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Executive Summary

Exagen Diagnostics, Inc. uses computational technology to discover genomic  
markers that form the basis of prognostic and predictive tests used in patient  
care and pharmaceutical clinical trials.

At the core of Exagen’s business is the Exagen Discovery Engine, a proprietary  
software process running on a high-performance computational cluster. When  
selecting an Apple dual processor Xserve G5 for this mission-critical role, Exagen 
placed high value on the ease of use of the Mac OS X operating system, the  
superior throughput-to-size ratio of the Xserve, and the very low noise level of  
the cluster in its Xtreme Xrack soundproof rack enclosure. The unsurpassed cross- 
platform interoperability of Mac OS X Server was also important in a heterogeneous  
computational environment that includes Mac, Windows, and Linux desktop  
and notebook computers.

This paper describes the scientific context for the Exagen process, explains the  
computational approach taken by Exagen, and draws general conclusions that  
scientists and engineers working in related fields might find applicable to their  
own problem domains.
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Overview

The mission of Exagen Diagnostics, Inc. is to discover and commercialize small sets 
of genomic biomarkers for use in predictive or prognostic testing applications. Each 
Exagen solution consists of a small set of biomarkers (typically three to five) that  
correlates closely to a specific biological condition or medical outcome. The Exagen 
process has already yielded notable results:

• The breast cancer prognostic marker assays developed by Exagen provide the first 
DNA-based tests for hormone receptor positive (HR+) and hormone receptor negative 
(HR-) patients. These tests identify patients with a high or low risk of tumor recurrence, 
so that patients who are at low risk may choose not to be treated and those who will 
benefit are treated appropriately. 

• Two predictive tests currently under development by Exagen will help the four million  
people in the United States and almost 200 million worldwide who are infected with  
the hepatitis C virus (HCV). The first test identifies those patients most likely to respond  
to the standard treatment regimen; the other identifies which HCV patients show  
evidence of liver damage.

Pharmaceutical companies can use Exagen tests as part of their drug development 
process. Physicians can use Exagen tests to identify patients in need of treatment  
and to help determine which therapeutic measures are appropriate for individual 
patients. Depending on the application, one test can serve both the medical and  
pharmaceutical communities or specialized tests can be developed for each. 

One common way for pharmaceutical companies to use such tests is for patient  
stratification. By identifying and eliminating those patients who are unlikely to respond  
to the drug being tested in Phase IV clinical trials, pharmaceutical companies can 
enrich the clinical trials for those patients who will benefit most from the treatment.  
In addition, pharmaceutical companies are forming partnerships with companies such 
as Exagen to look at biomarkers for application in the drug discovery process and in  
clinical trials, whether it’s in preclinical testing or in Phase II, III, or IV trials. Researchers 
hope that strong correlations between biomarkers and specific diseases will help 
identify disease pathways that provide promising targets for new pharmaceutical 
therapies.

About Exagen Diagnostics
Exagen Diagnostics is a leader in an  
emerging class of genomic marker tests 
that will predict disease progression or 
response to pharmaceutical drug treatment. 

Established in 2002 with Dr. Waneta Tuttle,  
a leading biomedical entrepreneur, as 
founding CEO, Exagen is a spin-o∂ of 
Quasar International, whose technology  
screens large volumes of data to identify  
defects in automotive parts. Exagen 
researchers have adapted and advanced  
this technology to analyze huge volumes 
of genomic data, resulting in a proprietary 
platform that enables the company to 
dramatically accelerate discovery of marker 
combinations and create a robust pipeline 
of products. Exagen discovers, validates,  
and commercializes genomic markers in 
multiple therapeutic areas. 

Exagen applies its proprietary discovery 
technology to rapidly identify practical and 
accurate combinations of genomic markers 
for testing, ultimately enabling physicians 
and patients to make better treatment deci-
sions. By partnering with pharmaceutical 
companies, Exagen can rapidly discover and 
advance optimal combinations of markers 
in support of pharmaceutical R&D/Phase IV, 
identifying significant marker sets in weeks 
rather than months. 
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Individual Markers versus 
Marker Combinations

For years, molecular biologists focused on understanding diseases in terms of single 
genes. This focus was especially true in the study of cancer. An example of this single-
gene focus involved the gene P53, which is related to growth control. The discovery 
that P53 played a role in a particular kind of cancer led to a flurry of research to see  
whether other individual genes could play a similar role in other cancer types. 

Over the course of several years, however, researchers realized that most complex 
diseases, including cancer, involve equally complex causes: multiple disease path-
ways that can involve seemingly unrelated genes and proteins. While the approach 
of assuming multigene mechanisms for complex disease is more biologically sound, 
it is also often harder to clearly assign individual functions to the genes identified. 
Moreover, the mathematical scale of computational problems increases dramatically 
when, instead of looking for one gene out of a pool of 30,000 or so, researchers  
must consider combinations of many genes.

This problem of mathematical scale would probably be insurmountable except for  
the fact that computational power continues to increase rapidly in relation to the  
real cost of computers. Faster hardware and refinements in analytical processes, neural  
networks, and data-mining technology now make it possible for innovative researchers 
to solve in days, and at relatively low cost, computational problems that were infeasible 
only a few years ago. 

Before we begin our tour of the Exagen Discovery Engine, it will be helpful to view 
Exagen’s methodological approach in the context of the alternative approaches that 
are available to researchers.
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Deductive versus Inductive 
Research Methodologies

The deductive experimental approach to scientific research is responsible for most 
of the advances of modern science. In the field of genomics, however, current cir-
cumstances dictate alternative approaches. Genomics has provided the biomedical 
research community with a very large number of newly identified genes for which 
little or no functional information exists. And we are just in the early stages of truly 
understanding how genes control biological functions. Faced with an overwhelming 
number of imperfectly understood genes and a great deal of uncertainty about how 
genes, their regulation, and their products interact to bring about specific biomedical 
outcomes, the classical, deductive scientific method becomes insu∑cient.

By contrast, a computational methodology provides an e∂ective way to discover  
relationships between biomedical conditions and genomic features for which little  
or no a priori knowledge exists. Moreover, by discovering strong correlations between 
specific genomic features and biomedical conditions, a pure computational approach 
can provide a starting point for scientists to elucidate the complex underlying biology 
of the disease.
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Di∂erences between 
Computational Approaches

The figure at left shows a typical workflow for a company like Exagen that uses a  
primarily computational discovery process to develop and market commercial predic-
tive or prognostic tests according to FDA guidelines. 

What many such companies have in common is a process that identifies genomic 
markers that can accurately di∂erentiate sample data from tissue samples representing 
di∂erent biomedical categories (for example, di∂erentiating malignant from benign 
tissue).

A typical approach is to evaluate gene expression data—generated using microarrays—
for each of the approximately 30,000 human genes, and to rank individual genes 
based on their predictive or prognostic utility for various outcomes. The result is a list 
of genes ranked by individual accuracy, something like this:

Table 1: Ranking of individual genes by accuracy

Rank Gene Accuracy

1 Q 0.756

2 M 0.727

3 V 0.699

4 A 0.678

5 C 0.654

Next, because no single gene in these results is su∑ciently accurate for a medical test, 
the researchers develop a test by combining the top individual performers.

With this type of simplistic ranking approach, it might be necessary to include a dozen 
or more of the top-scoring individual genes to reach a level of accuracy that is accept-
able for a commercial test. Moreover, having dozens of genes in the assay may make 
the commercial test more di∑cult and expensive to administer.

Using the ranking approach, it is possible to achieve reasonable levels of accuracy 
by looking at how subsets of the top performers in a data set work together. Table 2 
shows what such a ranking might look like if the combinations evaluated were limited 
to the 100 highest-ranking genes.
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Computational
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New Data Set

Study
Successful

?
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Study
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Yes
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Submission/Approval
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Table 2: Top-ranking gene combinations discovered using a single-gene search 
methodology

Rank Gene Combinations Accuracy

1 The 63 highest-ranking genes,  0.860 
 including genes 
 
 M (Individual Rank 2) 
 A (Individual Rank 4) 
 Q (Individual Rank 63) 

2 The 12 highest-ranking genes,  0.855 
 including genes 
 
 M (Individual Rank 2) 
 V (Individual Rank 3) 
 H (Individual Rank 12) 

3 The 5 highest-ranking genes,  0.802 
 including genes  
 
 M (Individual Rank 2) 
 A (Individual Rank 4) 
 C (Individual Rank 5) 

4 The 4 highest-ranking genes,  0.785 
 including genes 
 
 M (Individual Rank 2) 
 V (Individual Rank 3) 
 A (Individual Rank 4)

 

This approach generally assumes that each gene is an equal contributor and that 
single contributors are additive. Even using information from such a large number  
of the most accurate individual genes, however, there is a good chance that such  
an approach will fail to provide a test with an acceptable level of accuracy. 

Exagen takes another type of computational approach to identify the combined 
contribution of genes simultaneously. The Exagen discovery process evaluates the 
accuracy of gene combinations directly, without regard to the absolute ranking of 
individual genes.

Table 3 contains an example of how this might look in practice. (Individual gene  
rankings from the previous example have been added to the Gene Set column for 
clarification.)

Table 3: Same search shown in Table 2 but performed using the Exagen approach 
(Example)

Rank Gene Combinations Accuracy

1 A (Individual Rank 4) 0.903 
 C (Individual Rank 5) 
 L (Individual Rank 238) 

2 M (Individual Rank 2) 0.860 
 A (Individual Rank 4) 
 Q (Individual Rank 63) 

3 M (Individual Rank 2) 0.855 
 V (Individual Rank 3) 
 H (Individual Rank 12) 

4 M (Individual Rank 2) 0.802 
 A (Individual Rank 4) 
 C (Individual Rank 5) 
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Whereas the gene combinations obtained using the rank-ordered computational 
approach (Table 2) varied in size from 5 to 63 genes, each of the combinations obtained 
using the Exagen approach (Table 3) consists of exactly three genes. Notice that the 
second-, third-, and fourth-ranking gene combinations of the Exagen discovery process 
(Table 3) provide the same accuracy as the top three gene combinations obtained 
using the rank-ordered computational approach (Table 2), but with fewer markers, by 
eliminating redundant genes that do not provide any additional information. 

The most important point to notice, however, is that the highest-ranking solution from 
the Exagen discovery process outperforms any of the rank-ordered gene combinations 
obtained using the alternative computational approach, even though it consists of the 
4th, 5th, and 238th most accurate genes (considered individually). 

This hypothetical example clearly illustrates the principle that although an individual 
gene may have poor predictive power on its own, it should not be discarded on that 
basis alone. In combination with other genes, it may provide the highest predictive 
accuracy available. By recognizing and giving primary importance to the significance 
of gene combinations rather than individual genes, the Exagen process optimizes 
overall performance while minimizing the number of biomarkers needed.
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The Exagen Process: 
Discovering Biomarker 
Combinations

The inputs to the Exagen Discovery Engine can consist of gene expression data,  
proteomic data, gene copy number, and clinical information about the samples tested, 
as well as other available information. These data are derived from a set of patient 
samples that have known clinical outcomes. The data from a subset of these samples 
are randomly selected as the “training data.” These training data serve as the input 
data to the Exagen Discovery Engine and are essential for testing the output of their 
computational processes. 

An important di∂erence between Exagen and other research companies doing  
computational biomarker discovery is Exagen’s ability to simultaneously mine di∂erent 
types of data or multiple data sets. These capabilities involve mapping the di∂erent 
data sets to each other and applying appropriate statistical weights to each data type. 
When the availability of homogeneous data is limited, the ability to mine disparate 
data sets concurrently allows Exagen to combine data from two or more sets of  
samples, e∂ectively increasing the size of the input data set and thereby improving 
the statistical significance of the computational results.

Exagen’s computational scientists perform the mapping and weighting of data  
before the start of the computation process. At the end of any required mapping  
and weighting process, the input data set is ready to be fed to the discovery engine 
along with the initial processing parameters. 

One key step in the process is the selection of a classifier or classification algorithm 
that is appropriate to the input data and the desired result. Additional parameters  
are also selected to further guide the search. For example, in most cases, there are  
too many possible combinations to do an exhaustive search, so there are parameters 
that specify early on whether an exhaustive search is possible or a heuristic search  
is necessary. A heuristic search is one that is not exhaustive but instead narrows  
down the tested combinations by, for example, looking broadly across possible  
combinations and concentrating the search process on genomic regions where the  
results are most promising. 

After setting the operating parameters, the discovery scientist runs the search process. 
The search process consists of an iterative test on successive combinations of genomic 
features and a scoring mechanism, called the objective function, that is assigned to 
each combination based on how accurately that combination was able to classify the 
training data. A typical search process consists of 10,000 to 50,000 of these iterations.

While the process is running, the system operator can monitor its progress and  
make adjustments to the operating parameters to provide external “steering” to the 
discovery engine. For example, if the operating parameters are originally set to search 
for combinations of 10 features but the input data supports significant results with 
combinations of only three features, the operator can quickly determine that the 
results are unsatisfactory and can adjust the parameters accordingly.
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The search algorithm is a coarse-grained problem; that is, one that can easily and 
e∑ciently be divided into computationally independent subtasks and processed 
in parallel on multiple computers. This is where Exagen’s dual processor Xserve G5 
computational cluster pays big dividends. The combinations to be tested are divided 
into batches, each of which is assigned to a di∂erent node on the cluster. After all of 
the data has been processed and reassembled, the tested combinations are ranked 
according to their objective functions and the search phase of the computational  
discovery process is complete.
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The Exagen Process: 
Significance Testing

At this point, the discovery engine has identified thousands of marker combinations, 
several of which will subsequently be validated in an independent study required for 
FDA clearance. Before proceeding to that study, however, Exagen adds an in silico pre-
validation phase, called significance testing, to the computational discovery process. 

All data sets contain accidental relationships that can introduce errors into the results 
of the search algorithm. The smaller the sample set (in this case, biological samples 
collected from patients) in relation to the number of features (in this case, genes or 
genomic areas), the higher the probability of error. One problem that is common to all 
genomic research facilities is that the number of features is often large (on the order  
of 30,000 genes) and the number of samples is almost always too small by comparison.  
As a consequence, there is a built-in risk that the apparent accuracy of some marker 
combinations results from “noise” rather than meaningful information. 

The validation studies required for FDA clearance detect such anomalies by collecting  
new data samples and validating the e∂ectiveness of the proposed solutions against 
that new data. However, the FDA-mandated validation trial is so consequential—in 
time, money, and the diverted attention of key personnel—that Exagen goes to 
extraordinary lengths to weed out weaker results computationally before sending  
proposed solutions into independent verification. 

For the purpose of illustration, imagine a situation in which the company is searching 
for biomarker combinations that can distinguish samples taken from prostate cancer 
tumors from samples taken from normal tissue. The significance testing routine  
begins with data that is correctly labeled as corresponding to either malignant or  
nonmalignant tissue, as shown in Table 4.

Table 4: Original data sets, correctly labeled

Sample Biomedical 
Number Condition Gene 1 Gene 2 Gene 3 Gene 4 … Gene 30,000

Sample01 Disease data11 data 12 data 13 data 14 … data 130000

Sample02 Disease data 21 data 22 data 23 data 24 … data 230000

Sample 03 Normal data 31 data 32 data 33 data 34 … data 330000

Sample 04 Normal data 41 data 42 data 43 data 44 … data 430000
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The first step is to randomize those labels, as shown in Table 5 (column highlighted  
in yellow).

Table 5: Data sets with “Biomedical Condition” column randomized

Sample Biomedical 
Number Condition Gene 1 Gene 2 Gene 3 Gene 4 … Gene 30,000

Sample 01 Disease data 11 data 12 data 13 data 14 … data 130000

Sample 02 Normal data 21 data 22 data 23 data 24 … data 230000

Sample 03 Normal data 31 data 32 data 33 data 34 … data 330000

Sample 04 Disease data 41 data 42 data 43 data 44 … data 430000

The next step is to run the discovery process using the intentionally randomized  
data, once again attempting to identify the gene combinations that perform best  
in terms of accuracy. This process of re-randomizing the labels and re-running the  
discovery process is repeated as many times as feasible, collecting the results each 
time. Typically, 50 iterations provide a reasonable balance between cost and confi-
dence, yielding a p-value on the order of 0.02.

Each discovery process produces a set of top-performing gene combinations that  
can then be compared, as shown in Table 6. 

Table 6: Example of significance testing results

Results Member 1 Member 2 Member 3 Member 4 Accuracy

Best Combination from 
Original Discovery Process Gene Gene Gene Gene 0.91

2nd-Best Combination from 
Original Discovery Process Gene Gene Gene Gene 0.89

                       Results probably significant   Results probably not significant

3rd-Best Combination from 
Original Discovery Process Gene Gene Gene Gene 0.77

Best Combination from 
Any Randomization Gene Gene Gene Gene 0.75

4th-Best Combination from 
Original Discovery Process Gene Gene Gene Gene 0.73

2nd-Best Combination from 
Any Randomization Gene Gene Gene Gene 0.72

3rd-Best Combination from 
Any Randomization Gene Gene Gene Gene 0.63

The accuracy of candidate combinations resulting from the original discovery process 
can now be evaluated in relation to a benchmark established by the best results using 
randomized data. Only those results that are markedly more accurate than the best 
results from randomized data are considered to be significant. In Table 6, for example, 
the best and second-best results from the original discovery process (accuracy of 0.91 
and 0.89, respectively) are clearly better than the best results using randomized data 
(accuracy of 0.75). The third-best combination from the original discovery process,  
with an accuracy of 0.77, is probably not significant because it is only marginally more 
accurate than the results using randomized data.

The computational cost to run the Exagen Discovery Engine using a set of randomized 
data is identical to that of the original discovery process. A typical significance testing 
regimen comprises 30 to 50 such runs and is, therefore, 30 to 50 times as costly as the 
original discovery process. 

➧ ➧ ➧ ➧
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This completes the computational discovery process and our tour of the Exagen 
Discovery Engine. The marker combinations that survived the significance tests can 
now be validated in a clinical study. From this point forward, the Exagen process is 
exactly the same as that for any company pursuing FDA approval for its predictive  
or prognostic tests to become in vitro diagnostic (IVD) products.
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Conclusion

The idea that a complex disease such as cancer occurs solely because one gene is  
overexpressed is not supported by the evidence, even though it is theoretically  
possible. Instead, the evidence is mounting that complex diseases are the result of 
events that occur in multiple pathways. By developing computational tools to detect 
the involvement of multiple interacting genes in specific medical outcomes, Exagen 
can provide solutions that go beyond the capacity of any single-gene solution or  
ranking of genes one by one.

The multiple-gene solutions discovered using the Exagen process provide immediate 
benefits by allowing caregivers to deliver better diagnostics and treatment decisions 
for their patients and by helping pharmaceutical companies to develop new and  
better treatments.

In addition, by identifying combinations of genes that work together to bring about 
specific biological outcomes, the research being done at Exagen helps to identify 
promising genes for future research and, potentially, new drug targets to improve  
the quality of the therapeutic tools available to physicians for fighting disease.

The real strength of the Exagen discovery process, and of the primarily computational 
approach it represents, is precisely that it does not require any foreknowledge of  
specific gene functions or gene interactions in order to produce meaningful results. 
On the contrary, it is a powerful tool to help scientists to explore previously uncharted 
genomic territory—a tool that would have been inconceivable without the enormous 
computational power of high-performance computing platforms such as the dual  
processor Power Mac G5 and Xserve G5.

Apple computers have for many years played a prominent role in academic research 
computing. Now the reliability and ease of use of the UNIX-based Mac OS X Server, 
together with the power and a∂ordability of the Xserve G5 and Xserve RAID hardware, 
are making Apple computers the computing platform of choice for leading-edge  
scientific computing companies such as Exagen. 

Visit the Apple Science website at www.apple.com/science to learn more about 
Apple’s high-performance computing solutions.
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