in 1997. He obtained his first

MS degree in mechanical engineering in

1999 and his second MS degree in aerospace

engineering in 2002 from the University of

Michigan. In 2003, he obtained his PhD

degree in mechanical engineering from the

same university under the supervision of

Prof. Dennis Assanis. He is currently a research fellow in the

Department of Mechanical Engineering at the University of

Michigan. His areas of research involve variable-property react-

ing-gas dynamics and their application to the exhaust of internal

combustion engines, including after-treatment devices along with

fuel cell simulation. In addition, he is actively involved in

developing educational software for engineering courses.

Dennis Assanis is a professor and chair of

mechanical engineering and the Jon R. and

Beverly S. Holt Professor of Engineering at

the University of Michigan, where he is also

the director of the Automotive Research

Center. He received his BSc degree in

marine engineering from the University of

Newcastle-upon-Tyne, UK, in 1980. He has

received four graduate degrees from the

Massachusetts Institute of Technology: SM in naval architecture

and marine engineering (1982), SM in mechanical engineering

(1982), PhD in power and propulsion (1985), and SM in manage-

ment (1986). Prior to joining the University of Michigan in 1994, he

was an assistant professor (1985�1990) and an associate professor

(1990�1994) in the Department of Mechanical Engineering at the

University of Illinois Urbana�Champaign. His research interests

include modeling and computer simulation of internal combustion

engine processes and systems; experimental studies of engine heat

transfer, combustion, and emissions; and automotive systems design

optimization. He has published over 150 articles in journals and

refereed conference proceedings, and he is a fellow of the Society of

Automotive Engineers.

GRAPHICAL USER INTERFACES 59

