Nonlinear Filtering

- Linear filters
- Tend to blur edges and other image detail.
- Perform poorly with non-Gaussian noise.
- Result from Gaussian image and noise assumptions.
- Images are not Gaussian.
- Nonlinear filter
- Can preserve edges
- Very effective at removing impulsive noise
- Result from non-Gaussian image and noise assumptions.
- Can be difficult to design.

Linear Filters

- Definition: A system $y=T[x]$ is said to be linear if for all $\alpha, \beta \in \mathbb{R}$

$$
\alpha y_{1}+\beta y_{2}=T\left[\alpha x_{1}+\beta x_{2}\right]
$$

where $y_{1}=T\left[x_{1}\right]$ and $y_{2}=T\left[x_{2}\right]$.

- Any filter of the form

$$
y_{s}=\sum_{r} h_{s, r} x_{r}
$$

Homogeneous Filters

- Definition: A filter $y=T[x]$ is said to be homogeneous if for all $\alpha \in \mathbb{R}$

$$
\alpha y=T[\alpha x]
$$

- This is much weaker than linearity.
- Homogeneity is a natural condition for scale invariant systems.

Median Filter

- Let W be a window with an odd number of points.
- Then the median filter is given by

$$
y_{s}=\operatorname{median}\left\{x_{s+r}: r \in W\right\}
$$

- Is the median filter:
- Linear?
- Homogeneous?
- Consider the 1-D median filter with a 3-point window.

$\mathrm{x}(\mathrm{m})$	0	0	1	1,000	1	1	2	2
$\mathrm{y}(\mathrm{m})$	$?$	0	1	1	1	1	2	$?$

Median Filter: Optimization Viewpoint

- Consider the median filter

$$
y_{s}=\operatorname{median}\left\{x_{s+r}: r \in W\right\}
$$

and consider the following functional.

$$
F_{s}(\theta) \triangleq \sum_{r \in W}\left|\theta-x_{s+r}\right|
$$

- Then y_{s} solves the following optimization equation.

$$
y_{s}=\arg \min _{\theta} F_{s}(\theta)
$$

- Differentiating, we have

$$
\begin{aligned}
\frac{d}{d \theta} F(\theta) & =\frac{d}{d \theta} \sum_{r \in W}\left|\theta-x_{s+r}\right| \\
& =\sum_{r \in W} \operatorname{sign}\left(\theta-x_{s+r}\right) \\
& \triangleq f(\theta)
\end{aligned}
$$

This expression only holds for $\theta \neq x_{s+r}$ for all $r \in W$.

- So the solution falls at $\theta=x_{s *}$ such that

$$
0=\sum_{\substack{r \in W \\ r \neq(s *-s)}} \operatorname{sign}\left(\theta-x_{s+r}\right)
$$

Example: Median Filter Function

- Consider a 1-D median filter
- Three point window of $W=\{-1,0,1\}$
- Inputs $[x(n-1), x(n), x(n+1)]=[-2,-4,5]$.

$$
F(\theta)=\sum_{k=-1}^{1}\left|\theta-x_{n+k}\right|
$$

Example: Derivative of Median Filter Function

- Consider a 1-D median filter
- Three point window of $W=\{-1,0,1\}$
- Inputs $[x(n-1), x(n), x(n+1)]=[-2,-4,5]$.

$$
f(\theta)=\sum_{k=-1}^{1} \operatorname{sign}\left(\theta-x_{n+k}\right)
$$

Problem with an Even Number of Points

- Consider a 1-D median filter
- Four point window of $W=\{-1,0,1,2\}$
- Inputs $[x(n-1), x(n), x(n+1), x(n+2)]=[-2,-4,5,6]$.
- Solution is not unique.

$$
F(\theta)=\sum_{k=-1}^{2}\left|\theta-x_{n+k}\right|
$$

Weighted Median Filter

- Defined the functional

$$
F(\theta) \triangleq \sum_{r \in W} a_{r}\left|\theta-x_{s+r}\right|
$$

where a_{r} are weights assigned to each point in the window W.

- Weighted median is computed by

$$
y_{s}=\arg \min _{\theta} \sum_{r \in W} a_{r}\left|\theta-x_{s+r}\right|
$$

- Differentiating, we have

$$
\begin{aligned}
\frac{d}{d \theta} F(\theta) & =\frac{d}{d \theta} \sum_{r \in W} a_{r}\left|\theta-x_{s+r}\right| \\
& =\sum_{r \in W} a_{r} \operatorname{sign}\left(\theta-x_{s+r}\right) \\
& \triangleq f(\theta)
\end{aligned}
$$

This expression only holds for $\theta \neq x_{r}$ for all $r \in W$.

- Need to find $s *$ such that $f(\theta)$ is "nearly" zero.

Example: Weighted Median Filter Function

- Consider a 1-D median filter
- Five point window of $W=\{-2,-1,0,1,2\}$
- Inputs $[x(n-2), \cdots, x(n+2)]=[6,-2,-4,5,-1]$.
- Weights $[a(-2), a(-1), a(0), a(1), a(2)]=[1,2,4,2,1]$.

$$
F(\theta)=\sum_{k=-1}^{1} a(k)\left|\theta-x_{n+k}\right|
$$

Example: Derivative of Median Filter Function

- Consider a 1-D median filter
- Five point window of $W=\{-2,-1,0,1,2\}$
- Inputs $[x(n-2), \cdots, x(n+2)]=[6,-2,-4,5,-1]$.
- Weights $[a(-2), a(-1), a(0), a(1), a(2)]=[1,2,4,2,1]$.

$$
f(\theta)=\sum_{k=-1}^{1} a(k) \operatorname{sign}\left(\theta-x_{n+k}\right)
$$

Derivative of Weighted Median Function $f(\theta)$

Computation of Weighted Median

1. Sort points in window.

- Let $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(p)}$ be the sorted values.
- These values are known as order statistics.
- Let $a_{(1)}, a_{(2)}, \cdots, a_{(p)}$ be the corresponding weights.

2 . Find $i *$ such that the following equations hold

$$
\begin{aligned}
a_{i *}+\sum_{i=1}^{i *-1} a_{(i)} & \geq \sum_{i=i *+1}^{p} a_{(i)} \\
\sum_{i=1}^{i *-1} a_{(i)} & \leq \sum_{i=i *+1}^{p} a_{(i)}+a_{i *}
\end{aligned}
$$

3. Then the value $x_{(i *)}$ is the weighted median value.

Comments on Weighted Median Filter

- Weights may be adjusted to yield the "best" filter.
- Largest and smallest values are ignored.
- Same as median filter for $a_{r}=1$.

