
Z and HOL

Jonathan Bowen

Oxford University Computing Laboratory
Programming Research Group
Wolfson Building
Parks Road
Oxford OX1 3QD
UK

Email: Jonathan.Bowen@comlab.ox.ac.uk

Mike Gordon

University of Cambridge
Computer Laboratory
New Museums Site
Pembroke Street
Cambridge CB2 3QG
UK

Email: Mike.Gordon@cl.cam.ac.uk

Abstract

A simple `shallow' semantic embedding of the Z notation into the HOL

logic is described. The Z notation is based on set theory and �rst order

predicate logic and is typically used for human-readable formal speci�ca-

tion. The HOL theorem proving system supports higher order logic and

is used for machine-checked veri�cation. A well-known case study is used

as a running example. The presentation is intended to show people with

some knowledge of Z how a tool such as HOL can be used to provide

mechanical support for the notation, including mechanization of proofs.

No specialized knowledge of HOL is assumed.

1 Introduction

HOL [9] is an `LCF-style' theorem proving environment [10, 21] for classical
higher order logic [1, 6]. Proof tools for the formal speci�cation notation Z
[5, 29] can be implemented by translating Z schemas into higher order logic
and then programming schema combining operations in HOL's metalanguage
ML.1 This technique is known as semantic embedding (see section 3.2) and has
been pioneered by ICL for many years. They have built their own `industrial
strength' version of HOL, called ProofPower [12], and implemented sophisti-
cated proof tools for Z on top of it. (See section 4 for more on ProofPower and
other proof tools for Z.)

This paper is intended to be an accessible introduction to support for Z by
semantic embedding. It is intended for readers familiar with Z, but not with
HOL. The techniques described here use ordinary HOL and are simpler and
less powerful than those found in ProofPower. In the next section a familiar Z
speci�cation example, Spivey's `birthday book', is used to illustrate how HOL

can support Z. Subsequent sections discuss how this support is achieved.

2 The Birthday Book

It is assumed that readers are reasonably familiar with the birthday book ex-
ample in Chapter 1 of Spivey's The Z Notation: A Reference Manual [29],

1The ML language was originally developed as part of LCF, but is now an independent
programming language in its own right [18]. It is an eager-evaluation impure functional
language with a polymorphic type discipline.

henceforth called ZRM. This example may also be found in [27]. The schemas
from this speci�cation are included here for comparison with their HOL equiv-
alents.

The numbered boxes that follow show a HOL session in which the birthday
book is input and some simple facts are proved. The HOL system prompts for
input with #, so all lines beginning with this symbol are supplied by the user.
All other lines are generated by HOL. The sessions have been edited to remove
some output and to suppress details of some user-supplied theorem proving
tactics that direct the HOL proof, which will only be comprehensible to readers
familiar with HOL.2 Before the session starts HOL is run and the Z support
package loaded. This package is a collection of ML declarations together with
a theory Z containing de�nitions to support Z operators and its `Mathematical
Tool-kit' (see section 3.3). Details of this loading are omitted here.

The �rst interaction of the session is shown in box 1 below. A new theory
called BirthdayBook is started. Theories contain de�nitions and theorems that
the user has proved. They are stored in a hierarchical database on disk. The
ML command new_theory starts a new theory with a user-supplied name.

1#new_theory `BirthdayBook`;;

This interaction initiates the speci�cation of the Birthday Book by starting
a new HOL theory called BirthdayBook. Note that in the version of ML (Clas-
sic ML) provided by HOL88 (which is the version of HOL used here) user input
is terminated with ;; (in Standard ML the terminator is a single semi-colon).

The �rst de�nition in this theory introduces two sets:

[NAME ;DATE]

The corresponding declaration in HOL uses an ML function sets.

2#sets `NAME DATE`;;

With this second interaction the two sets NAME and DATE are declared.
The �rst schema in the Birthday Book de�nes the abstract state and an

`invariant' on that state:

BirthdayBook

known : �NAME

birthday : NAME� DATE

known = dombirthday

The declaration of schemas in HOL uses a notation that is intended to make it
clear what the corresponding Z is. This is shown in box 3 below.

2The complete input to HOL for the Birthday Book and other examples is avail-
able in the directory contrib/Examples distributed with HOL88, Version 2.02. Details
of HOL (including how to obtain it) are available from an on-line networked hyper-
text documentation service run by the Laboratory for Applied Logic at Brigham Young
University. To browse this documentation, �rst obtain the XMosaic tool (connect to
ftp.ncsa.uiuc.edu by anonymous FTP, then the directory /Mosaic/xmosaic-binaries con-
tains compiled copies of the latest version of XMosaic for a variety of architectures). To
connect to the HOL documentation server select OPEN from the XMosaic menu and enter
http://lal.cs.byu.edu/lal/hol-documentation.html.

3#declare
`BirthdayBook`
"SCHEMA
[known :: (P NAME);
birthday :: (NAME -+> DATE)]
%---------------------------%
[known = dom birthday]";;

This third interaction illustrates the format (shown on lines starting with #)
used to input Z schemas to HOL. A preprocessor converts the input format to
a HOL term that represents the semantics of the corresponding schema. This
preprocessor could in principle be a complete parser for Z notation,3 but in
keeping with our `lightweight' approach this has not been done (ICL's Proof-
Power tool supports proper Z syntax). The aim has been to have an input
format that is readable as both Z and HOL.

The power set operator P (� in Z) and in�x partial function operator -+>
(� in Z) are de�ned in the theory Z, which implements (part of) the Z math-
ematical tool-kit; see section 3.3 for more details.

The ML function declare converts the term "SCHEMA � � �" that follows it
into the HOL representation of the schema, remembers the declaration (and
the types of declared variables) in a global data structure and returns the
schema representation.

The HOL representation of a schema of the form:

. . .
x1 : S1
x2 : S2

...
xm : Sm

P1

P2

...
Pn

is semantically equivalent to the formula:

x1 2 S1 ^ x2 2 S2 ^ . . .^ xm 2 Sm ^ P1 ^ P2 ^ . . .^ Pn

which in HOL notation is written as:

x1 IN S1 /\ x2 IN S2 /\ . . . /\ xm IN Sm /\ P1 /\ P2 /\ . . . /\ Pn

where Si is a HOL term denoting a set and P1; . . . ;Pn are Boolean terms con-
stituting the schema's predicate. The in�x operators IN and :: both denote
the set membership relation. The former is used for general set membership
in predicates (e.g. to represent 2), the latter for type membership assertions
(e.g. in the declaration part of schemas, where Z would have a colon). Note that

3HOL libraries provide syntax processing utilities that enable custom parsers and pretty-
printers to be generated.

HOL schema operations may move type membership assertions from the dec-
laration part of schemas into the predicate part; thus automatically generated
assertions of the form x::S may appear in the predicate parts of schemas.

The actual semantic representation is not the conjunction shown above, but
the logically equivalent term:

SCHEMA [x1 :: S1; x2 :: S2; . . . ;xm :: Sm]

[P1; P2; . . . ; Pn]

where SCHEMA is de�ned (in the theory Z) by:

SCHEMA [d1; . . . ;dm] [P1; . . . ;Pn] =

d1 /\ . . . /\ dm /\ P1 /\ . . . /\ Pn

This representation is more convenient as the conjuncts corresponding to the
declaration and predicate parts of the schema can be easily extracted.

HOL input will usually be laid out in the following `Z-style' format:

SCHEMA

[x1 :: S1;

x2 :: S2;
...

xm :: Sm]

%---------%

[P1;

P2;
...

Pn]

where the line %--� � �--% is just a comment to aid the eye (comments in ML

are enclosed between percent symbols).
The next schema illustrates schema inclusion and the � change of state

schema convention. First the Z:

AddBirthday

�BirthdayBook

name? : NAME

date? : DATE

name? =2 known

birthday
0 = birthday [fname? 7! date?g

The corresponding HOL is:

4#declare
`AddBirthday`
"SCHEMA
[DELTA BirthdayBook;
name? :: NAME;
date? :: DATE]
%--%
[~(name? IN known);
birthday' = birthday UNION {name? |-> date?}]";;

The symbol ~ represents negation (:) in HOL. Normally schemas are printed
out as their name, but this default can be changed so that the semantic repre-
sentations of schemas are printed in full. This mode is entered by evaluating
the ML expression show_schemas true.

5#"BirthdayBook";;
"BirthdayBook" : term

#show_schemas true;;

#"BirthdayBook";;
"SCHEMA
[known :: (P NAME);
birthday :: (NAME -+> DATE)]

[known = dom birthday]" : term

#"AddBirthday";;
"SCHEMA
[known :: (P NAME);
birthday :: (NAME -+> DATE);
known' :: (P NAME);
birthday' :: (NAME -+> DATE);
name? :: NAME;
date? :: DATE]

[known = dom birthday;
known' = dom birthday';
~name? IN known;
birthday' = birthday UNION {name? |-> date?}]"

Note how the schema inclusion DELTA BirthdayBook (which represents Z's
�BirthdayBook) results in extra primed variables being added to the dec-
laration of AddBirthday, and appropriate instances of the predicate part of
BirthdayBook being included in the predicate of AddBirthday. More details
of how DELTA-expansion is implemented can be found in section 3.1.

As a check, the precondition of AddBirthday can be computed and simpli-
�ed using a theorem proving tool called simp. The precondition of an operation
schema is the condition on the state that must hold if the operation is to be
applicable. See page 77 of [29], page 151 of [23] and page 141 of [8] for further
discussions of this. For example, here is the computation of the precondition
of AddBirthday :

6#show_schemas false;;

#simp "pre AddBirthday";;
known :: (P NAME),
birthday :: (NAME -+> DATE),
name? :: NAME,
date? :: DATE,
(dom(birthday UNION {name? |-> date?})) :: (P NAME),
(birthday UNION {name? |-> date?}) :: (NAME -+> DATE)
|- pre AddBirthday = (known = dom birthday) /\ ~name? IN (dom birthday)

The evaluation of simp "pre AddBirthday" results in a theorem asserting
that the precondition of AddBirthday is known = dombirthday ^ name? =2

dombirthday .

Theorems are a special datatype in ML, values of which can only be created
by applying sequences of inference rules to axioms (or previously proved the-
orems) [10, 9]. A theorem t1,. . .,tn |- t asserts that the term t follows from
the conjunction of the terms t1, . . . , tn .

In the example above, the terms before the turnstile |- are type inclusion
assumptions used by simp in simplifying pre AddBirthday. The function simp

uses some simple heuristics (e.g. the `One Point Rule' [23], which is implemented
in the unwind library), to simplify the supplied term. The heuristics are ade-
quate here, but not for more complex examples (e.g., see RAddBirthday later).
Special purpose theorem proving tools like simp are easy for (experienced) users
to implement for themselves in ML.

Sets are regarded as primitive in Z, but in HOL they must be de�ned.
Fortunately, HOL's sets library de�nes a type of sets and the usual operations
of set theory. It also de�nes the set comprehension notation:

fE [x1; � � � ; xn] jP [x1; � � � ; xn] g

which is equivalent to:

f x j 9 x1 � � �xn : x = E [x1; � � � ; xn] ^ P [x1; � � � ; xn] g

Thus the Z set comprehension notation fS � Eg is translated into fE j Sg in
HOL. It would be possible to support Z's comprehension notation directly, but
as the translation is so direct this has not been done.

The theory Z provides the de�nitions of some of the set theoretic operators
in Z and its mathematical toolkit. For example, Z functions are a special case
of relations (as de�ned on pages 95 and 105 in ZRM):

X # Y == �(X � Y)

X � Y == f f : X# Y j (8 x : X ; y1; y2 : Y �

(x 7! y1) 2 f ^ (x 7! y2) 2 f) y1 = y2) g

The corresponding HOL de�nitions are:

X <-> Y = P(X >< Y)

X -+> Y = {f | f IN (X <-> Y) /\ (!x y1 y2.

(x|->y1) IN f /\ (x|->y2) IN f ==> (y1 = y2))}

where ! is HOL's notation for the universal quanti�er 8. These de�nitions are
`generic': X and Y range over sets of arbitrary elements. In the HOL logic,
functions are a primitive concept and unlike in Z are not regarded as certain
kinds of sets. The HOL notation f (x), which can also be written without
brackets as just f x , denotes the application of the logical function f to argument
x . If f is a set of ordered pairs, then this is not a well-formed HOL term { only
logical functions can be applied to arguments. To get around this problem
occurrences of f (x), where f has been previously declared to be a function
graph, are preprocessed to f ^^x , where ^^ is an in�x operator for `applying'
sets de�ned in the theory Z (see section 3.3).

The speci�cation presented so far can be further tested by proving the
property discussed on page 5 of ZRM. In Z notation this is:

AddBirthday ` known
0 = known [fname?g

In HOL the proof proceeds as follows:

7#prove_theorem
(`known_UNION`,
"[AddBirthday] |-? (known' = known UNION name?)",
REWRITE_ALL_TAC[SCHEMA;CONJL;dom_UNION;dom_SING]);;

known_UNION = AddBirthday |- known' = known UNION name?

The input has the form prove_theorem(name,goal,tactic). This instructs
HOL to try to prove goal using tactic. A goal of the form [t1;. . .;tn] |-? t

is solved if tactic proves the theorem t1,. . .,tn |- t . A goal just consisting of
a term t has no assumptions and is solved if tactic proves the theorem |- t

(see the example in box 18 later).
The tactic used above rewrites the goal and assumptions with the de�nitions

of SCHEMA and CONJL (see section 3.3) and also with the following two laws
(which are pre-proved in the theory Z, see section 3.3).

dom_UNION |- dom(X UNION Y) = (dom X) UNION (dom Y)

dom_SING |- dom{x |-> y} = {x}

If the proof succeeds, as it does here, then the resulting theorem value is bound
to name in the metalanguage ML and may be used subsequently.

8#known_UNION;;
AddBirthday |- known' = known UNION {name?}

#show_schemas true;;

#known_UNION;;
SCHEMA
[known :: (P NAME); birthday :: (NAME -+> DATE); known' :: (P NAME);
birthday' :: (NAME -+> DATE); name? :: NAME; date? :: DATE]
[known = dom birthday;
known' = dom birthday';
~name? IN known;
birthday' = birthday UNION {name? |-> date?}]
|- known' = known UNION {name?}

The next operation schema in the birthday book speci�cation is:

FindBirthday

�BirthdayBook
name? : NAME

date! : DATE

name? 2 known

date! = birthday(name?)

This uses the � (no change of state) convention of Z in the declaration where
dashed after-state components are the same as their matching undashed before-
state components.

9#declare
`FindBirthday`
"SCHEMA
[XI BirthdayBook;
name? :: NAME;
date! :: DATE]
%-----------------------%
[name? IN known;
date! = birthday(name?)]";;

The schema FindBirthday is expanded out to a term logically equivalent to:

SCHEMA

[known :: (P NAME);

birthday :: (NAME -+> DATE);

known' :: (P NAME);

birthday' :: (NAME -+> DATE);

name? :: NAME;

date! :: DATE]

[known = dom birthday;

known' = known;

birthday' = birthday;

name? IN known;

date! = birthday ^^ name?]" : term

The actual expansion is described in section 3.1.
A second lemma to check the speci�cation can now be proved. In Z notation

it is:

(AddBirthday � FindBirthday) ` (date! = date?)

This checks that a subsequent FindBirthday operation results in the same out-
put date! for a given name as that provided by date? in a previous AddBirthday
operation, which intuitively should be true. Here the input name? supplied to
both the AddBirthday and FindBirthday operations conveniently map on top
of each other.

The hypothesis is the sequential composition of two schemas. This illus-
trates the shallowness of the embedding of Z. The composition of schemas is
computed when they are input by the preprocessor: SEQ acts like a macro.
With a deep embedding (see section 3.2) the composition operator SEQ would
have to be de�ned in the object logic.

The symbol ? (as used at the start of the predicate part of the schema in
box 10) is HOL's notation for the existential quanti�er 9. Iterated quanti�ca-
tions of the form Q x1 � � � xn.t as well as Q x1 � � � xn::S.t are allowed in HOL,
where Q is either ! (for universal quanti�cation 8) or ?.

An example of a slightly more complicated tactic is shown in the next HOL

proof:

10#prove_theorem
(`SEQ_AddBirthday_FindBirthday`,
"[AddBirthday SEQ FindBirthday] |-? (date! = date?)",
REWRITE_ALL_TAC[SCHEMA;CONJL]
THEN POP_ASSUM STRIP_ASSUME_TAC
THEN SMART_ELIMINATE_TAC
THEN IMP_RES_TAC Ap_UNION2
THEN ASM_REWRITE_TAC[]);;

SEQ_AddBirthday_FindBirthday =
SCHEMA
[known :: (P NAME); birthday :: (NAME -+> DATE); known' :: (P NAME);
birthday' :: (NAME -+> DATE); name? :: NAME;
date? :: DATE; date! :: DATE]
[?known'' birthday''.

(known'' :: (P NAME) /\ birthday'' :: (NAME -+> DATE)) /\
(known = dom birthday) /\
(known'' = dom birthday'') /\
~name? IN known /\
(birthday'' = birthday UNION name? |-> date?) /\
(known'' = dom birthday'') /\
(known' = dom birthday') /\
((`birthday`,birthday'),`known`,known' =
(`birthday`,birthday''),`known`,known'') /\
name? IN known'' /\
(date! = birthday'' ^^ name?)]

|- date! = date?

The tactic above has the form tac1THEN tac2THEN tac3THEN tac4THEN tac5 which
instructs HOL to apply tac1 . . . tac5 in that order:

� tac1 rewrites the goal with the de�nitions of SCHEMA and CONJL;

� tac2 simpli�es and `explodes' the assumption;

� tac3 is SMART_ELIMINATE_TAC which removes redundant assumptions (it
was contributed 4 by Donald Syme of the Australian National University);

� tac4 tries to combine the preproved law Ap_UNION2 with assumptions
using Modus Ponens, where Ap_UNION2 is:

|- ~x IN (dom X) ==> ((X UNION {x |-> v}) ^^ x = v)

� tac5 rewrites with all the current assumptions (including any extra ones
generated by tac4).

Switching o� schema printing causes the input form to be reconstructed.
(How this is done is explained in section 3.1.)

11#show_schemas false;;

#SEQ_AddBirthday_FindBirthday;;
AddBirthday SEQ FindBirthday |- date! = date?

4HOL is distributed with both a library and a contrib directory. The former con-
tains uniformly documented material; the latter contains less formal contributions including
SMART ELIMINATE TAC.

The next two schemas given in ZRM (Remind and InitBirthdayBook) do
not add anything new and are omitted.

The birthday book uses a `free type' called REPORT , de�ned in Z by:

REPORT ::= ok j already known j not known

Such de�nitions are supported in HOL using a type de�nition facility written
by Tom Melham [17] (which is slightly repackaged for use with Z).

12#free_set `REPORT = ok | already_known | not_known`;;

Melham's package only supports a subset of Z's free types. A wider class is
de�nable in Isabelle's ZF application using a �xpoint method developed by
Paulson [22]. This approach suggests a way of handling more of Z's free types
in HOL; see also [26].

Next consider the schema declarations to handle success and error condi-
tions:

Success

result ! : REPORT

result ! = ok

AlreadyKnown

�BirthdayBook
name? : NAME

result ! : REPORT

name? 2 known

result ! = already known

These are input to HOL by:

13#declare
`Success`
"SCHEMA
[result! :: REPORT]
%-----------------%
[result! = ok]";;

and

14#declare
`AlreadyKnown`
"SCHEMA
[XI BirthdayBook;
name? :: NAME;
result! :: REPORT]
%-----------------------%
[name? IN known;
result! = already_known]";;

The next schema in the birthday book uses schema conjunction and dis-
junction to handle the success and error cases:

RAddBirthday b= (AddBirthday ^ Success) _ AlreadyKnown

The conjunction and disjunction of schemas is computed on input, just as
for the sequential composition SEQ. AND and OR can be regarded as macros.

15#declare
`RAddBirthday`
"(AddBirthday AND Success) OR AlreadyKnown";;

"RAddBirthday" : term

#show_schemas true;;

#"RAddBirthday";;
"SCHEMA
[known :: (P NAME);
birthday :: (NAME -+> DATE);
known' :: (P NAME);
birthday' :: (NAME -+> DATE);
name? :: NAME;
date? :: DATE;
result! :: REPORT]

[(known = dom birthday) /\
(known' = dom birthday') /\
~name? IN known /\
(birthday' = birthday UNION {name? |-> date?}) /\
(result! = ok) \/
(known = dom birthday) /\
(known' = known) /\
(birthday' = birthday) /\
name? IN known /\
(result! = already_known)]" : term

Note that in HOL, /\ binds tighter than \/, so the body of this schema is a
disjunction of conjunctions.

RAddBirthday may be written out in full if desired:

RAddBirthday

�BirthdayBook

name? : NAME

date? : DATE
result ! : REPORT

(name? =2 known ^

birthday
0 = birthday [fname? 7! date?g ^

result ! = ok) _
(name? 2 known ^

birthday
0 = birthday ^

result ! = already known)

In the rest of the paper, the tactics used to prove theorems will be omitted.
They become more complicated for larger proofs which require a greater degree

of direction (and of course, insight) by the user. All the tactics may be found
in the on-line HOL �les mentioned earlier for those interested in this aspect of
the proofs.

It is easy to prove that the two de�nitions given for RAddBirthday are
equivalent using HOL. First we turn o� schema expansion to reduce the size of
the output:

16#show_schemas false;;

#prove_theorem
(`RAddBirthdayLemma`,
"(AddBirthday AND Success) OR AlreadyKnown =
SCHEMA
[DELTA BirthdayBook;
name? :: NAME;
date? :: DATE;
result! :: REPORT]
%---%
[(~(name? IN known) /\
(birthday' = birthday UNION name? |-> date?) /\
(result! = ok)) \/
(name? IN known /\
(birthday' = birthday) /\
(result! = already_known))]",
< omitted tactic >);;

RAddBirthdayLemma =
|- RAddBirthday =

SCHEMA
[known :: (P NAME); birthday :: (NAME -+> DATE); known' :: (P NAME);
birthday' :: (NAME -+> DATE); name? :: NAME; date? :: DATE;
result! :: REPORT]

[known = dom birthday; known' = dom birthday';
~name? IN known /\
(birthday' = birthday UNION name? |-> date?) /\
(result! = ok)
name? IN known /\
(birthday' = birthday) /\
(result! = already_known)]

This proof con�rms informal remarks made on page 9 of ZRM explaining how
the two de�nitions are equivalent.

Note that the left hand side of the equation proved is printed by HOL as
RAddBirthday rather than as the following:

(AddBirthday AND Success) OR AlreadyKnown

This is because the former is recognized as being de�ned to be equal to the
latter. The right hand side of the equation has not previously been given a
name, so it has to be printed out in full.

A further check on RAddBirthday is to show that its precondition is true.
Unfortunately, simp is not powerful enough and results in the following output
which could be usefully simpli�ed further:

17#simp "pre RAddBirthday";;
known :: (P NAME),
birthday :: (NAME -+> DATE),
name? :: NAME,
date? :: DATE
|- pre RAddBirthday =

(?known' birthday' result!.
(known' :: (P NAME) /\
birthday' :: (NAME -+> DATE) /\
result! :: REPORT) /\

((known = dom birthday) /\
(known' = dom birthday') /\
~name? IN known /\
(birthday' = birthday UNION {name? |-> date?}) /\
(result! = ok) \/
(known = dom birthday) /\
(known' = dom birthday') /\
((birthday' = birthday) /\ (known' = known)) /\
name? IN known /\
(result! = already_known)))

The heuristics employed by simp cannot deal with the existentially quanti�ed
disjunction. They could be improved to work for this example, but sooner or
later another example would crop up that is not handled. What is required is
user guided simpli�cation. This can be achieved in various ways, the approach
illustrated here is to prove that the precondition is true with a user-supplied
tactic.

18#prove_theorem
(`pre_RAddBirthday`,
"[BirthdayBook; sig RAddBirthday] |-? pre RAddBirthday",
< omitted tactic >);;

pre_RAddBirthday =
BirthdayBook, sig RAddBirthday |- pre RAddBirthday

The sig of a schema consists of the type membership statements of its variables.

sig(SCHEMA[x1::S1; . . .;xn::Sn][� � �]) = x1 2 S1 ^ . . . ^ xn 2 Sn

The last three schema de�nitions in the abstract speci�cation of the birthday
book are NotKnown, RFindBirthday and RRemind . These are straightforward
and are omitted here.

In section 1.5 of ZRM the operations and data structures of the birthday
book are implemented. The concrete operation corresponding to BirthdayBook
is BirthdayBook1, where:

BirthdayBook1
names :
1" NAME

dates :
1" DATE

hwm :

8 i ; j : 1 . . hwm � i 6= j) names(i) 6= names(j)

The HOL version of this uses the terms NN and NN_1 which denote the sets
of natural numbers and strictly positive natural numbers, respectively. The

notation m..n denotes the set of numbers in the closed interval [m; n] (`..'
is a HOL in�x operator). HOL allows restricted quanti�cations of the form
!x::S.t and ?x::S.t (where S is a term denoting a set), which are equivalent
to !x.x IN S ==> t and ?x.x IN S /\ t , respectively. The in�x operator -->
is de�ned in the theory Z and constructs the set of total functions.

Using these notations, the Z schema above is input into HOL as:

19#declare
`BirthdayBook1`
"SCHEMA
[names :: (NN_1-->NAME);
dates :: (NN_1-->DATE);
hwm :: NN]
%---%
[!i j::(1..hwm). ~(i = j) ==> ~(names(i) = names(j))]";;

The relation between BirthdayBook and its implementation BirthdayBook1
is speci�ed with the schema Abs:

Abs

BirthdayBook

BirthdayBook1

known = f i : 1 . . hwm � names(i) g

8 i : 1 . . hwm � birthday(names(i)) = dates(i)

The HOL version is:

20#declare
`Abs`
"SCHEMA
[BirthdayBook;
BirthdayBook1]
%---%
[known = {names(i) | i::(1..hwm)};
!i::(1..hwm). birthday(names(i)) = dates(i)]";;

The implementation of AddBirthday is AddBirthday1, where:

AddBirthday1
�BirthdayBook1
name? : NAME

date? : DATE

8 i : 1 . . hwm � name? 6= names(i)

hwm
0 = hwm + 1

names
0 = names � fhwm

0
7! name?g

dates
0 = dates � fhwm

0
7! date?g

The HOL version of this is:

21#declare
`AddBirthday1`
"SCHEMA
[DELTA BirthdayBook1;
name? :: NAME;
date? :: DATE]
%-----------------------------------%
[!i::(1..hwm). ~(name? = names(i));
hwm' = hwm + 1;
names' = names (+) {hwm' |-> name?};
dates' = dates (+) {hwm' |-> date?}]";;

The �nal three schemas in the implementation of the birthday book are
FindBirthday1, AbsCards, Remind1 and InitBirthdayBook1. They introduce
nothing new and are omitted.

The speci�cation of the implementation of the birthday book is now com-
plete. The soundness of the implementation can be veri�ed by proving that the
rules for operation and data re�nement are met. These rules are described in
sections 5.5 and 5.6 of ZRM. When applied to the birthday book, they generate
the following two conditions:

8BirthdayBook ; BirthdayBook1; name? : NAME ; date? : DATE �

pre AddBirthday ^ Abs) pre AddBirthday1

8BirthdayBook ; BirthdayBook1; BirthdayBook10;
name? : NAME ; date? : DATE �

pre AddBirthday ^ Abs ^ AddBirthday1
) (9BirthdayBook 0

� Abs
0
^ AddBirthday)

It is straightforward to verify these properties in HOL. The proofs are quite
a bit more complex than previous ones, involving various mathematical laws
(see section 3.3) and extensive case analysis. The details will not be given here,
but are available in the directory contrib/Z/examples distributed with HOL88
Version 2.02.

The �rst theorem establishes that the precondition of AddBirthday1 is lib-
eral enough.

22#prove_theorem
(`AbsThm1`,
"FORALL [BirthdayBook; BirthdayBook1; (name?::NAME); (date?::DATE)]
((pre AddBirthday /\ Abs) ==> (pre AddBirthday1))",
< omitted tactic >);;

AbsThm1 =
|- FORALL

[BirthdayBook; BirthdayBook1; name? :: NAME; date? :: DATE]
(pre AddBirthday /\ Abs ==> pre AddBirthday1)

The operations pre and FORALL are expanded on input. Note that FORALL is
interpreted as yielding a predicate not a schema (the quanti�er SCHEMA_FORALL
returns a schema).

There is no standard way of formulating theorems about Z schemas (though
a start is made in Annexe F of the draft Z Base Standard [5]). For example,
the two theorems in Z notation above admit a variety of formal interpretations.

`pre AddBirthday ^ Abs' could be interpreted as either a schema expression
or as a predicate; in the former case ^ is a schema operation (represented
by AND in HOL), in the latter case it is a logical operation (/\ in HOL). In
this particular case the two interpretations of conjunction result in logically
equivalent terms in HOL, but in general it is unclear if this will always be the
case (particularly with implications and quanti�cations). The convention for
theorems adopted here is, wherever possible, to interpret Z's logical operators
as operators that construct predicates rather than schemas. Other choices are
possible, for example the following version of AbsThm1 (where AND replaces /\)
is also provable:

FORALL

[BirthdayBook; BirthdayBook1; (name?::NAME); (date?::DATE)]

((pre AddBirthday AND Abs) ==> (pre AddBirthday1))

The second theorem establishes that AddBirthday1 produces the right an-
swer.

23#prove_theorem
(`AbsThm2`,
"FORALL [BirthdayBook; BirthdayBook1; BirthdayBook1';
(name?::NAME); (date?::DATE)]
((pre AddBirthday /\ Abs /\ AddBirthday1)
==>
(EXISTS BirthdayBook' (Abs' /\ AddBirthday)))",
< omitted tactic >);;

AbsThm2 =
|- FORALL

[BirthdayBook; BirthdayBook1; BirthdayBook1';
name? :: NAME; date? :: DATE]

(pre AddBirthday /\ Abs /\ AddBirthday1 ==>
EXISTS BirthdayBook'(Abs' /\ AddBirthday))

The schema operations pre, FORALL and EXISTS are expanded on input. FORALL
and EXISTS are interpreted as yielding predicates not schemas (the quanti�er
SCHEMA_EXISTS returns a schema). The priming conventions for schemas are
also handled on input. E.g.:

24#show_schemas true;;

#"BirthdayBook";;
"SCHEMA
[known :: (P NAME); birthday :: (NAME -+> DATE)]
[known = dom birthday]" : term

#"BirthdayBook'";;
"SCHEMA
[known' :: (P NAME); birthday' :: (NAME -+> DATE)]
[known' = dom birthday']" : term

It is a tribute to Z's notational power using the schema notation that com-
plex theorems like AbsThm1 and AbsThm2 can be expressed concisely. This
complexity is revealed if the Z printing is switched o� so that the semantic
representations of schemas is output as illustrated in box 25. This graphically
illustrates why the schema notation was invented to structure and hide the
mass of detailed mathematics which can be held in a Z speci�cation.

25#AbsThm2;;
|- !known birthday.

known :: (P NAME) /\ birthday :: (NAME -+> DATE) ==>
known :: (P NAME) /\ birthday :: (NAME -+> DATE) /\

(known = dom birthday) ==>
(!names dates hwm.
names :: (NN_1 --> NAME) /\ dates :: (NN_1 --> DATE) /\ hwm :: NN ==>
names :: (NN_1 --> NAME) /\ dates :: (NN_1 --> DATE) /\ hwm :: NN /\
(!i j :: 1 .. hwm. ~(i = j) ==> ~(names ^^ i = names ^^ j)) ==>

(!names' dates' hwm'.
names' :: (NN_1 --> NAME) /\ dates' :: (NN_1 --> DATE) /\
hwm' :: NN ==>
names' :: (NN_1 --> NAME) /\ dates' :: (NN_1 --> DATE) /\
hwm' :: NN /\

(!i j :: 1 .. hwm'. ~(i = j) ==> ~(names' ^^ i = names' ^^ j)) ==>
(!name?.
name? :: NAME ==>
(!date?.
date? :: DATE ==>

SCHEMA
[known :: (P NAME); birthday :: (NAME -+> DATE);
name? :: NAME; date? :: DATE]
[?known' birthday'.
(known' :: (P NAME) /\ birthday' :: (NAME -+> DATE)) /\

(known = dom birthday) /\ (known' = dom birthday') /\
~name? IN known /\
(birthday' = birthday UNION {name? |-> date?})] /\

SCHEMA

[known :: (P NAME); birthday :: (NAME -+> DATE);
names :: (NN_1 --> NAME); dates :: (NN_1 --> DATE);
hwm :: NN]
[known = dom birthday;
!i j :: 1 .. hwm. ~(i = j) ==> ~(names ^^ i = names ^^ j);

known = {names ^^ i | i :: (1 .. hwm)};
!i :: 1 .. hwm. birthday ^^ (names ^^ i) = dates ^^ i] /\
SCHEMA
[names :: (NN_1 --> NAME); dates :: (NN_1 --> DATE);
hwm :: NN; names' :: (NN_1 --> NAME);

dates' :: (NN_1 --> DATE); hwm' :: NN; name? :: NAME;
date? :: DATE]
[!i j :: 1 .. hwm. ~(i = j) ==> ~(names ^^ i = names ^^ j);
!i j :: 1 .. hwm'. ~(i = j) ==> ~(names' ^^ i = names' ^^ j);
!i :: 1 .. hwm. ~(name? = names ^^ i); hwm' = hwm + 1;

names' = names (+) {hwm' |-> name?};
dates' = dates (+) {hwm' |-> date?}] ==>
(?known' birthday'.
(known' :: (P NAME) /\ birthday' :: (NAME -+> DATE)) /\

known' :: (P NAME) /\ birthday' :: (NAME -+> DATE) /\
(known' = dom birthday') /\
SCHEMA
[known' :: (P NAME); birthday' :: (NAME -+> DATE);
names' :: (NN_1 --> NAME); dates' :: (NN_1 --> DATE);

hwm' :: NN]
[known' = dom birthday';
!i j :: 1 .. hwm'. ~(i = j) ==> ~(names' ^^ i = names' ^^ j);
known' = {names' ^^ i | i :: (1 .. hwm')};
!i :: 1 .. hwm'. birthday' ^^ (names' ^^ i) = dates' ^^ i] /\

SCHEMA
[known :: (P NAME); birthday :: (NAME -+> DATE);
known' :: (P NAME); birthday' :: (NAME -+> DATE);
name? :: NAME; date? :: DATE]

[known = dom birthday; known' = dom birthday';

~name? IN known;
birthday' = birthday UNION {name? |-> date?}])))))

As a �nal example, here is the `su�cient condition' for the correct imple-
mentation of the sequential composition of AddBirthday and FindBirthday

that is described in general terms on page 134 of ZRM. This is much easier to
prove than either AbsThm1 or AbsThm2. The su�cient condition for the com-
position of AddBirthday1 and FindBirthday1 is also easy to prove. Note that
show_schema true is still in force.

26#prove_theorem

(`AddFindSeq`,

"FORALL

[BirthdayBook'']

((EXISTS[AddBirthday](theta BirthdayBook' = theta BirthdayBook''))

==>

(EXISTS[FindBirthday](theta BirthdayBook = theta BirthdayBook'')))",

< omitted tactic >);;

AddFindSeq =

|- !known'' birthday''.

known'' :: (P NAME) /\ birthday'' :: (NAME -+> DATE) ==>

known'' :: (P NAME) /\

birthday'' :: (NAME -+> DATE) /\

(known'' = dom birthday'') ==>

(?known birthday known' birthday' name? date?.

(known :: (P NAME) /\ birthday :: (NAME -+> DATE) /\

known' :: (P NAME) /\ birthday' :: (NAME -+> DATE) /\

name? :: NAME /\ date? :: DATE) /\ known :: (P NAME) /\

birthday :: (NAME -+> DATE) /\ known' :: (P NAME) /\

birthday' :: (NAME -+> DATE) /\ name? :: NAME /\

date? :: DATE /\ (known = dom birthday) /\

(known' = dom birthday') /\ ~name? IN known /\

(birthday' = birthday UNION name? |-> date?) /\

((`birthday`,birthday'),`known`,known' =

(`birthday`,birthday''),`known`,known'')) ==>

(?known birthday known' birthday' name? date!.

(known :: (P NAME) /\ birthday :: (NAME -+> DATE) /\

known' :: (P NAME) /\ birthday' :: (NAME -+> DATE) /\

name? :: NAME /\ date! :: DATE) /\ known :: (P NAME) /\

birthday :: (NAME -+> DATE) /\ known' :: (P NAME) /\

birthday' :: (NAME -+> DATE) /\ name? :: NAME /\

date! :: DATE /\ (known = dom birthday) /\

(known' = dom birthday') /\

((`birthday`,birthday'),`known`,known' =

(`birthday`,birthday),`known`,known) /\

name? :: known /\

(date! = birthday ^^ name?) /\

((`birthday`,birthday),`known`,known =

(`birthday`,birthday''),`known`,known''))

The implementation of bindings and their extraction (i.e. � in Z and theta

in HOL) is discussed in section 3.1.

3 How Z is supported in HOL

The support for Z illustrated in the previous section has two parts: (i) input
and output procedures to handle the various schema operations and to manage
schema and variable names, and (ii) the HOL theory Z that implements the Z
operators and mathematical toolkit.

3.1 Inputting and outputting schemas

When a HOL quotation of the form "� � �" is read a number of transformations
are performed. The most important of these are listed below.

1. Variables that have previously been declared as schema names with the
ML function declare are replaced by their semantic representation, which
is a term of the form SCHEMA [� � �] [� � �].

Decorated (e.g. dashed) schema names are expanded to the appropriately
decorated semantic representations (e.g., see box 24).

2. Applications s x , where s has previously been declared in a schema as a
set representing a Z function, are expanded to s^^x .

3. Terms of the form:

(a) pre (SCHEMA [� � �] [� � �])

(b) (SCHEMA [� � �] [� � �]) SEQ (SCHEMA [� � �] [� � �])

(c) (SCHEMA [� � �] [� � �]) AND (SCHEMA [� � �] [� � �])

(d) (SCHEMA [� � �] [� � �]) OR (SCHEMA [� � �] [� � �])

(e) (SCHEMA [� � �] [� � �]) IMPLIES (SCHEMA [� � �] [� � �])

(f) (SCHEMA [� � �] [� � �]) HIDE (x1; � � � ; xn)

(g) SCHEMA_FORALL (SCHEMA [� � �] [� � �]) (SCHEMA [� � �] [� � �])

(h) SCHEMA_EXISTS (SCHEMA [� � �] [� � �]) (SCHEMA [� � �] [� � �])

are expanded out to the appropriate semantic representation of the form
SCHEMA [� � �] [� � �].

The input and result of the expansion is saved in a global data structure,
so that it can be inverted when schemas are printed.

4. Terms of the form:

(a) FORALL (SCHEMA [� � �] [� � �]) P

(b) FORALL (x::S) P

(c) EXISTS (SCHEMA [� � �] [� � �]) P

(d) EXISTS (x::S) P

are expanded out to terms representing the appropriate quanti�cations of
the predicate P . The input and result of the expansion is saved in a global
data structure, so it that can be inverted when schemas are printed.

Quanti�cations of the form Q [v1;� � �;vn] P are converted into iterated
quanti�cations Q v1 (Q v2 (� � � (Q vn P) � � �)).

5. sig(SCHEMA [x1::S1; . . .;xn::Sn] [� � �]) is expanded to the type mem-
bership statement:

x1 IN S1 /\ x2 IN S2 /\ . . . /\ xn IN Sn

6. theta(SCHEMA [x1::S1; . . .;xn::Sn] [� � �]) is expanded to n-tuples of
pairs of the form:

((`x�1`, x�1), . . . , (`x�n `, x�n))

which represent bindings in Z. The sequence x�1 . . .x�n is a canonical
reordering of x1 . . .xn , which ensures that equivalent bindings (i.e. ones
that are equal up to reordering of components) are translated to the same
HOL term.

7. DELTAS is translated to SANDS 0. This implements the Z de�nition:

�S b= S ^ S
0

8. XIS is translated to SCHEMA[DELTA S][thetaS 0 = thetaS]. This im-
plements the Z de�nition:

�S b= [�S j �S0 = �S]

When a term is output by HOL, any schema representations that have pre-
viously been given a name are replaced by the name. In addition, any represen-
tation resulting from of one of the expansions in items 3 to 8 above is replaced
by the input to the expansion. For example, if S1 SEQS2 expands to S3 (3b
above), then S3 will be output as S1 SEQS2. This process is applied recursively.

The method of fully expanding out schemas into their semantic represen-
tations works well for small examples like the birthday book. The interactions
shown in the boxed sections mostly happen instantaneously (though the proofs
of AbsThm1 and AbsThm2 take a few seconds to run). However, the underly-
ing terms can get large and it is possible that `industrial scale' speci�cations
might slow down HOL unacceptably. If this were the case then abbreviating
de�nitions could be used to prevent terms getting too large. Such abbrevia-
tions could be introduced automatically (e.g. by the ML function declare).
Fortunately performance has been adequate so far and such measures have not
been felt necessary.

3.2 Shallow versus deep embedding

Shallow embedding can be contrasted with deep embedding [2, 17] in which
both the syntax and semantics of the embedded language are formalized inside
the host logic. With shallow embedding the mapping from language constructs
to their semantic representations is part of the metalanguage; with deep em-
bedding it is part of the object language theory. It is usually more work to
support a language by deep embedding, but it is necessary if one wants to
prove theorems about the language rather than just reason in it.

Since the schema operations are `macro expanded' away, it is not possible
to state general theorems about them. For example, it is impossible to express
the fact that schema conjunction is commutative. For any particular schema
one can prove the instance of the fact, but such proofs have to be repeated
for each separate instance (though they can be performed automatically with
a suitable derived rule).

A weakness of shallow embedding is that the operations that are computed
outside the logic are not subject to the same `quality control' as operations
speci�ed in the logic, because errors in the de�nition of operators reside in
program code not in logical formulae. Generally the latter are easier to inspect
for correctness than the former. For example, if the macro expansion of SEQ
contained a bug (e.g., if dashed variables were sometimes invalidly captured
by quanti�ers) then this might only manifest itself in the wrong schema ex-
pansion being computed. If in addition the output routines `inverted' the bug
the user might be unaware that the wrong semantic representation was be-
ing manipulated. A deep embedding allows meta-theorems to be proved (e.g.,
the associativity of schema sequencing) that can serve to partially validate the
de�nitions of the operators.

A deep embedding of Z in HOL is possible. It could, for example, be based
on the metatheory presented in the Z base standard [5]. The resulting theory
would be complex and probably hard to apply to particular examples like the
birthday book. However, it would be suitable for testing out the meta-theory
of Z and verifying general properties of it (e.g. see the work by Maharaj brie
y
discussed the section 4).

The distinction between `shallow' and `deep' is not always sharp. For exam-
ple, ProofPower provides a much `deeper' embedding than the one described
here (all the Z operators are de�ned in HOL) but there is no single semantic
function de�ned in the the logic that maps Z syntax into its meaning. Proof-
Power's embedding is not `deep enough' to allow facts like the commutativity
of schema conjunction to be proved.

The lightweight shallow embedding illustrated here puts relatively few ob-
stacles in the way of using all the power of HOL to reason about particular Z
speci�cations, but it is useless for verifying properties of Z itself.

3.3 Z's operators in HOL

The operators used in the birthday book are included in those shown in the
table below. The ASCII versions of the Z operators are based on those used by
the fuzz [28] and ZTC [31] type-checking tools.

Z operator HOL notation Meaning

: :: Membership declaration
dom dom Domain
7! |-> Maplet
� P Power set
� >< Cartesian product
<-> Binary relations
� -+> Partial functions
" --> Total functions

^^ Application of Z functions
� <+ Domain anti-restriction
� (+) Relational overriding

 NN Natural numbers

1 NN_1 Strictly positive integers
. . .. Number range

The operators in this table are de�ned (in HOL notation) by:

|- (CONJL[] = T) /\ (!b bl. CONJL(CONS b bl) = b /\ CONJL bl)

|- SCHEMA decs body = CONJL decs /\ CONJL body

|- x :: s = x IN s

|- x |-> y = x,y

|- dom R = {x | ?y. (x |-> y) IN R}

|- P X = {Y | Y SUBSET X}

|- X >< Y = {(x,y) | x IN X /\ y IN Y}

|- X <-> Y = P(X >< Y)

|- X -+> Y = {f | f IN (X <-> Y) /\ (!x y1 y2.

(x |-> y1) IN f /\ (x |-> y2) IN f ==> (y1 = y2))}

|- X --> Y = {f | f IN (X -+> Y) /\ (dom f = X)}

|- f^^x = @y. (x,y) IN f

|- S <+ R = {x |-> y | ~x IN S /\ (x |-> y) IN R}

|- f (+) g = ((dom g) <+ f) UNION g

|- NN = {n | n >= 0}

|- NN_1 = {n | n > 0}

|- m .. n = {i | m <= i /\ i <= n}

The HOL function CONJL conjoins a list of predicates. The set application
operator ^^ is de�ned using the HOL choice operator @, which is Hilbert's "-
symbol. The term @x.P [x] denotes some value, a say, such that P [a] is true.
@ is related to the Z �-operator, but unlike � does not require P [x] to be
satis�ed by a unique value. The conventional logical symbol corresponding to
� in Z is the unique existence operator �. If no a exists such that P [a] is true,
then @x.P [x] denotes an arbitrary value. It would be possible to choose this
arbitrary value in a canonical way, but its underlying HOL type must be the
same as that of x in P [x].

The theory Z also contains HOL theorems about the Z operators. The ones
used in proving the theorems in section 2 are listed below:

|- dom(X UNION Y) = (dom X) UNION (dom Y)

|- dom{x |-> y} = {x}

|- x IN (dom{x |-> y})

|- f IN (X -+> Y) /\ x IN (dom f) ==> x IN X

|- f IN (X -+> Y) ==> (dom f) IN (P X)

|- x IN X /\ y IN Y ==> {x |-> y} IN (X -+> Y)

|- f IN (X -+> Y) /\ x IN X /\ y IN Y /\ ~x IN (dom f) ==>

(f UNION {x |-> y}) IN (X -+> Y)

|- f IN (X --> Y) ==> (dom f = X)

|- f IN (X --> Y) ==> f IN (X -+> Y)

|- ~(x1 = x2) ==> ((X UNION {x1 |-> v}) ^^ x2 = X ^^ x2)

|- ~x IN (dom X) ==> ((X UNION {x |-> v}) ^^ x = v)

|- {x |-> v} ^^ x = v

|- f IN (X -+> Y) /\ x IN (dom f) ==>

(!y. (f ^^ x = y) = (x,y) IN f)

|- f IN (X -+> Y) ==> (!x. x IN (dom f) = (x,f ^^ x) IN f)

|- f IN (X --> Y) /\ g IN (X --> Y) ==>

(f (+) g) IN (X --> Y)

|- f IN (X -+> Y) /\ g IN (X -+> Y) ==>

(f (+) g) IN (X -+> Y)

|- f IN (X -+> Y) /\ g IN (X -+> Y) ==>

(dom(f (+) g) = (dom f) UNION (dom g))

|- f IN (X -+> Y) /\ g IN (X -+> Y) /\

x IN ((dom f) DIFF (dom g)) ==> ((f (+) g) ^^ x = f ^^ x)

|- f IN (X -+> Y) /\ g IN (X -+> Y) /\ x IN (dom g) ==>

((f (+) g) ^^ x = g ^^ x)

|- n IN NN

|- (n + 1) IN NN_1

|- f IN (NN_1 --> X) /\ v IN X ==>

((f (+) {(n + 1) |-> v}) ^^ (n + 1) = v)

|- 1 .. (n + 1) = (1 .. n) UNION ((n + 1) .. (n + 1))

|- x IN (n .. n) = (x = n)

|- x IN (m .. n) = m <= x /\ x <= n

|- f IN (NN_1 -+> X) /\ x IN X ==>

(f (+) {(n + 1) |-> x}) IN (NN_1 -+> X)

|- NN_1 UNION {n + 1} = NN_1

|- f IN (NN_1 --> X) /\ x IN X ==>

(f (+) {(n + 1) |-> x}) IN (NN_1 --> X)

4 Other related work

ICL's ProofPower [12] is an `LCF-like' system that supports the same version
of higher order logic as HOL, but provides di�erent theorem proving infras-
tructure. ICL used the original HOL for many years and have built on this
experience in designing ProofPower. Although the theorem proving tools are
not identical to HOL's, they are similar in spirit but aim to be more power-
ful. Some of the features provided have been designed with the needs of Z in
mind. ProofPower supports Z via a much `deeper' embedding than the one pre-
sented here. The main di�erence in their approach is that schemas are treated
more like set abstractions (yielding a set of bindings), and schema operations
are then operators over sets of bindings. Schema references as predicates are
treated as abbreviations for membership statements, e.g. a reference S abbrevi-
ates �S 2 Ŝ , where Ŝ is the representation of schema S . ProofPower has been
used for internal applications at ICL and is currently undergoing evaluation in
a small group of companies and academic institutions. ProofPower proofs in
Z are intended to be conducted with all visible subgoals in Z notation. The
language supported is intended to be compatible with the proposed `ISO stan-
dard Z' [5] rather than the Z described in ZRM. ProofPower has a polished
interface that understands Z's special symbols. It has more Z-speci�c proof
infrastructure and better coverage of the Z notation than the implementation
described here. More information is obtainable from the ProofPower server by
sending an email message to: ProofPower-server@win.icl.co.uk.

A relatively deep embedding of Z in the type theory UTT (Unifying Theory
of dependent Types) has been undertaken by Savi Maharaj [15]. A method
of representing Z schemas in UTT (independently of the Z core language) was
developed. The LEGO proof-checker has been used to prove several theorems
that are intended to support reasoning about Z-like speci�cations at the schema

level. For example, introduction and elimination rules for schema conjunction
have been veri�ed. Earlier work [14] considered ways of encoding the core
language of Z in type theory.

The Z/EVES project [24, 25] at ORA (Odyssey Research Associates) in
Canada investigated the feasibility of using EVES, a theorem prover for ZF set
theory, as a proof tool for Z. A standard example from the security community
(\The Low Water Mark") was used as a case study. This was speci�ed in Z
and a proof of a non-interference security property performed. Most of the
Mathematical Toolkit in ZRM was expressed in EVES and the laws proved
and installed as rewrites. EVES is much more automatic than HOL and thus
an embedding of Z into EVES might provide proof support with less user
interaction. Subsequent investigations by Saaltink using the birthday book
example along similar lines to that presented in this paper indicate that EVES
does require less direction than HOL for the proofs in this example|there are
no tactics in EVES|but it appears to be somewhat slower in terms of machine
time. Support for Z using EVES would be a worthwhile objective, particularly
if the tool is made freely available.

The Balzac project at Imperial Software Technology (IST) is building edit-
ing, typesetting, type-checking and proof support for Z [11]; it is funded by con-
tracts from CESG (a UK Government organization). Balzac is a tactic based
system in which tactics rather than rules are primitive; the tactic writing lan-
guage is a secure form of Lisp. The user interface is powerful and sophisticated.
The version of Z supported is non-standard (e.g. basic types are assumed non-
empty). Balzac has been used to produce speci�cations consisting of 500{1000
pages (about two and a half schemas a page) and has been used to carry out
proofs about these which involve a signi�cant proportion of the schemas. IST
sell a commercial variant of Balzac called Zola. 5

Another approach to providing proof support for Z is to encode a deductive
system for it in a generic theorem prover. An example of this is the encoding
of W, a logic for Z [30], in the 2OBJ metalogical theorem prover [16]. This
approach di�ers from semantic embedding in that the semantics of Z is not
represented in the host logic; instead proof rules are encoded directly. This has
the advantage that complex rules can be immediately implemented as primi-
tives. With semantic embedding such rules have to be embodied in procedures
(e.g. ML functions) that perform inferences in an underlying logic. A single
step in a logic designed specially for Z (e.g. W) might correspond to many
steps in a more primitive logic (e.g. higher order logic). For example, the proof
of AbsThm2 above consists of over �ve thousand primitive HOL inferences. Cur-
rently the encoding of W in 2OBJ is very ine�cient and so it is not yet usable
in practice.

A more practical approach, not based on semantic embedding, was adopted
by the zedB tool [19, 20]. This was based on the B-Tool (which is a general-
purpose symbolic manipulator not incorporating any particular logic) and en-
abled calculation and veri�cation of properties of Z speci�cations. Facilities for
schema viewing, expansions, precondition calculation, discharging of initializa-
tion and other syntactic and semantic operations were included. Unfortunately
only a prototype tool which is not generally available has been produced.

5The example from the report A Simple Demonstration of Balzac [7] has been done in
HOL; see contrib/Z/TelephoneBook.ml distributed with HOL88 Version 2.02.

Many Z tools are under development; current information on the availability
of Z tools may be gleaned from the monthly message issued on the electronic
newsgroup comp.specification.z and the associated ZFORUM mailing list
on Z [3]. The mechanical support of human-readable notations such Z to enable
proofs to be undertaken with greater assurance is important for industrial use,
particularly in the area of safety-critical systems where the extra cost could
well be justi�able because of the risk to human life which errors may cause [4].

5 Conclusions and future work

It turned out to be easier than expected to provide basic support for a signi�cant
subset of Z in HOL. At the time of writing only a few case studies have been
conducted (the birthday book is the largest), so it is hard to evaluate the success
or otherwise of the approach. Only a fragment of Z is currently supported,
but no major di�culties are anticipated in increasing the coverage to most
of the rest of the Z toolkit. Other more complicated features of Z such as
schemas as types, true generic de�nitions and the complete facilities for free
type de�nitions may require further thought and/or compromises. Our plan is
to approach this via more case studies. Examples being considered include the
simple checkpointing scheme in ZRM, the \Word-For-Word" example in the
textbook An Introduction to Formal Speci�cation and Z [23], an ML pattern
matching re�nement case study [13] and the \The Low Water Mark" [24].

A disadvantage of our approach is that users need to be pro�cient with HOL

before they can attempt proofs in Z. Learning HOL is quite time consuming;
at least one week of full-time training is needed to get started e�ectively. In
particular, HOL tactics must be mastered. However, extensive training ma-
terials for HOL are available and there is a relatively large international user
community, an electronic mailing list, regular HOL meetings, etc.

In the future it is hoped to provide support for interfacing with the widely
available LaTEX document preparation system for compatibility with other Z-
processing tools, such as fuzz (whose LaTEX style option was used to prepare
this paper) and the public domain ZTC [31]. HOL's parser and pretty printer
libraries should make this relatively straightforward.

Acknowledgements

We are grateful to Jim Grundy, Terry Ireland, Roger Jones, Savitri Maharaj,
Tom Melham and Mark Saaltink for reading drafts of this paper and making
numerous suggestions for its improvement. Will Harwood provided information
on Balzac and its use. Mike Spivey provided the Birthday Book example and
the fuzz tool. Jonathan Bowen is funded by the UK Science and Engineering
Research Council (SERC) on grant no. GR/J15186.

References

[1] Andrews PD. An Introduction to Mathematical Logic and Type Theory:
To Truth through Proof. Computer Science and Applied Mathematics
Series. Academic Press, 1986.

[2] Boulton RJ, Gordon AD, Harrison JR, Herbert JMJ, Van Tassel J. Expe-
rience with embedding hardware description languages in HOL. In Stavri-
dou V, Melham TF, Boute RT (eds), Theorem Provers in Circuit Design:
Theory, Practice and Experience: Proceedings of the IFIP TC10/WG 10.2
International Conference, IFIP Transactions A-10, pp 129{156. North-
Holland, 1992.

[3] Bowen JP. Comp.speci�cation.z and Z FORUM frequently asked ques-
tions. In Bowen JP, Hall JA (eds), Z User Workshop, Cambridge 1994,
Workshops in Computing. Springer-Verlag, 1994.

[4] Bowen JP, Stavridou V. Safety-critical systems, formal methods and stan-
dards. IEE/BCS Software Engineering Journal, 8(4):189{209, 1993.

[5] Brien SM, Nicholls JE. Z base standard. Technical Monograph PRG-107,
Oxford University Computing Laboratory, UK, 1992. Accepted for ISO
standardization, ISO/IEC JTC1/SC22.

[6] Church A. A formulation of the simple theory of types. The Journal of
Symbolic Logic, 5:56{68, 1940.

[7] Collinson R. A simple demonstration of Balzac. Technical report, GCHQ,
Fiddlers Green Lane, Cheltenham, Gloucestershire, UK, 1992.

[8] Diller A. Z: An Introduction to Formal Methods. Wiley, 1990.

[9] Gordon MJC, Melham TF (eds). Introduction to HOL: A Theorem-
proving Environment for Higher-Order Logic. Cambridge University Press,
1993.

[10] Gordon MJC, Milner R, Wadsworth CP. Edinburgh LCF: A Mecha-
nised Logic of Computation, vol 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[11] Harwood WT. Proof rules for Balzac. Technical Report WTH/P7/001,
Imperial Software Technology, Cambridge, UK, 1991.

[12] Jones RB. ICL ProofPower. BCS FACS FACTS, Series III, 1(1):10{13,
1992.

[13] Macdonald R, Randell GP, Sennett CT. Pattern matching in ML: A case
study in re�nement. Report No. 89004, RSRE (now DRA), Defence Re-
search Agency, St. Andrews Road, Malvern, Worcestershire WR14 3PS,
UK, 1989.

[14] Maharaj S. Implementing Z in LEGO. Master's thesis, University of
Edinburgh, UK, 1990.

[15] Maharaj S. Encoding Z schemas in type theory. In Geuves H (ed), Informal
Proceedings of the 1993 Workshop on Types for Proofs and Programs, pp
209{218, 1993. Distributed electronically.

[16] Martin A. Encoding W: A logic for Z in 2OBJ. In Woodcock JCP,
Larsen PG (eds), FME'93: Industrial-Strength Formal Methods, vol 670
of Lecture Notes in Computer Science, pp 462{481. Springer-Verlag, 1993.

[17] Melham T. Using recursive types to reason about hardware in Higher
Order Logic. In Milne GJ (ed), The Fusion of Hardware Design and Veri-
�cation, Proceedings of the IFIP WG10.2 Working Conference, pp 27{50.
North-Holland, 1988.

[18] Milner R, Tofte M, Harper R. The De�nition of Standard ML. The MIT
Press, 1990.

[19] Neilson D. Machine support for Z: the zedB tool. In Nicholls JE (ed),
Z User Workshop, Oxford 1990, Workshops in Computing, pp 105{128.
Springer-Verlag, 1991.

[20] Neilson D, Prasad D. zedB: A proof tool for Z built on B. In Nicholls JE
(ed), Z User Workshop, York 1991, Workshops in Computing, pp 243{258.
Springer-Verlag, 1992.

[21] Paulson LC. Logic and Computation: Interactive Proof with Cambridge
LCF, vol 2 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1987.

[22] Paulson LC. A �xedpoint approach to implementing (co-)inductive de�ni-
tions. Technical report, University of Cambridge, Computer Laboratory,
UK, 1993. Draft.

[23] Potter BF, Sinclair JE, Till D. An Introduction to Formal Speci�cation
and Z. Prentice Hall International Series in Computer Science, 1990.

[24] Saaltink M. Z and EVES. Technical Report TR-91-5449-02, Odyyssey
Research Associates, 265 Carling Avenue, Suite 506, Ottawa, Ontario K1S
2E1, Canada, 1991.

[25] Saaltink M. Z and Eves. In Nicholls JE (ed), Z User Workshop, York 1991,
Workshops in Computing, pp 223{242. Springer-Verlag, 1992.

[26] Smith A. On recursive free types in Z. In Nicholls JE (ed), Z User
Workshop, York 1991, Workshops in Computing, pp 3{39. Springer-Verlag,
1992.

[27] Spivey JM. An introduction to Z and formal speci�cations. IEE/BCS
Software Engineering Journal, 4(1):40{50, 1989.

[28] Spivey JM. The fuzz Manual. Computing Science Consultancy, 2 Willow
Close, Garsington, Oxford OX9 9AN, UK, 2nd edition, 1992.

[29] Spivey JM. The Z Notation: A Reference Manual. Prentice Hall Interna-
tional Series in Computer Science, 2nd edition, 1992.

[30] Woodcock JCP, Brien SM. W: A logic for Z. In Nicholls JE (ed), Z
User Workshop, York 1991, Workshops in Computing, pp 77{96. Springer-
Verlag, 1992.

[31] Xiaoping Jia. ZTC: A Type Checker for Z { User's Guide. Institute
for Software Engineering, Department of Computer Science and Infor-
mation Systems, DePaul University, Chicago, IL 60604, USA (e-mail:
jia@cs.depaul.edu), 1994.

