
Proceedings of the Third Annual

Z Users Meeting

at the

Department of External Studies

Rewley House, 1 Wellington Square, Oxford

on

Friday, 16th December 1988

compiled, edited and written by

Jonathan Bowen

Programme Committee

Jonathan Bowen

John Nicholls

Jim Woodcock

�
Oxford University Computing Laboratory

Programming Research Group

8{11 Keble Road

Oxford OX1 3QD

Further copies of this Proceedings, PRG monographs and other Z related material are available.

For more information, please contact:

The Librarian

Oxford University Computing Laboratory

Programming Research Group

8{11 Keble Road

Oxford OX1 3QD

England

Tel: 0865-273837 (librarian)

0865-273838 (general enquiries)

Fax: 0865-273839

Email: library@uk.ac.oxford.prg (JANET)

Contents

1 Introduction 1

1.1 Chairman's address John Nicholls, PRG : 1

1.2 Keynote speech Martyn Thomas, Praxis Systems plc : : : : : : : : : : : : : : : : 1

2 Z standards, tools and education 4

2.1 Z standards Rosalind Barden, Logica : 4

2.2 Tool requirements Mike McMorran, IBM : 5

2.3 COMETT Z course Jonathan Bowen, PRG : 11

3 Technical presentations 13

3.1 A Miscellany of Handy Techniques Ruaridh Macdonald, RSRE : : : : : : : : : : : 13

3.2 Free Type De�nitions Mike Spivey, PRG : 13

3.3 Brief introductions to demonstrations : 16

4 Demonstrations 16

4.1 Fuzz Mike Spivey, PRG : 16

4.2 FORSITE Andy Ricketts, Racal : 16

4.3 Zebra Bernard Sufrin, PRG : 17

4.4 B tool Ib S�rensen, BP : 17

5 Project presentations 17

5.1 The use of Z in Tektronix Kathleen Milsted, PRG : : : : : : : : : : : : : : : : : : 17

5.2 Working with CORE and Z: an evaluation Brian Hepworth, British Aerospace : : 20

5.3 Formal de�nition of Information Systems Ib S�rensen, BP : : : : : : : : : : : : : 23

5.4 Specifying a component of the SAA interface with Z John Wordsworth, IBM : : 24

6 Panel on future directions 25

7 General 25

7.1 Posters : 25

7.2 Questionnaire : 25

Acknowledgements 25

1 Introduction

On 16th December 1988, the third annual Z Users Meeting was held at 1 Wellington Square,

Oxford. John Nicholls, a Research O�cer in the Programming Research Group (PRG) at Oxford

University, chaired the meeting, as last year. Over 90 delegates from industry, academia and

other research establishments were present representing a good cross-section of those who use

and are interested in Z.

1.1 Chairman's address John Nicholls, PRG

John Nicholls welcomed delegates to this, the third Z Users Meeting. There were several new

aspects of this meeting, including the organisation of two Tutorials (one on re�nement, the other

on proof) and a Workshop on \Z in the development process". Feedback from attendees at these

events indicated that they had been successful.

One purpose of the Z Users Meetings is to exchange information on progress and achievements

by members of the Z community. This year, we are pleased to welcome a number of new users,

and also to see that established users have made signi�cant advances.

The meetings also provide an opportunity for attendees to express opinions or concerns about

the direction of Z. In previous meetings, concerns have been expressed about the need to stabilise

and standardise the notation, the inclusion of facilities for concurrency and re�nement, and the

provision of Z tools. In the past year, progress has been made on all of these topics, and a par-

ticularly noteworthy event has been the completion and publication of the Z Reference Manual,

an important step towards the standardisation of Z. At the time of the meeting, discussions were

being held about an IED project for Z standards and Z tools, and a brief review of this project

is made in the meeting.

Coming fresh from attending the workshop at which the software development process was being

discussed, (the speaker John Nicholls) was tempted to consider the process by which a notation

and method such as Z is developed. We can distinguish the following stages:

1. \It exists." The objectives and philosophy are established.

2. \It is thus." There is then a period of stabilisation and consolidation.

3. \It is used like this."

4. \And it has this value." Finally there is an assessment phase.

Z has �rmly passed the �rst stage, is well into the second stage, but has only started to enter

the last two stages.

1.2 Keynote speech Martyn Thomas, Praxis Systems plc

Martyn Thomas, the Chairman of Praxis Systems plc, was invited to give the keynote speech for

the day. He started by thanking the audience for being at the meeting and apologising for having

to leave immediately after his speech to attend another prior engagement.

His talk was entitled

\The future of Formal Methods"

1

Professionalism

He presented the audience with a quotation:

\ . . . these formal methods are the key to writing much better software. Their

widespread use will revolutionise software writing, and the economic bene�ts will be

considerable { on a par with those of the revolution in civil engineering during the

last century."

Brian Oakley

\Alvey Achievements"

June 1987

In the future we must be more precise. Only four years ago people involved with formal methods

were regarded as \loonies". Now things are di�erent; people apologise for not being formal at

conferences. In the UK and Europe we have a world competitive edge in the area of formal

methods.

Formal Methods are not a panacea

� We shall never be able to achieve certainty. There are good philosophical reasons for this.

� We cannot quantify the probability of error. There is no sign that we shall be able to do

this before the end of the century.

� We must convince others by demonstration, not argument. The cost bene�t must be shown.

We need publishable evidence of improvements in quality and productivity. Please write

up and publish such evidence { or send it to Martyn Thomas who will do this for you!

We need a technical intrastructure

� Tools { which should themselves be veri�ed. These may be simple (type-checkers, cross

reference generators, etc.) or complex (e.g. support for rigorous development). Why use

formal methods for development and then use an unveri�ed optimising compiler? We also

need veri�ed compilers.

� Standards { de�ning levels of use of formal methods, to be used in procurement.

� The infrastructure is important { we need a programme of developing key, veri�ed tools

and adopting them. If we don't act as if we feel formal methods are important, why should

anyone else? We must use formal methods ourselves and formal verify software which we

generate if we are to convince others of the bene�t of the approach.

� We must maintain balance. Using formal methods without a QMS1 is unbalanced. Using

formal methods without conventional methods is unbalanced.

1Quality Management Standard.

2

Safety { a major issue

Safety-related computer systems are a major policy issue. Formal methods are important for

safety { this is a useful pressure point on industry. If we cannot win the argument here, then

we cannot win anywhere, particularly in the short term. The current state of play is lamentable;

formal methods are almost unused for safety-critical systems apart from the CEGB
2
and for mil-

itary applications.
3
Project managers are conservative { using unproven technology is avoided

for good reasons. Even if formal methods were just used for speci�cation then the rate of pro-

duction of safety critical systems would be reduced drastically. In addition, formal methods are

not politically acceptable yet.

We need:

� A de�nition of the acceptable minimum development practices;

� A de�nition of realistic best practice;

� Mandatory registration of safety-related systems and mandatory incident-reporting.

What can we realistically expect? Formal methods should be mandatory.

A long-term goal

We should aim to have formal methods in widespread use. We need a Trojan horse, for example,

a formal SSADM, to bring semantic checking to a wider user base. There should be more

information in the speci�cation and more rule checking.

In the 1970s, strong typing and high level languages made right-�rst-time programming a realistic

goal for many programmers. I would like us to provide the methods and tools for right-�rst-time

speci�cation and design, for the wider community, in the 1990s.

Questions

Q: There is a boot-strapping problem with veri�cation. How many times do you need to do this

to be sure? (For self-compiling compilers you can check for stabilisation of the binary code.)

A: This is a philosophical problem { but possibly not a practical problem.

Q: For RISC4 machines, the veri�cation problem has been moved from the hardware to the

compilers. On USENET there has recently been a study of optimising compilers, all of which

where found to be breakable. Any comments?

A: Many compilers are very complicated and bound to be bug-ridden. Programming in full Ada

is an enormous act of faith which would stagger most monks! C is full of problems. However

even assuming the compiler is correct, we still depend on the hardware. This is not necessarily

reliable; for example, most PCs do not have memory parity checking.

2Central Electricity Generating Board.
3Rolls Royce are also using formal methods for safety critical systems.
4Reduced Instruction Set Computer.

3

2 Z standards, tools and education

2.1 Z standards Rosalind Barden, Logica

Rosalind Barden of the Advanced Software Engineering Group at Logica Cambridge Ltd gave this

presentation instead of Tim Hoverd as previously advertised. The brief of this group is broadly

to investigate and research areas which may be useful in 2{5 years' time. Rosalind described an

IED
5
project proposal with the objective to produce a Z standard. This would use Mike Spivey's

\The Z Notation: A Reference Manual" as a starting point.

ZEM { towards a method for the application of the Z notation

(or Z and the art of motorcycle maintenance!)

Overview

The partners are:

� Logica Cambridge Ltd

� IBM

� Programming Research Group

The proposal is for three year project at a total cost of $710,000.

Work Programme

It is felt that now is the time to strike for the standardisation of Z. The project aims to produce

an evolving Z standard with regular reviews. It will use Mike Spivey's \The Z Notation: A

Reference Manual" as input. A goal is to assist and extend the industrial use of Z.

The project would also be involved in the development of Z. It will undertake case studies in

concurrency and the (formal) de�nition of concurrency extensions to Z. It will also investigate

case studies in re�nement and produce a re�nement notation.

A methods hand-book will be written. This will be based on:

� A survey of experienced Z users,

� Case studies of ways of using Z.

Dissemination

The work will be in the public domain. There will be regular reviews of documents and a number

of workshops will be held.

Volunteers will be required for

5Information Engineering Directorate { a successor to Alvey.

4

� The standards review body

� Case studies

� User survey

Please form an orderly queue!

In the question and answer session the following points were raised.

� It should be noted that this is only a proposal at the moment. It has passed the �rst stage

and a full proposal has been submitted to the IED.

� This project might delay standardisation (being a three year project).

� There was a question as to what will happen if this project is not approved { will it happen

anyway?

2.2 Tool requirements Mike McMorran, IBM

Mike McMorran of IBM, Winchester gave a talk on Z tools for the PS/2 personal computer. This

work is in conjunction with Polytechnics. Around 20 people were surveyed to discover the user

requirements for such tools. One requirement was to \stop changing the system" since minor

changes in symbols causes problems with tools.

PS/2 tools

The basic PS/2 tools include:

� A live parsing editor \LPEX". This is a syntax driven editor which can handle C, REX,

GML, etc. A parser for the GML mark up language with Z extensions was developed.

In the future this may be extended to support the use of SGML. An investigation of the

human factors involved in the entry of Z into a computer is seen as important. Entry aids

to help with Z symbols and schema boxes are bene�cial.

� Printing facilities. A number of special printer fonts are needed.

� Schema inclusion. This is a simple pragmatic tool for textual rather than mathematic

manipulation. Area of interest include:

{ Schema windows.

{ Schema calculator. (Expanding schemas.)

{ Expression simpli�er.

{ Consistency checker. (Avoiding false in predicates.)

5

Desirable tools

There are other areas which could bene�t from mechanical tools. Some examples follow.

Aid with schema factoring is desirable. For example, given two schemas A and B , which parts

can be factored out into a third schema C ?

A B

C A

C
.
.
.

B

C
.
.
.

Checking for schema completeness is useful. For example in

Add b= AddOK _ AddDep _ AddError

are all situations covered by the three component schemas?

The calculation of pre- and post-conditions for an operation schema is useful. For example, the

pre-condition may be calculated by hiding (existentially quantifying) all the output and after

state components.

Help with proofs concerning pre- and post-operation predicates would be useful. E.g.:

State

x : N

x � 255

Op

�State
.
..

x 0 = x + 1

Here of course x 0
� 255, so x � 254 is a pre-condition for Op to succeed. Such restrictions may

not be so obvious in more complicated cases.

Design tools

A number of useful tools to aid the software design process have been identi�ed:

� Re�nement assistant, including re�nement veri�cation.

� Code sanity checker to identify code which could be a re�nement and code which cannot be

a re�nement.

� Multi-parser, which will check the Z speci�cation, the design notation and the code.

For successful design using formal methods, the whole project must be committed to their use.

They are not e�ective on an individual basis.

6

Other tools

A number of other tools and facilities which could be helpful have been suggested:

� A tool to check for house style.

� A schema library.

� An informal text linker to relate the corresponding informal text with the formal text.

� A schema structure diagram generator.

� Measurement support.

� On-line reference manual (for example, Mike Spivey's \The Z Notation: A Reference Man-

ual").

� Context sensitive help.

2.3 COMETT Z course Jonathan Bowen, PRG

Jonathan Bowen of the Programming Research Group described work currently being undertaken

at the PRG on the distribution of material for a \COMETT"6 Z course in the not-too-distant

future. This is based on the existing Z course at Oxford, given at least every summer at an

Oxford college, and also as demand dictates. It will include comprehensive printed material

(using the document preparation system LaTEX
7 for which Z macros exist). The material will be

designed for use by teachers of Z rather than end users. The idea is that teachers in industry

and educational establishments should be able to obtain the material and use it as a basis for

their own courses on Z.

Material

The material provided will consist of:

� Lecture notes { these are designed to be given to students on the course and covers what

the teacher says during the lectures.

� Overhead projector foils { these will be based on the lecture notes.

� Teacher's notes { these include motivation for the lectures covered, points to be covered

when presenting the foils and quick-�re questions which may be used to check that the

students are following the material.

� Exercises and solutions.

6Although this has been nicknamed the \COMETT" course, I understand the funding is actually being provided

by the UGC (University Grants Committee).
7This document has been prepared using the same text formatting system.

7

Sessions

The course consists of a number of 1
1

2
hour sessions (four per day is recommended). A typical

breakdown would be:

Topic Sessions

Motivation 1

Mathematics 4

Proofs 1

Structuring and use 5

Case studies 3

Exercises 3

Workshop 10

The workshop is optional, but it has been found to be very valuable in practice. The course

participants are divided into teams of approximately 3{4 people and given a problem to specify

in Z. Some re�nement of the speci�cation towards code may also be undertaken if desired, as

time permits. In any case, it is recommended that anyone attending a Z course should attempt

some sort of Z speci�cation as soon as possible after the course to allow the ideas to be tried out

in practice.

Material for each session is being prepared by members of the PRG and is reviewed by an least

one other member of the PRG. The material has also been tested on the 1988 summer Z course

at Oxford. All being well, the material will be made available sometime in 1989. Arrangements

on how the material is to be distributed have not yet been �nalised. It is intended that the

material should be made available to anyone who wants it. The charge (as yet undecided) will

be designed to cover costs rather than make a huge pro�t.

Details of the course will be sent to all Z Users Meeting participants as soon as it is available {

if possible, please refrain from enquiries until this time!

Co�ee break

3 Technical presentations

3.1 A Miscellany of Handy Techniques Ruaridh Macdonald, RSRE

Ruaridh Macdonald of RSRE,
8
Malvern, presented a number of techniques in Z which have been

used at RSRE in the formal speci�cation of part of a compiler. A paper covering the subject of

his talk is included with these Proceedings.

3.2 Free Type De�nitions Mike Spivey, PRG

The Z construct for \free type de�nitions" (sometimes called \data type de�nitions") provides a

powerful way of describing recursive types. For example, here is a free type de�nition describing

binary trees of numbers:

TREE ::= empty j forkhhN� TREE � TREEii:

8Royal Signals and Radar Establishment

8

The meaning of this de�nition can be explained by translating it into other Z constructs. We

�rst introduce a new basic type TREE , the set of binary trees:

[TREE]:

The empty tree is a constant of type TREE , and fork is a function taking a number and two

trees and giving another tree:

empty : TREE

fork : N� TREE � TREE � TREE

We use the injection arrow � to reect the fact that fork makes di�erent trees from di�erent

components.

Two axioms add more information about the type TREE . The �rst, a disjointness axiom, says

that empty is not one of the trees that can be constructed with fork :

empty =2 ran fork :

The second axiom is an induction principle:

8 S : PTREE �

empty 2 S ^

fork(jN� S � S j) � S

) TREE � S :

This axiom is the foundation for proof by structural induction on trees. To prove 8 t : TREE �

P(t), we just need to show

1. P(empty), and

2. if P(t1) and P(t2), then P(fork(n; t1; t2)).

To see the validity of this proof method, consider the set

S = f t : TREE j P(t) g:

Because of (1), empty is in S; and because of (2), if t1 and t2 are members of S and n is any

natural number, then fork(n; t1; t2) is in S : in symbols,

fork(jN� S � S j) � S :

The induction axiom allows us to deduce that TREE � S , i.e. that

8 t : TREE � P(t):

Non-recursive free type de�nitions are often used to describe error codes:

RESULT ::= ok j none left ;

or to give the e�ect of \variant records":

VEHICLE ::= carhhCOLOURii j bikehhWEIGHT ii:

9

In these cases, the two axioms about the type can be merged into one partitioning axiom. For

RESULT :

[RESULT]

ok ; none left : RESULT

hfokg; fnone leftgi partition RESULT

For VEHICLE :

[VEHICLE]

car : COLOUR� VEHICLE

bike :WEIGHT � VEHICLE

hran car ; ranbikei partition VEHICLE

The problem of consistency

A free type \de�nition" is no more than a description of a recursive type: there is no reason a

priori to suppose that any recursive type exists which satis�es the description. To see that this

is a potential source of inconsistency in speci�cations, consider the following description of the

type of \objects":

OBJECT ::= �lehhFILEii j sethhPOBJECT ii:

An object is either a simple �le, or it is a packaged set of other objects.

Part of the meaning of this description is that set is an injection from POBJECT to OBJECT :

set : POBJECT � OBJECT :

But in fact, no such injection can exist! We can show this by assuming that an injection set

exists and deriving a contradiction, namely a variant of Cantor's paradox in set theory.

De�ne a set C of objects by

C == f V : POBJECT j set V =2 V � set V g:

For any set of objects V , we can ask whether the object set V is a member of V itself. The set

C contains those objects set V for which the answer is \no". For any set S : POBJECT ,

set S 2 C

, (9V : POBJECT j set V =2 V � set S = set V) [def. of C]

, (9V : POBJECT j set V =2 V � S = V) [set is an injection]

, set S =2 S [one-point rule]

So set S 2 C , set S =2 S . Now substitute C for S : we obtain

set C 2 C , set C =2 C ;

a contradiction.

This contradiction does not mean that the Z construct for free type de�nitions is unsound; it

simply highlights the responsibility of a speci�cation author to check that any free type de�ni-

tions he or she uses make sense, and underlines the need for general theorems which guarantee

consistency.

10

Finitary constructions

In general, a free type de�nition looks like this:

T ::= c1 j c2 j . . . j cm
j d1hhE1[T]ii

j d2hhE2[T]ii

j . . .

j dnhhEn [T]ii

Here c1, c2, . . . , cm are the constants of the type T , and d1, d2, . . . , dn are the constructors. The

domains of the constructors are given by arbitrary set-valued expressions E1[T], E2[T], . . . , En [T]

which may involve the type T being de�ned.

The consistency theorem guarantees that the recursive type described by this de�nition really

exists by placing restrictions on the constructions Ei [T] which may be used. In its simplest form,

the theorem demands that all these constructions be �nitary. A �nitary construction E is one for

which the result E [S] of applying it to a set S is the same as the union of the sets E [V] obtained

by applying it to all �nite subsets V of S . In symbols,

E [S] =
S
f V : F S � E [V] g:

Broadly speaking, any construction of objects made from only a �nite number of elements of T

is �nitary: for example,

� elements T ,

� pairs T � T ,

� �nite sequences seqT ,

� �nite sets FT .

Moreover, any composition of �nitary constructions is also �nitary. But PT is not �nitary,

because it includes in�nite subsets of T as well as �nite ones. Here is the statement of the

consistency theorem:

Theorem Any free type de�nition containing only �nitary constructions has at least one model.

Summary

1. Free type de�nitions are an abbreviation for axiomatic descriptions of recursive types.

2. There is a need to prove that free type de�nitions are consistent.

3. By restricting ourselves to �nitary constructions, we can be sure of consistency.

3.3 Brief introductions to demonstrations

During the lunch break a number of tools were demonstrated at the Programming Research

Group in Keble Road.

11

Lunch

4 Demonstrations

4.1 Fuzz Mike Spivey, PRG

fuzz takes Z in the form of ASCII input which can also be processed by the LaTEX document

preparation system to produce a formatted document suitable for output to a laser printer.

The tool checks the conformance of the Z in the document by type-checking the contents. By

default it uses the standard Z library as detailed in Mike's \The Z Notation: A Reference

Manual". A listing showing schemas and types can be generated. Currently the tool runs on

Sun 3 equipment under Unix and IBM PC compatible machines under MS-DOS. Other machines

could be supported { the tool is written in C with portability in mind.

The tool is available on a commercial basis. For more information, contact Computing Science

Consultancy, 2 Willow Close, Garsington, Oxford OX9 9AN.

4.2 FORSITE Andy Ricketts, Racal

This tool was jointly developed on the Alvey-funded FORSITE project by four sites9 including

Racal and the PRG. It is front-ended by the QED editor and includes facilities for the following:

� WYSIWYG10 editing of Z documents.

� Parsing of Z documents.

� Type-checking of Z documents.

� Indexing of the schema and component names.

� Individual schema expansion.

The tool is written in C and the functional programming language ML. It runs under Unix on

Sun 3 equipment under the SunView window system.

The FORSITE project is due to end at the end of March 1989. For more information on the

availability of the FORSITE tool, contact Andy Ricketts, Racal Research Ltd., Worton Drive,

Worton Grange Industrial Estate, Reading, BERKS RG2 0SB (Tel: 0734-868601).

4.3 Zebra Bernard Sufrin, PRG

This is another more recent Z type-checker. It is written in ML. It is less easy to port than Mike

Spivey's tool and currently runs on Sun 3 equipment. It is normally interfaced to the WYSIWYG

editor QED but could easily be adapted for other formats using conversion tables { internally

the tool uses an ASCII form of the Z document. If anyone is intested in using this software, they

should contact Bernard at the PRG { it is \more or less public domain".

9Pun intended I'm afraid!
10What You See Is What You Get.

12

4.4 B tool Ib S�rensen, BP

This proof assistant is being developed by Jean-Raymond Abrial in Paris in conjunction with

the PRG. It is in use at the PRG and BP. The notation supported is similar to Z but does not

include all the features of Z; in particular, schemas are not supported. This is a research tool

and is still under development.

5 Project presentations

5.1 The use of Z in Tektronix Kathleen Milsted, PRG

Kathleen Milsted, currently a D.Phil. student at the PRG, spent July to October of 1988 working

for Tektronix, Inc., Beaverton, Oregon, U.S.A.

TEKTRONIX, Inc.

Tektronix design, manufacture and sell high frequency oscilloscopes, computer peripherals, and

other electronic equipment all around the world.

The Computer Research Laboratory have the following interests:

� Speci�cation Environments

� Advanced Languages

� Knowledge Based Systems

� Visual Systems

� Application Languages: C, Smalltalk-80, C++, Scheme

Oscilloscope Design Project

Around half the people in the Tektronix Laboratory are involved in writing software, mainly in

C. About a year ago they decided to try using Z (because of personal contact with the PRG)

in the Speci�cation Environments Group on an oscilloscope design project (one of their main

products). Nowadays oscilloscopes contain more and more software and also multiprocessors.

The engineers were asked, \What is a waveform?" Their answer was often of the form \a 1K

array of 8-bit digitised samples" { a rather implementation-oriented view!

The following block diagram gives an overview of an oscilloscope:

13

Signal
-

Wave

form
-

Trace
-

6

Trigger

A signal can be considered as a (total) function of time (say nano-seconds) to voltage (say milli-

Volts). A waveform can be thought of as some part of this { i.e. a partial function:

Time == N

Volts == Z

Signal == Time ! Volts

Waveform == Time 7! Volts

A waveform can be captured as a trace:

Horiz == N

Vert == Z

Trace == Horiz 7! Vert

A trace can be triggered by user-speci�ed events. There are a number of channel and trigger

parameters to specify the desired con�guration:

[ChanPrmtrs ; TrigPrmtrs ; Trigger]

TrigCon�g : TrigPrmtrs ! Signal ! Trigger

ChanCon�g : ChanPrmtrs ! Trigger ! Signal ! Trace

An oscilloscope receives a signal. The channel and trigger parameters control the traces which

are captured by the oscilloscope from the signal:

Oscilloscope

s : Signal

cp : ChanPrmtrs

tp : TrigPrmtrs

ts : seqTrace

8 t : ran ts �

9 trig : TrigCon�g tp s �

t = ChanCon�g cp trig s

This modelling helps engineers to understand what an oscilloscope is in a more abstract way than

they are used to.

14

ZEE { Z Engineering Environment

A support environment for the development of Z speci�cations called ZEE11 is being developed.

This has the following features:

� Implemented in Smalltalk,

� WYSIWYG editor,

� Parser,

� Type-checker,

� Hypertext capabilities,

� Proof environment (in design):

{ Simple schema manipulator,

{ Emphasis on support for user.

Reusable Component Catalogue

Work is also being undertaken on a reusable component catalogue based on a Smalltalk library.

For more information, see: Specifying reusable components using Z: Realistic Sets and Dictionar-

ies, by Ralph London and Kathleen Milsted. Speci�cation styles for object-oriented applications

are being investigated. Concerns include object{message orientation and single/multiple inheri-

tance.

Overall, the management at Tektronix seem to be impressed by Z, so hopefully this experiment

will be continued.

5.2 Working with CORE and Z: an evaluation Brian Hepworth, British Aerospace

Brian Hepworth of British Aerospace gave a talk at last year's Z Users Meeting. He summarised

the progress in the use of Z at British Aerospace since then.

Software Technology Department { Formal Methods Group

The Software Technology Department consists of a number of specialist areas, undertaking re-

search and development over a range of System and Software Engineering topics covering devel-

opment of life-cycle tools and techniques through to performance evaluations of new hardware

architecture, languages and concepts.

The Formal Methods Group undertakes research into methods for improving the speci�cation

and implementation of real-time software. Recent research has been targeted in the following

areas:

11The name \ZEE" is an American answer to the insistence of pronouncing the name Z as \zed"!

15

Use of Z within CORE: CORE is a semi-formal requirements capture method and statement

notation that is used extensively within British Aerospace on very large scale projects.

Research into the use of Z applied at various levels within CORE has provided the basis

for which formality will be introduced to BAe's current development process.

Project application of Z within CORE: Currently the Formal Methods Group is managing

and providing technical support to a project representative pilot study using Z within

CORE, in parallel with an on-line project. The objective of this study is to establish the

bene�ts of applying formal techniques to the development process against those applied to

the on-line and more conventional development process.

Prototyping Speci�cations: Many process-control applications speci�ed in Z can be proto-

typed easily using functional programming languages. As an experiment, the language

\Re�ne" has been used to produce prototypes of simple systems.

Tools: British Aerospace have developed the ZED editor which allows Z speci�cations to be

created, modi�ed and printed. Each user has access to the library of speci�cations which

belong to the current project. Mathematical symbols are entered via keywords but displayed

as symbols on the terminal.

Formal Methods Group Work

The research work concentrates on the following areas:

Utility Systems: Engines, Hydraulics, Fuel, etc. Case studies include:

� Hydraulics Control Systems

� Cabin Temperature Control Systems

� Engine Start, Restart, Shutdown Control Systems

Avionic Systems: Instrumentation, Navigation, Radar, Communications, etc. Case studies

include:

� Display Management Systems

� Navigation Database Systems

Flying Control Systems

A project on ground based test equipment (the AIDASS Hardware Diagnostics System) is also

being undertaken to establish the bene�ts of using Z.

Case Studies

The initial aim in applying formal methods is to give a more de�nitive approach to writing process

descriptions within CORE. Here is a simple example of a system described using Z:

16

a

b

-

- 0
control

true

- 0 X -outin1

else

-in2
0 Y

W

W

a? : GO STATE

b? : BOOLEAN

control ! : BOOLEAN

a? = go ^ b? = true

control ! = true

X

in1? : N

control? : BOOLEAN

out ! : N

control? = true

out ! = 2 � in1?

Y

in2? : N

control? : BOOLEAN

out ! : N

: (control? = true)

out ! = 2 � in2?

Here is another example of a control system taken from one of the case studies at British

Aerospace:

17

Gearbox �
��?

?Flight
Control
Flow

��HH

?

�
��
P

?

Pressure
Sensor

Utilities
Flow

Isolation valve

�

close

auto

open

Control Processor

Combined
Return

Reservoir

Pumptu

SelectClosed

valve select? : fopen; close; autog

valve control ! : fopen vlv ; close vlvg

valve select? = close

valve control ! = close vlv

State & Abstract Data Representation

CORE has no de�ned representation of state and abstract data. However ad hoc development of

CORE notations use the scheme where state data is input to and output from a process with its

type de�ned informally within a data design note. Such problems are avoided when Z is used.

Future Work

British Aerospace plan to continue investigating the use of formal methods. The following work

is planned:

� Formal program veri�cation techniques and tools,

� Support for future Z tool developments,

18

� Re�nement directed towards Ada code and subsets of Ada for safety-critical systems.

5.3 Formal de�nition of Information Systems Ib S�rensen, BP

Bernard Sufrin introduced Ib S�rensen as a former and future colleague { he is currently working

at BP on leave from the PRG.

Objectives

Ib is currently interested in the software process and the associated quality concerns. The quality

of speci�cations can be increased through the use of:

1. Mathematical based veri�cation techniques,

2. Rapid prototyping.

The programmer's productivity can be increased through the use of:

1. Computer assisted design and code veri�cation,

2. Reusable speci�cations, designs and algorithms.

In particular, the following objectives have been identi�ed:

1. A notation and methods to be used in a computer aided formal development process should

be developed { i.e. doing Z by computer.

2. Systems for the automatic generation of proof obligations are needed. It is useful to check

the consistency of the speci�cation, the correctness of the representation and the correctness

of the algorithm used.

3. Systematic procedures for the semi automatic discharge of proof obligations should be

developed. Libraries of mathematical laws and reusable proof-strategies are needed.

4. Systematic procedures for the semi automatic generation of designs, and code are required.

Help with determining the weakest concrete design, a \Pascalizer" and automatic code

generation are desirable.

5. A practical tool for 1{4 should be developed.

Overall Approach

The approach being used is along the following lines:

1. A mathematical basis is used { e.g. data re�nement rules from the PRG and generalised

substitution languages.

2. Experimental computer-based assistants are being investigated (if we know how to get the

computer to do it { e.g. using the B tool, which is currently playing a central role
12
).

12The B tool is currently implemented in c8,000 of (subset) Pascal. BP intend to reimplement it formally using

B.

19

3. Case Studies are being undertaken. e.g.:

(a) Development of some simple linear access structures from speci�cation to algorithm

(e.g. stacks, queues, double-ended queues, etc.),

(b) Development of medium scale information systems from speci�cation to execution,

(c) Speci�cation of small real-time control systems.

Currently dealing with concurrency can be a problem.

As an example of the size of the case studies, a speci�cation could consist of 50{100 predi-

cates in total; each (expanded) operation uses around 10{20 predicates. Typically, around

5 operations can be veri�ed in a morning using 10{20 step proofs. This gives you great

con�dence { you can go to lunch, feel happy, and not worry about it again.

In conclusion, the concern is what to do with a (Z) speci�cation once it has been formulated.

For practical development computer assistance is needed; in the real world it is not enough just

to use pen and paper.

Break

5.4 Specifying a component of the SAA interface with Z John Wordsworth,

IBM

John Wordsworth of IBM, Hursley Park, Winchester presented the problems encountered in

specifying a part of the IBM SAA
13

interface in Z. In IBM, and SAA in particular, there are

many TLA's14 { in fact there are now so many that sometimes ETLA's15 are needed!

SAA is designed to present a standard interface across di�erent IBM machine architectures { e.g.

CPIC.
16
A formal speci�cation of this interface (largely in Z) has been produced. This is layered,

so Z was particularly suitable since promoted operations could be used. At the bottom level

there are around 30 operations on the \conversation state". These can be promoted to programs

and then to nodes and new operations can be de�ned at each level.

All this can be done with \classical" Z. However there is a problem with a particular operation

called \con�rm". This was solved using a suggestion by Peter Lupton:
17

con�rm atomic

[]

con�rm front end

! con�rm back end

The pre-condition of con�rm atomic or con�rm front end must be true for the operation to be

performed. If both are true, either could be executed non-deterministically. If con�rm atomic

is executed, the operation exhibits atomic behaviour. If con�rm front end is executed then

con�rm back end is executed subsequently once its pre-condition becomes true. Other opera-

tions may interleave between the execution of con�rm front end and con�rm back end .

13Systems Application Architecture
14Three Letter Abbreviations
15Extended Three Letter Abbreviations!
16Common Programming Interface Communications
17Known as the \Luptonian" triad!

20

6 Panel on future directions

The day �nished with a question and answer session by a number of Z experts from the PRG:

Carroll Morgan, Mike Spivey, Bernard Sufrin and Jim Woodcock. The panel session ended around

5.15p.m.

7 General

7.1 Posters

Delegates were invited to display and view posters describing research related to the use of Z

on the notice boards at the back of the auditorium. Copies of these are included with these

Proceedings for delegates at the meeting.

7.2 Questionnaire

A questionnaire was circulated at the meeting to help in making improvements to future meetings.

Delegates were asked to mark boxes for \usefulness", \right level", \right mix", \organisation"

and \likelihood of reattendance" as 5 excellent, 4 good, 3 fair, 2 poor, or 1 bad for events which

they attended. 44 completed forms were received.

Space was also provided for comments. The marks and comments were very variable. The average

marks were all around 4. Things that some people did not like were often counterbalanced by

people who did like them, so hopefully overall the balance was right.

Acknowledgements

Thank you to all the speakers for making the 1988 Z Users Meeting a worthwhile day for all the

participants. In particular, thank you to those who provided foils, notes and even LaTEX source

to aid the production of this record { Mike Spivey's account of his talk is included virtually

verbatim.

Please accept the author's apologies for any mistakes in the transcription from verbal to written

form. John Nicholls and others at the PRG gave valuable comments on the �rst draft of the

Proceedings. A copy has also been circulated on the Z Forum electronic newsletter.

A special note of thanks must go to the organising secretary, Joanna Pulley, for making the day

run so smoothly. Thank you too for the assistance of Joan Arnold in preparing these notes and

mastering Z and diagrams in LaTEX.

Finally, thank you to the audience for making the meeting a success. We look forward to seeing

you again next year { the date of the next Z Users Meeting will be Friday 15th December 1989.

21

