
Proceedings of Z Users Meeting

1 Wellington Square, Oxford

Jonathan Bowen

8th December, 1987

Programme Committee

John Nicholls

Jonathan Bowen

Jim Woodcock

Oxford University Computing Laboratory

Programming Research Group

8-11 Keble Road

Oxford OX1 3QD

Contents

1 Introduction 2

2 Annual Report 2

3 Work at the PRG 3

3.1 Z Standards: Syntax, Ib S�rensen : : : : : : : : : : : : : : : : 4

3.2 Z Reference Manual, Mike Spivey : : : : : : : : : : : : : : : : 5

3.3 Z and Concurrency, Jim Woodcock : : : : : : : : : : : : : : : 7

3.4 Z Re�nement, Carroll Morgan : : : : : : : : : : : : : : : : : : 9

4 Prototype FORSITE Tool Demonstration 13

5 Z Education 13

6 Z Tools and Environments 14

6.1 The FORSITE Project, Dave Bosomworth : : : : : : : : : : : 14

6.2 Z on an IBM PC | the Issues, Jonathan Mo�ett : : : : : : : 14

7 Z User Presentations 16

7.1 British Aerospace, Brian Hepworth : : : : : : : : : : : : : : : 16

7.2 IBM, Peter Collins : 16

7.3 Plessey, David Cooper : 19

7.4 RSRE, Chris Sennett : 19

8 Research Directions 20

9 Future Work 22

10 Meeting at the PRG 22

10.1 Tools : 22

10.2 Education : 23

10.3 Standards : 23

11 Acknowledgements 23

1

1 Introduction

On 8th December 1987, the second annual Z Users Meeting was held at 1

Wellington Square, Oxford. John Nicholls, a Research O�cer in the Pro-

gramming Research Group (PRG) at Oxford University, chaired the meet-

ing, taking over from Ib S�rensen (a lecturer at the PRG) who organized the

meeting last year. 74 delegates from industry, academia and other research

establishments were present representing a good cross-section of those who

are interested in Z.

2 Annual Report

After an initial welcome, John Nicholls presented a summary of the work

undertaken on Z at the PRG since the last meeting. The presentation was

split up into a number of topics:

Standards. At last year's meeting, the general consensus was (at least from

people outside the PRG!) that Z needed to be standardized to make

it more acceptable and useful to industrial users and to enable tools

to be produced. This has been attacked on two fronts at the PRG in

the last year. A draft document entitled Z: Grammar and Abstract

and Concrete Syntaxes by Steve King et al. has been produced, giving

a BNF style description of a standard syntax. This was distributed

at the meeting, and a �nal version is due to appear as a PRG mono-

graph shortly. Additionally, Mike Spivey has produced a draft of a Z

Reference Manual, a replacement for Bernard Sufrin's Z Handbook, of

which more later. These documents could be merged. Additionally a

less formal Z User Manual including more examples could be useful.

Such a manual has been produced by IBM although the present ver-

sion is not up to date with the latest Z syntax. Users are invited to

express their views on the need for an informal manual.

Standards are important for stability. They should be clear and give

a mathematical underpinning to the notation. If desirable, a Stan-

dards Group could be set up with the help of the PRG. The PRG will

concentrate on basic theoretical research as well as joint work with in-

dustry to investigate the practical use of formal methods. Additional

work is being done to provide guidelines for proof methods using Z.

Tools. It was suggested that these may be split into basic tools (e.g. pro-

ducing Z documents on a PC) and intermediate/advanced tools (e.g.

2

FORSITE on a Sun workstation). More information is included on

both these areas later.

Re�nement & Concurrency. These are vital aspects of a general devel-

opment method. Linking Z and CSP would be useful to cover concur-

rency. Talks on these two areas were presented later.

Communication. A number of methods of communication within the Z

community were discussed.

Z forum. Ruaridh Macdonald of the Royal Signals and Radar Es-

tablishment (RSRE) at Malvern edits an electronic newsletter

called Z forum. This is made up of short articles, requests and so

forth contributed by readers. Anyone with an e-mail address on

PSS, the academic network JANET, the UUCP network UKnet

or many other networks connected to these may receive issues

as they are produced and submit entries by contacting Ruaridh

on rm@uk.mod.rsre or rm%uk.mod.rsre@uk.ac.ucl.cs.nss on

JANET.

Z bibliography. A selected bibliography by Jonathan Bowen was

distributed at the meeting. This document gives a current list

of Z references available either from the librarian at the PRG or

as published papers or technical reports from other institutions.

A master list which also includes unpublished work has been com-

piled by the editor of the Z forum, Ruaridh Macdonald. The list

is maintained in electronic form (in unix refer bibliography for-

mat). If you have any new references for this list or want a copy

of it, please contact Ruaridh, via e-mail if possible at the same

address given under Z forum above.

Posters. Posters describing research work, etc., were invited from the

participants of the meeting. These were displayed at the meeting

and are also attached to these Proceedings.

The idea of a Z Users Group was mooted for discussion (see section under

Future Work later).

3 Work at the PRG

A number of presentations on work on Z at Oxford were given by members

of the Programming Research Group.

3

3.1 Z Standards: Syntax, Ib S�rensen

A history of the evolution of Z in terms of key work was presented.

1979 The Speci�cation Language Z (Abrial et al.)

(ADA-like)

1980/81 The Basic Library (Abrial et al.)

(Cli� Jones in
uence, VDM)

1982 A Theoretical Foundation to Formal Programming (Abrial)

(Burstall/Scott in
uence, Set Theory)

1983 Z Handbook (Sufrin)

Z Schema Notation (Morgan)

Z Reference Card (Hayes)

(Semantics | DPhil thesis | Spivey)

1986/87 Structuring Speci�cations | Schemas (Woodcock)

Z: Grammar and Concrete and Abstract Syntax (King)

Z Reference Manual (Spivey)

Throughout this period, case studies in the use of Z were also being under-

taken.

The Z: Grammar and Concrete and Abstract Syntax was requested at

last year's Z User Meeting. This work was supported by IBM. The contents

include:

� Grammar in BNF.

� Standard terminology.

� Appearance and layout.

� Scope and type rules (informally).

� Abstract Grammar of Z (in Z).

Details of the grammar cover:

� Document structure.

� Language of De�nitions.

� Language of Theorems. This is not yet stable since no extensive case

studies have been undertaken yet. Theorems are currently not in-

cluded in the Z Reference Manual.

4

� Language of Predicates. This has been stable since the early days of

Abrial.

� Language of Terms. (Abrial's name | Mike Spivey uses the name

Expressions in the Z Reference Manual.)

� Language of Schemas.

The concrete and abstract syntaxes are not split in this document, although

they could be in a course on Z. Details of terminal symbols (e.g. Z to start

a Z section and EZ to end a Z section) are also covered.

The target readers for this document include:

� Tool writers

� Educators

� Manual writers

� Expert users | not naive users

This has been used as a working document within the PRG. It is due for

publication as a PRG monograph early in 1988.

3.2 Z Reference Manual, Mike Spivey

In starting, Mike noted that a LaTEX style �le (zed.sty)1 for printing Z

speci�cations is available from him if you can contact him by electronic

mail. His address is mike@uk.ac.oxford.prg on JANET.

Mike then continued his talk with a quotation:

Jack : You're quite perfect, Miss Fairfax.

Gwendolen: Oh! I hope I am not that. It would leave no room

for developments, and I intend to develop in many directions.

Oscar Wilde, The Importance of Being Earnest

If possible, a standard should leave room for future developments. The Z

Reference Manual contains a minimal language for Z speci�cations, a sub-

set of the language described in the Z: Grammar and Concrete and Abstract

Syntax document. For example, theorems and the importing of one docu-

ment into another are not included. However, this minimal language may

1This document was produced using this style �le.

5

be added to, if necessary for a particular speci�cation, but on the same

mathematical basis.

At present the Z Reference Manual is in draft form and will be submitted

for publication as a book; Mike proposed the following time-scale of events:

� December 1987. Draft available for review.

� 1st April, 1988. End of review period.

� 1st November, 1988. Proposed date for publication.

A copy will be sent to all participants of the Z User Meeting. People are

invited to review the draft and send comments and reactions back to Mike

at the PRG. The objective is to make the document understandable and

readable, unlike many other standards. It uses examples sometimes, where

appropriate. Algebraic laws are also included.

Mike then gave a short introduction to the di�erence between the generic

de�nition and the axiomatic description in Z. A generic de�nition may have

generic parameters and must make a unique de�nition:

Xdeclaration

predicate

An axiomatic description has no generic parameters and may make a

loose (i.e. a possibly non-unique) de�nition:

declaration

predicate

Looseness or liberality may be useful in the the following cases. An

informal explanation of which is meant should also be included.

� To give freedom for the implementor. E.g., the coding of directories

as data blocks.

� To allow details to be �xed later. E.g., the maximum number of users

| a system option.

� When the details are irrelevant. E.g., the coding of characters as

natural numbers.

6

The question may arise, \Why not have loose generic de�nitions?" Con-

sider the following example:

Xleft ; right : X

left 6= right

How should the following points be resolved?

� What about left [f0g] and right [f0g]? They are both forced to be 0,

despite the axiom left 6= right .

� What about left [?[N]]? It must be a member of ?[N], because of the

declaration left : X ; but ?[N] has no members!

� Is left [X] always the same?

� Is left [Z] the same as left [N]?

There is a lot of information which is curiously hidden. Therefore it makes

sense to insist that there is exactly one model.

3.3 Z and Concurrency, Jim Woodcock

Jim Woodcock, a Research Fellow at the PRG, presented some work on

adding the facilities of CSP to Z, without changing the current features of

Z. A number of rules for splitting operations in parallel are needed. Jim

gave an example of a telephone exchange. First he described the system

from a subscriber's point of view.

A Telephone may be either not ringing or ringing:

T b= (lift ! S)

u (lift ! R)

where u denotes non-deterministic internal choice (i.e. internal action in the

system, outside the control of the subscriber).

Once a subscriber has lifted the receiver and Seized the line, he may then

put the telephone down or dial a digit:

S b= (clear ! T)

j (dial ! D)

7

where j denotes deterministic external choice (i.e. action by the subscriber).

Whilst Dialing, a subscriber may put the telephone down or dial a digit.

The system can detect when enough digits have been dialled:

D b= (clear ! T)

j (dial ! D)

u (clear ! T)

A Recipient can hang up and then lift the receiver to reestablish the call.

The other subscriber could hang up or the initiator could hang up.

R b= (clear ! (lift ! T))

u T)

u S

(Note that the description above has abstracted away from speech!)

An abstract view of the state of the telephone exchange can be provided

as a standard Z schema, and operations on this state may be de�ned in the

normal way by relating before and after states. In addition to the standard

subscriber operations, there is a demon Connect operation which allows the

system to make connections between subscribers.

Theorems about the state and the operations are easier to prove because

there is a global state in the abstract description.

'

&

$

%

� �� �� �
�� BB
dj

� �� �� �
�� BB
dj

� �� �� �
�� BB
dj

@
@

@@I

�
�

��	

�
�
���

However in practice the exchange will be implemented as a number of dis-

tributed interconnected subsystems with a relay for each subscriber.

8

'

&

$

%
��
��
��
��

��
��

!!
!!

!!

� �� �� �
�� BB
dj

� �� �� �
�� BB
dj

� �� �� �
�� BB
dj

@
@

@@I

�
�

��	

�
�
���

A retrieval relation between the abstract and concrete descriptions must be

provided.

The non-determinism in the formal abstract description (i.e. all occur-

rences of u) may be removed by providing more information about the

implementation of the telephone exchange. The implementation can be for-

mally proved to be a re�nement of the abstract description using formal

rules provided by Jifeng He of the PRG.

The question and answer session elucidated a number of points:

� Transient states are not retrieved | only stable states are considered.

� Deadlocks and live-locks must be checked. Jifeng's rules ensure that

these are avoided.

� Divergence must also be avoided | an in�nite sequence of events

should never be hidden.

� The Connect demon can connect two or more requests in an arbitrary

order.

3.4 Z Re�nement, Carroll Morgan

Carroll Morgan, a lecturer at the PRG, described a method of re�nement

from an abstract speci�cation (e.g. something akin to Z) into a program-

ming language. The notation used is not in the framework of the current Z

notation.

What is needed is a single notation which at its most abstract allows

the use of schemas1 and at its most concrete allows executable programs1.

1Almost

9

A calculus of re�nement is introduced which operates across this notation

uniformly.

At the abstract level, the domain of each operation is calculated and

written explicitly, so that it need not be calculated again. The changing

variables are indicated explicitly, so that unchanging variables need not be

indicated. E.g.

EXAMPLE

x ; y ; x 0
; y 0 : T

'(x ; y ; x 0)

y 0 = y

translates to

x : [(9 x 0
�'(x ; y ; x 0)); '(x ; y ; x 0)]

The initial x indicates the changing variable(s). The rest of the statement

indicates the precondition (or domain) and postcondition: [pre; post].

At the concrete level, Dijkstra's language of weakest preconditions is used

to describe executable programs. This is a very simple language:

Do nothing skip

Do anything abort

Assign x := E

Sequence P ; Q

Conditional if G1 ! S1 [] . . . [] Gn ! Sn fi

Iteration do G1 ! S1 [] . . . [] Gn ! Sn do

An important feature of the language is that it is non-deterministic. If

two or more guards on a conditional statement are true then any one of the

corresponding guarded statements could be executed. However the language

is readily translated into imperative programming languages such as Pascal,

FORTRAN, etc.

The re�nement calculus v has a number of rules or laws; the following

are some examples:

� The precondition may be weakened:

w : [';] v w : [�;] if '! �

� The postcondition may be strengthened:

w : [';] v w : ['; �] if � ^ '!

10

� An assignment statement may be introduced:

w : ['[E=w 0];] v w := E

� Sequential composition (;) provides ordering of statements:

w : [';] v w : ['; �0] ; w : [�;]

� is an intermediate state. An interesting point is that this re�nement

is possible even if � = false.

� If at least one guard is true then the if statement may be introduced:

w : [(
W
i :Gi) ^ ';] v

if

([] i : Gi ! w : [Gi ^ ';])

fi

� Finally, the do statement can be introduced for iteration:

w : [I ; I ^ : G] v

do

G ! w : [I ^ G ; I ^ 0 � V 0
< V]

od

I is the invariant and V the variant.

Here is a simple example which calculates the absolute value of a natural

number. Note that parts within [. . .] are the parts which are left the be

re�ned.

ABS

x ; x 0 : N

x 0 =j x j

transforms to

x : [true; x 0 =j x j]

First the precondition is weakened:

v x : [(x � 0) _ (x � 0); x 0 =j x j]

11

Next the if rule is applied:

v if x � 0! x : [x � 0; x 0 =j x j]

[] x � 0! x : [x � 0; x 0 =j x j]

fi

The preconditions can be transformed:

v if x � 0! x : [�x =j x j; x 0 =j x j]

[] x � 0! x : [x =j x j; x 0 =j x j]

fi

Now the speci�cation can be made totally executable:

v if x � 0! x := �x

[] x � 0! skip

fi

It can also be made deterministic:

v if x � 0! x := �x

[] x > 0! skip

fi

Informally, this can be re�ned into a typical imperative programming lan-

guage as:

if x � 0 then x := �x end

The re�nement process above is not mechanical in that invariants, etc.,

must be found. The designer must decide which development step to take at

each stage. However the re�nement rules give a rigid and formal framework

for this.

Next Carroll talked about data re�nement, a transformation which sys-

tematically replaces one data type (the abstract) by another (the concrete)

throughout a program. The program structure is preserved. Given abstract

variables a and concrete variables c, we can de�ne an abstraction invariant

I (a; c; g). The data re�nement � can then be calculated as follows:

a; x : [';] � c; x [(9 a � I ^ '); (9a � I ^)]

This is always true | there are no proof obligations. However some sub-

sequent algorithmic re�nement is usually required. It is possible to have

intermediate steps. The re�nement is transitive.

12

John Nicholls concluded the session by noting that there will be a work-

shop on re�nement at York University on 7th/8th January 1988 at which

several members of the PRG (and others working with Z) will be giving

presentations.

4 Prototype FORSITE Tool Demonstration

About 30 people attended a demonstration by Joy Reed and Jane Sinclair

of the FORSITE prototype syntax and type checking tool running on a Sun

workstation at the PRG after lunch.

5 Z Education

The possibility of a course on \Z for Speci�cations" based on the MSc. and

industry courses at the PRG was discussed by John Nicholls. The objective

is to produce an industry course to introduce the use of Z to specify software

systems. It will be fully documented, with foils, exercises, course notes, etc.

At present, Anthony Hall, John Nicholls, Joy Reed and Jim Woodcock are

involved in designing and writing the material for this course. The following

schedule has been drawn up:

� January 1988 | all modules speci�ed.

� Mid 1988 | draft course material complete (pilot courses).

� Late 1988 | publication (format to be decided).

The (one week) course structure will be as follows:

A. Motivation.

B. Discrete mathematics (optional, background information).

C. Basic Z.

D. Managing projects using formal methods.

E. Extended case study.

F. Workshop (1{11=2 days writing Z).

G. Z proofs.

H. Z re�nement (introduction to another course).

The course material will be prepared for class room use rather than computer

based training.

13

6 Z Tools and Environments

This session included two presentations on machine assistance for Z. These

contrasted the use of Z in a sophisticated and a simple environment.

6.1 The FORSITE Project, Dave Bosomworth

Dave Bosomworth of Racal gave an overview of the FORSITE project. This

is an Alvey project running from August 1985 to March 1989. Racal Re-

search Ltd, System Designers, Surrey University and the PRG are involved

in the project.

The background to the project was an Alvey Demonstrator Project in-

volved in producing Z speci�cations over 6{9 months. This found the need

for tools to aid organization and to do syntax/type checking. Names could

be remembered in the head for only around two pages whilst reading speci-

�cations.

The project objectives were to produce a Z toolset and handbook. In the

course of doing this, the syntax of Z should be tied down. To date, an eval-

uation system including a parser, type checker, WYSIWYG editor (QED)

and printing facilities has been produced. This has users at four industrial

sites (Plessey/Praxis/ICL/IST) and three academic sites (Edinburgh/York

Universities and She�eld Polytechnic).

The real requirements for Z tools is still a subject of debate. The project

has not answered any hard theoretical questions so far (e.g. re�nement and

proofs). It is hoped that these will be addressed in the future, particularly

in regard to large examples.

The plans for the project include work on proof systems (at present the

b tool is used), transformation systems, development methods (there are no

set steps at present) and better tools.

The FORSITE system runs on Sun workstations. It is mostly written

in C, although the type checker is in the functional programming language

ML.

6.2 Z on an IBM PC | the Issues, Jonathan Mo�ett

Jonathan Mo�ett of Imperial College recently attended a Z course given by

the PRG. Following the course, he raised the question of providing support

for producing Z documents on an IBM PC.

He noted that Z is text rather than graphics. Therefore a word pro-

cessing package rather than a graphics package is all that is needed. The

special (non-ASCII) characters in Z can be reproduced using special fonts.

Additionally, the special characters can be keyed in on a normal keyboard.

14

Z is designed for large speci�cations. Therefore the special characters

need to be stored in an easily handled form. Jonathan made the following

(not yet implemented) proposals.

� The special characters should be keyed using mnemonics (see Z: Gram-

mar and Abstract and Concrete Syntaxes by Steve King et al.).

� These mnemonics should be post processed using a macro processor.

This processing is not necessary to be able to read the document whilst

working on it. It is simply desirable to produce a better end product.

The Z character set may be split up into a number of groups on the

IBM PC. There are the standard alphanumeric characters together with

characters such as

() [] . . .etc:

which may be keyed directly on the IBM keyboard. There are standard

letters but in di�erent fonts. E.g.

@ < . . .etc:

Note that these are Gothic rather than baroque fonts! Unfortunately, the

more normal N, R, etc. are not available on the IBM PC. The extended

graphics character set can be used for lines, boxes and `. The mathematical

font characters (for the Apple Laserwriter) cover the Greek letters and

8 9 b= 6= : _ ^) . . .etc:

Special characters are needed for \funny" arrows and

C B �C �B � . . .etc:

Programmers are used to mnemonics. However John Nicholls noted that

most people prefer seeing mathematical symbols where these are appropri-

ate. They are easier to read and more compact. An alternative solution is to

use PC LaTEX. Lexx, a live parsing editor, has a dynamic parser and could

provide another solution. There are also word processing packages to run

on the PC for as low as $20 which provide mathematical fonts. Jonathan

Mo�ett's system cost around $700 including a printer. With an Epson laser

printer, the cost would rise to about $2000.

15

7 Z User Presentations

A number of short presentations by Z users (mainly from industry) were

given in this session. These provided varied examples of the way Z can be

and has been applied to di�erent problems.

7.1 British Aerospace, Brian Hepworth

Brian Hepworth of the Software Reliability group in the Military Aircraft

Division at Warton presented the use of Z in control systems. Currently

there are three users of Z in the company. Most users of Z are likely to be

\naive" users (systems engineers) using \simple" Z. The di�cult parts will

be undertaken by a small group of experts.

Brian gave an example of a control system, which he noted was quite

similar to Jim Woodcock's telephone exchange. Since the system is dis-

tributed, it can be easily split up for di�erent teams. Previously CORE

has been used at the upper level of design. It is hoped that Z will replace

this. Many of the operations are stateless, with only inputs and outputs

| the state is held externally. Sometimes it is necessary to introduce state

to model history sequences. Functions speci�ed by the Z experts can be

de�ned to handle these simply. In the future it may be convenient to use

some of the features of CSP for this.

7.2 IBM, Peter Collins

Peter Collins of IBM, Hursley Park, started by saying he was going to tell

a \story of unstable (i.e. changing) software rather than unstable aircraft!"

He presented the experience of using Z on the IBM Customer Information

Control System (CICS). This is a large transaction processing system which

is an extension of the operating system. It has been developed at Hursley

and has many thousands of users worldwide. It consists of well in excess of

half a million lines of code, written in a mixture of assembler and high level

language. It has had many years of continuous development using a well

established development process.

The use of Z at Hursley started as a joint project between the PRG

and the CICS development team in 1981. The objective was to study the

applicability of formal speci�cation techniques to the development of CICS.

Initially case studies where undertaken using the Z speci�cation language.

In 1984 it was decided to use Z in the CICS, �rst in pilot projects

and then for mainline development. The alternative possibility (CDL) was

dropped and the complete development process has been based on Z. Twenty

developers have written about 2000 pages of Z speci�cations. Subsequently,

16

around 90,000 lines of code have been written. Coding is now complete and

testing is well underway. This has shown that the quality is signi�cantly

higher than when using traditional development methods. About a third of

a release of CICS has been produced using formal techniques.

Formal methods have been used for the speci�cation and design of se-

lected CICS components. These provide both new functions and reimple-

mentation of existing functions. Standard Z has been used for component

speci�cation. An extended version of Z has been used for component design.

This includes Dijkstra's guarded command language to allow the speci�ca-

tion of procedural design. Its mathematical basis permits formal reasoning.

The development process has been changed to accommodate the use of

formal methods. Design Review 0 (DR0) has been introduced to review the

Z speci�cations. At this stage the interface is reviewed by potential users.

Quite a few problems are removed at this point. The I0 and I1 design

inspections have been modi�ed to take account of Z. I0 is an informal check

that the design is a correct re�nement of the DR0 speci�cation. There

is no formal proof of re�nement. This is very expensive without machine

assistance and is not believed to be cost e�ective at present.

The work at the PRG has been mainly based on case studies of real

examples from CICS. These have exposed new kinds of problems. They

have demonstrated the feasibility of using formal methods to the potential

users and their management. They also provide examples for others to

follow.

There is a user resistance to the introduction of formal techniques. Us-

ing real examples is more impressive than the simple examples found in

much of the literature. Even so, some management faith is required. The

speci�cation stage is longer and the coding stage much shorter when using

formal techniques. It is possible for managers to lose their nerve and revert

to traditional methods.

The case studies were followed by pilot projects. These involved small

motivated groups, giving rise to local experts at IBM. As a result, rules

and guidelines were generated for other users. Additionally, these projects

helped identify other requirements.

A number of courses have been developed at IBM. A two week Software

Engineering Workshop uses SEDL rather than Z. However there are now

a number of Z courses provided by John Wordsworth and others of the

Software Engineering group at Hursley:

� Z Speci�cation course | originally provided by the PRG but revised

by IBM.

17

� Z Re�nement course | the re�nement of Z speci�cations to design

and code.

� Z for Readers course | understanding other people's speci�cations.

� Z Overview | brief overview of Z for managers.

A number of tools for Z have been developed at IBM Hursley. The

initial tools were developed by the CICS developers. Z documents may be

prepared and viewed on an IBM 3279 display. Special Z characters are

entered using mnemonics and are then translated. Subsequently documents

may be printed using a Document Composition Facility on an IBM 3800.

The system consists of terminals and a mainframe computer. It would be

expensive to convert to IBM PCs. There is also a powerful cross-reference

program which is very useful for large speci�cations. Despite the limited

machine assistance, there have not been a lot of complaints about the lack

of more sophisticated tools.

It is important in a commercial environment to have a stable notation.

Researchers naturally wish to improve and change the notation, so there is

a potential con
ict of interests. No agreed standard for Z existed at the

start of the project; it is a good thing that the PRG is now standardizing Z.

As part of the project a precise and stable base language has been de�ned.

This includes a formal syntax to be used as the basis for tools such as

type-checkers. A Z User Manual has also been produced. This gives an

informal guide to the notation with examples of use. There is a need for a

manual such as this. Both Mike Spivey's manual (the Z Reference Manual)

and one like this are useful and complement each other. Another important

consideration is a standard for representing Z documents; standards become

more important as the number of Z users increases.

Users at IBM have been impressed by the simplicity and elegance of Z.

Users especially like the ability to compose large speci�cations from small

parts. Better interfaces have resulted and the speci�cation of existing inter-

faces has showed up their weaknesses. Z has proved to be a tool for ideas.

Better informal documentation has resulted. Z speci�cation has been used

in testing | pre/post-conditions and invariants can be checked. However

this can use more code than is actually being checked. The formal math-

ematical nature of Z has not proved a major problem in acceptance by

programmers. Indications are that more problems are found during early

stages. Documentation is more complete and easier to inspect. The overall

quality of software and documentation is much improved.

One minor problem has been that some users �nd it di�cult to �nd the

right level of abstraction. If a programmer knows the internal workings of a

18

system, he often �nds it di�cult not to think about these when producing

an abstract speci�cation.

7.3 Plessey, David Cooper

David Cooper of the Formal Methods Group at Plessey Research, Roke

Manor gave a presentation of a short paper entitled Some Notes on the Use

of Z. This three page paper is included with this Proceedings.

The paper presents some di�culties they experienced in the use of Z for

large speci�cations but David is still committed to Z. Perhaps part of the

problem may be that the team has been trying to come to terms with the use

of Z whilst working on a very large project. It is possible that a more gentle

introduction to the practical use of Z may be desirable. More contact with

the PRG could also help to solve some of these problems. Several instruction

sets have been speci�ed at the PRG without many of the problems covered

in the paper. (The Motorola 6800 8-bit microprocessor instruction set has

been completely speci�ed and is available as a PRG monograph. Partial

speci�cations of the Motorola 16-bit 68000 and the inmos Transputer have

also been produced.)

The project has relied heavily on the FORSITE tool. This ensures a

strictly type-checked Z speci�cation but also enforces notational limitations

since the tool does not support all the features of Z and will not allow non-

standard notational extensions. The IBM CICS project has demonstrated

that it is not necessary to have such a tool to successfully produce large

speci�cations.

7.4 RSRE, Chris Sennett

Chris Sennett of the Royal Signals and Radar Establishment (RSRE) at

Malvern is concerned with security problems in computer systems. He is

involved in the Hindsight Project which is working on a syntax and type

checker for Z at RSRE.

The main part of the talk was about the translation of the mathematical

content of a paper on separability by John Rushby of Newcastle University

into the Z notation. This process simpli�ed formulae and aided understand-

ing. The proof steps were laid out so that they were potentially machine

checkable. Chris commented that it could be desirable to have a number of

equivalent de�nitions in the Z mathematical toolkit. Di�erent de�nitions

could be aimed at ease of understanding on the one hand and ease of use in

proofs on the other.

19

In summary, the use of the Z language help specify precisely what sepa-

rability is about and increased understanding of the problem. Using Z and

English in parallel is very useful | the Z can aid the understanding of the

English! The Z speci�cation produced during the exercise was very com-

pact. The original paper was 17 pages long; the version translated into Z

by Chris consisted of 25 pages, despite the fact that the details of several

proofs were given in the Z version which were not given (or were given in

much less detail) in the original.

8 Research Directions

Professor Tony Hoare of the PRG presented his view of research at the PRG

in the future. He started his talk with an entertaining analogy of a geologist

and a car driver. The geologist (researcher) searches for oil (knowledge) and

the car driver (industrial user) needs petrol (methods). Even if a petrol

pump (Z user group?) is available, this must still be supplied with petrol.

What is basic research? It is as far removed from industry as geology is

from the car | but the latter still depends on the former. Basic research is

like mountaineering; we do it \because it's there." Basic research clari�es

the structure of a disipline, and permits collaboration of specialists working

in adjacent areas. Some mathematical research foundations are:

� Logic

� Algebra

� Type theory

� Category theory

Some computing paradigms for which these can or could be useful include:

� Hardware

� Functional programming

� Prolog ical programming

� Object-oriented programming

� Distributed systems

20

Sometimes it is useful to mix paradigms (e.g. assembler within a high

level program). How can we deal with this? How do we check interfaces

between paradigms, where many bugs can lurk?

Currently some machine assistance for proofs is available. E.g.

� Boyer-Moore | 15 years work.

� LCF, Edinburgh | again, 15 years work.

� HOL, Cambridge.

� Veritas.

� LF, Edinburgh.

Each of these presents formidable problems and expense to the practical

user. Basic research may reveal new directions for progress. There are also

a number of methods other than Z:

� UNITY | Chandy and Misra at Austin.

� VDM | an acceptable alternative!

� NuPRL | Martin-L�of type theory.

� Projet Formel | 2nd order logic and category theory.

It would be a worthwhile research project to prove a complete system at

a number of levels using such tools and methods:

� Compiler/loader

� Operating system

� Architecture

� Logic design

Human readable proofs would be acceptable. The interfaces between levels

should also be proved. Computational Logic Inc., in Austin, Texas, are

attempting to do something like this with 12 people and Symbolics machines.

We should also try to do this in Europe as an ESPRIT project. There is a

lot of skill in this area in Europe, but it needs coordinating.

A short discussion then followed. Question: \Are reusable libraries a suit-

able topic for basic research?" The term reusable has been a buzz-word for

21

25 years. Such libraries must be as carefully designed as a range of cars and

hence need a great deal of e�ort to produce. Standard functions such as sin

and cos are already well known and understood. What equivalents do we

need for computer systems? Z has isolated a number of common concepts

and is su�ciently abstract to describe similarities between systems. But

suppose we had a reusable library. How would we use it, index it, and so

on? This would have to be done by a very large company with a lot of

resources.

Question: \How do we deal with probability and is this a good research

topic?" Yes | Mike Reed at the PRG is working on a probabilistic version

of CSP. However timed CSP took a long time to develop and a probabilistic

version may take even longer.

9 Future Work

John Nicholls asked the audience if they would be interested in the formation

of a Z User Group. This would place Z in a wider arena. John Wordsworth

of IBM suggested that it might be formed as a specialist group under the

auspices of the British Computer Society (BCS). Interest was expressed by

the audience. Anyone interested should contact John Nicholls at the PRG.

John closed the meeting by thanking the speakers, especially those during

the Z user presentations which re
ected the wide applicability of Z. Finally

he thanked Emma Sowton of the PRG for arranging the administrative side

of the meeting so e�ciently.

10 Meeting at the PRG

On December 9th, the day after the Z Users Meeting, another much smaller

meeting was held in the Conference Room at the PRG in Keble Road to

discuss a number of topics related to the future of Z. Those present were

Jonathan Bowen, John Nicholls, Joy Reed and Mike Spivey of the PRG,

Brian Hepworth and Bruce Manley of British Aerospace, and Anthony Hall

of Praxis. The conclusions of this meeting are set out below.

10.1 Tools

Basic tools (editors, formatters, etc.) are needed �rst. For wide use in

industry and universities, it is important for tools to be able to accept a

standard form of text which can be stored in ASCII or EBCDIC. This Z In-

22

terchange Form will be de�ned as a standard, and will incorporate standard

Z mnemonics (see Standards subsection below).

In principle, it should be possible to develop intermediate tools, such as

type checkers, etc., fairly rapidly, since much of the necessary work has been

done in building the FORSITE prototype.

10.2 Education

The course development plan outlined at the Z Users Meeting was discussed

and several suggestions were made. Details of the plans for this work will

be circulated in the Z Forum electronic newsletter.

There is concern that in some courses Z is being presented as if it were

a programming language. One way of avoiding this will be to show how Z

�ts into a typical development process.

10.3 Standards

It was agreed that the mnemonics in the document Z: Grammar and Ab-

stract and Concrete Syntaxes by Steve King et al. should be used by the Z

community when mnemonics are required by tools.

11 Acknowledgements

Thank you to all the speakers for making the 1987 Z Users Meeting a worth-

while day for all the participants. A special thank you to all those who gave

copies of their foils and notes to aid the production of this record. Please

accept the author's apologies for any mistakes in the transcription from ver-

bal to written form. John Nicholls and other speakers from the PRG gave

valuable comments on the �rst draft of the Proceedings. A copy has also

been circulated on the Z Forum electronic newsletter and a number of minor

corrections and additions have been made since then arising from comments

by readers.

Finally, thank you to the audience for making the meeting a success, and

hopefully a continuing annual event.

23

