
A personal view of APL 

by K. E. lverson 

This  essay  portrays a personal  view  of  the 
development  of  several  influential  dialects  of 
APL:  APLP  and J. The  discussion  traces  the 
evolution  of  the  treatment  of  arrays,  functions, 
and  operators,  as  well  as  function  definition, 
grammar,  terminology,  and  spelling. 

I t is  now 35 years since Professor Howard Aiken 
instituted a computer science program at Har- 

vard, a program that he calledAutomatic Data Proc- 
essing. It is almost that long since I began to de- 
velop, for use in writing and teaching in that 
program, the programming language that has come 
to  be known as APL. 

Although I have consulted original papers and 
compared my recollections with those of col- 
leagues, this remains a personal essay that traces 
the development of my own thinking about nota- 
tion. In particular, my citation of the work of others 
does not imply that they agree with my present in- 
terpretation of their contributions. In speaking of 
design decisions I use the word we to refer to the 
small group associated with the early implementa- 
tion, a group that included Adin Falkoff, Larry 
Breed, and Dick Lathwell, and is identified in “The 
Design of APL”’ and  “The Evolution of APL.”’ 
These papers contain full treatments of various as- 
pects of the development of APL that are given scant 
attention  here. 

Because my formal education was  in mathematics, 
the fundamental notions in APL have been drawn 
largely from mathematics. In particular, the notions 
of arrays, functions, and operators were adopted  at 
the  outset,  as illustrated by the following excerpt 
from A Programming  Language. 
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An operation (such as summation) which  is ap- 
plied to all components of a vector is called re- 
duction. . . . Thus, +/x is the sum, x/x is the 
product, and v/x is the logical sum of the com- 
ponents of a vector x. 

The phrase +/x alone illustrates the  three aspects: 
afinction +, an operator / (so named from the  term 
used by Heaviside4 for an entity that applies to a 
function to produce a related derived function), 
and an array x. 

The present discussion  is organized by topic, trac- 
ing the evolution of the  treatments of arrays, func- 
tions, and operators; as well as that of other  matters 
such as function definition, grammar, terminology, 
and spelling (that is, the representation of primi- 
tives). 

As stated at  the  outset,  the initial motive for de- 
veloping APL was to provide a tool for writing and 
teaching. Although APL has been exploited mostly 
in commercial programming, I continue to believe 
that its most important use remains to  be exploited: 
as a simple, precise, executable notation for the 
teaching of a wide range of subjects. 

When I retired from paid employment, I turned my 
attention back to this matter and soon concluded 
that  the essential tool required was a dialect of APL 
that: 
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Is  available as “shareware,” and is  inexpensive 
enough to  be acquired by students as well as by 
schools 
Can be printed  on  standard printers 
Runs  on a wide variety of computers 
Provides the simplicity and generality of the lat- 
est thinking in APL 

The result has been J, first reported in Reference 5. 

Work began in the summer of 1989  when I first 
discussed my desires with Arthur Whitney. He pro- 
posed the use of C for implementation, and pro- 
duced (on one page and in one afternoon) a work- 
ing fragment that provided only one function (+), 
one operator (/), one-letter names, and arrays lim- 
ited to ranks 0 and 1, but did provide for boxed 
arrays and  for the use of the copula for assigning 
names to any entity. 

I showed this fragment to  others in the hope of 
interesting someone competent in both C and APL 
to take  up the work, and soon recruited Roger Hui, 
who  was attracted in part by the unusual style of C 
programming used by Arthur, a style that made 
heavy use of preprocessing facilities to permit writ- 
ing further C in a distinctly APL style. 

Roger and I then began a collaboration on  the  de- 
sign and implementation of a dialect of APL (later 
named J by Roger), first deciding to roughly  follow 
“A Dictionary of A P L ” ~  and  to impose no require- 
ment of compatibility with  any  existing dialect. We 
were assisted by suggestions from many sources, 
particularly in the design of the spelling scheme 
(E. B. Iverson and A. T. Whitney) and in the  treat- 
ment of cells, items, and formatting (A. T. Whitney, 
based on his  work on SHARPHP’ and on  the dialect 
A reported  at  the ~ ~ 8 9  conference in New York). 

E. E. McDonnell of Reuters provided C programs 
for the mathematical functions (which  apply to 
complex numbers as well as to real), D. L. Orth of 
IBM ported  the system to  the IBM RISC System/ 
6000* in time for the APL90 conference, and L. J. 
Dickey of the University of Waterloo provided as- 
sistance in porting the system to a number of other 
computers. 

The features of J that distinguish it from most other 
APL dialects include: 

1. A spelling scheme that uses ASCII characters in 
one- or two-letter words 

2. Convenient international use, provided by facil- 
ities for alternative spellings for the national use 
characters of ASCII, and by facilities to produce 
the  error messages in any desired language 

3. Emphasis on major cells or items; for example, 
reduction (f /) applies f between items, and ap- 
plication of f between cells of lesser rank is ob- 
tained by using the rank operator 

4. The function argument to scan ( \ ) is, like all 
functions, ambivalent. Scan applies the monadic 
case of the function rather than the dyadic. Thus, 
the traditional sum scan is  given by + / \ a rather 
than by +\ a ,  and < \ a  boxes the partitions pro- 
vided by the scan. 

5. A number of other partitioning adverbs are pro- 
vided, including suffix scan ( \ . ), windows  of 
width k (as in k f \ a), and oblique (/ . ). 

6. Use of the hook and fork (discussed later)  and 
various new operators together with the use of 
the copula to assign names to functions. These 
facilities permit the extensive  use of tacit pro- 
gramming in which the arguments of a function 
are not explicitly referred to in its definition, a 
form of programming that requires no reparsing 
of the function on execution, and therefore  pro- 
vides some of the efficiency of compilation. (See 
Reference 8.) 

7. An immediate and highly readable display of the 
definition of a function f obtained by simply 
entering f 

Significant use of J in teaching will,  of course, re- 
quire  the development of textual material using it. 
Three steps have been taken toward this goal: 

1. The dictionary of J includes 45 frames of tutorial 
material (suitable for slides) that are brief treat- 
ments in J of topics from a dozen different areas. 

2. At  the urging of L. B. Moore of I.  P. Sharp As- 
sociates, I prepared for distribution at A P U ~  a 
booklet called Tangible Math, designed for in- 
dependent study of elementary mathematics. It 
was based on  the use of Sharpg shareware for  the 
IBM PC, and required no reference to  an APL 
manual. I have since produced a J version of 
Tangible Math. lo 

3. At a four-hour hands-on workshop for teachers 
of mathematics organized by Anthony Camacho 
of I-APL” and funded by the British APL Asso- 
ciation, Anthony and I used Tangible  Math to 
expose the participants to  the advantages of  ex- 
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ecutable mathematical notation. The teachers 
left with a copy of J and with enough experience 
to continue the use of J on their own.  Such  work- 
shops could be used to bring teachers to a point 
where they could develop their own treatments 
of isolated topics, and eventually of complete 
subjects, on  their own. 

In the  three decades of APL development, many 
different ideas have been proposed and explored, 
and many  have been abandoned. Those that sur- 
vived  have done so through incorporation in one  or 
more implementations that define the many dia- 
lects of APL. 

These dialects fall into several families, two of 
which  have been particularly influential. I refer  to 
them by the names of their most recent exem- 
plars-mLz1* on the  one hand, and J on the  oth- 
er-and sketch the development of these families 
in a later section. 

In the remainder of the essay I largely  confine my 
remarks to those dialects that have influenced, and 
been influenced by,  my  own thinking. This empha- 
sis  is intended not to denigrate the dialects not 
mentioned, but  to  keep  the discussion  focused and 
to leave their exposition to  others more conversant 
with them. 

Although my motive for producing a new dialect 
was for use in teaching, this dialect has led to much 
greater emphasis on a style of programming called 
functional by  Backus,13 and defined in J as tacit 
programming (because arguments are not referred 
to explicitly). These  matters  are addressed in the 
section on tacit programming. 

Terminology 

Although terminology was not among the  matters 
given serious attention  at  the  outset, it will be help- 
ful to  adopt some of the  later terminology imme- 
diately. Because of our common mathematical 
background, we initially chose mathematical terms. 
For example, the sentence 

b4 +\a)-. x a f 2  3 5 7 

illustrates certain parts of speech, for which  we 
adopted  the mathematical terms shown on  the left 
as follows: 
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Functions or  operators + x - Verbs 
Constant (vector) 2 3 5 7 Noun (list) 
Variables a b  Pronouns 
Operator \ Adverb 
Operator Conjunction 0 Punctuation 

f Copula 

I now prefer terms drawn from natural language, as 
illustrated by the terms shown on  the right.  Not  only 
are they familiar to a broader audience, but they 
clarify the purposes of the  parts of speech and of 
certain relations among them: 

1. A verb specifies an “action” upon a noun or 
nouns. 

2. An adverb applies to a verb to produce a related 
verb; thus +\ is the verb “partial sums.” 

3. A conjunction applies to two verbs, in the man- 
ner of the copulative conjunction and in the 
phrase “run and hide.” 

4. A name such  as a or b behaves like a pronoun, 
serving as a surrogate for any referent linked to 
it  by a copula. The mathematical term variable 
applied to a namex in the identity (x+ 1) x (x+3) 
equals x2+4x+3 serves to emphasize that  the 
relation holds for any value of x, but  the term is 
often inappropriate for pronouns used  in pro- 
gramming. 

5.  Although numeric lists and tables are commonly 
used to represent the vectors and matrices of 
mathematics, the  terms list and table are much 
broader and simpler, and suggest the essential 
notions better than do  the mathematical terms. 

6. To avoid  ambiguity due  to  the two uses of the 
term operator in mathematics (for both a func- 
tion and a Heaviside operator) I usually  use  only 
the terms adverb and conjunction, but continue 
to use either function or verb, list or vector, and 
table or matrix, as seems appropriate. 

Spelling 

In natural languages the many words used are com- 
monly represented (or spelled) in an alphabet of a 
small number of characters. In programming lan- 
guages the words or primitives of  the languages 
(such as sin and =:) are commonly represented by 
an expanded alphabet that includes a number of 
graphic symbols  such as + and =. 

When we came to implement APL, the alphabet 
then widely  available on computers was  extremely 
limited, and we decided to exploit a feature of our 
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company’s  newly-developed Selectric” typewriter, 
whose changeable typing element allowed us to de- 
sign our own alphabet of 88 characters. By limiting 
the English alphabet to  one case (majuscules), and 
by using the backspace key to produce composite 
characters, we were able to design a spelling 
scheme that used  only one-character words for 
primitives. 

Moreover, the spelling  scheme  was quite mnemonic 
in an international sense,  relying on the appearance 
of the symbols rather than on names of the functions 
in  any  national  language. Thus the phrase krx taks 
k elements from x, and J. denotes drop. 

Because the use of the APL alphabet was  relatively 
limited, it was not included in the  standard ASCII 
alphabet now  widely adopted. As a consequence, it 
was not available on most printers, and  the printing 
and publication of APL material became onerous. 
Nevertheless, in spite of some experiments with 
“reserved words” in the manner of other program- 
ming languages, the original APL alphabet has re- 
mained the  standard for APL systems. 

The set of graphics in ASCII is  much richer than  the 
meager set available when the APL alphabet was 
designed, and it can be used in spelling schemes for 
APL primitives that still  avoid the adoption of re- 
served  words.  Such a scheme using variable-length 
words was presented in Reference 6, and received 
limited use for communicating APL programs using 
standard printers, but was  never adopted in  any 
commercial implementation. A much simpler 
scheme using  words of one  or two letters was 
adopted in J, in a manner that largely retains, and 
sometimes enhances, the international mnemonic 
character of APL words. 

In a natural language such as English, the process 
of  word formation  is  clearly  distinguished  from  pars- 
ing.  In  particular,  word  formation  is  static, the rhe- 
matic  rules  applying to an entire text quite indepen- 
dently of the meanings or grammatical  classes of the 
words  produced.  Parsing, on the other hand, is  dy- 
namic,  and  proceeds  according to the grammatical 
classes of phrases  as  they  evolve.  This  is  reflected  in 
the use  of such  terms  as noun  phrase and verb phrase. 

In programming languages this distinction is com- 
monly blurred by combining  word formation and 
parsing in a single process characterized as  “syn- 
tax.” In J, the word formation and parsing are dis- 
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tinct. In its implementations, each process is table- 
driven; the parsing table being presented explicitly 
in the dictionary of J, and  the rhematic rules being 
discussed  only  informally. 

It is interesting to  note  that  the words of early APL 
included “composite characters” represented by 

I largely confine my remarks to 
those dialects that have 

influenced my  own  thinking. 

two elements of the underlying alphabet; these 
were mechanically superposed, whereas in J they 
appear side-by-side. 

Functions 

Functions were first adopted in the forms found in 
elementary mathematics, having one argument (as 
in Ib I and -b) or two (as in a+b and a -b). In 
particular, each had an explicit result, so that func- 
tions could be articulated to form sentences, as in 
la-bI t (a+b). 

In mathematics, the symbol - is  used to denote 
both the dyadic function subtraction (as in a-b) and 
the monadic function negation (as in -b). This am- 
bivalent  use of symbols  was exploited systematically 
(as in t for both division and reciprocal, and * for 
both power and exponential) to provide mne- 
monic links between related functions, and to econ- 
omize on symbols. 

The same motivations led us to adopt E. E. Mc- 
Donnell’s proposal to treat  the monadic trigono- 
metric (or circular) functions and related hyperbolic 
and Pythagorean functions as a single  family  of  dy- 
adic functions, denoted by a circle. Thus sine y and 
cosine y are  denoted by l o y  and 20y7 the numeric 
left argument being chosen so that its parity (even 
or  odd) agrees with the parity of the function de- 
noted,  and so that a negative integer denotes  the 
function inverse to  that  denoted by the correspond- 
ing  positive integer. This scheme was a matter of 
following  (with rather less justification) the impor- 



tant mathematical notion of treating the monadic 
functions square, cube, square root, etc. as special 
cases of the single  dyadic  power function. 

When the language was formalized and linearized 
in APL\36O,l4 anomalies such as xY for power, ,xy 
for product, I y I for magnitude, and Mij  for index- 

Box  and  enclose  have  made  it 
convenient to pass any  number of 
parameters  as  explicit  arguments. 

ing were replaced by x *y and xxy and I y and 
M C i ; j 1. At  the same time, function definition was 
formalized, using headers of the form Z+X F Y and 
Z+F Y to indicate the definition of a dyadic or a 
monadic function. This form of header permitted 
the definition of functions having no explicit result 
(as in X F Y), and so-called niladic functions (as in 
Z+F and F) having no explicit arguments. These 
forms were adopted for their supposed conve- 
nience, but this adoption introduced functions 
whose articulation in sentences was limited. 

In  most later dialects  such  niladic  and  resultless  func- 
tions  were  also adopted as  primitives. In J they  have 
been debarred completely, to avoid the problem of 
articulation, to avoid  complications  in the application 
of adverbs  and  conjunctions to them, and to avoid the 
following  problem  with the copula: if g is a niladic 
function that yields the noun n, and if f +g, then is f 
a niladic  function  equivalent to g,  or is  it the noun n? 

In conventional mathematical notation, an expres- 
sion such asf(x,y,z) can be interpreted  either as a 
function of three arguments, or as a function of one 
argument, that is,  of the vector formed by the cat- 
enation of x, y, and z.  Therefore  the limitation of 
APL functions to  at most two formal arguments does 
not limit the number of scalar arguments to which 
a function may  apply. 

Difficulties  with nonscalar arguments first arose in 
indexing, and the forms such as ACI ; J ; K1 and 
ACI ; ; K 1  that were adopted to deal with  it intro- 
duced a “nonlocality” into  the language: a phrase 
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within brackets had to  be  treated as a whole rather 
than as the application of a sequence of functions 
whose results could each be assigned a name or 
otherwise treated as a normal result. Moreover, an 
index expression for an array A could not  be written 
without knowing the rank of A. 

The introduction of a function to produce an 
atomic  representation of a noun (known  as enclose in 
NARS15,16 and APL~,  as box in  SAX'^ and J, and dis- 
cussed  in the section on atomic representations) 
makes it possible to box arguments of any rank and 
assemble them  into a single argument for any func- 
tion. In particular, it makes possible the use of such 
a boxed array as the argument to  an indexing func- 
tion, adopted in SAX and J and  calledfrom. 

As may be seen,”  the function rotate was  initially 
defined so that the right argument specified the 
amount of rotation.  The roles of the arguments 
were later reversed to accord  with a general mne- 
monic scheme in  which a left argument a together 
with a dyadic function f (denoted in J by a &f ) 
would produce a “meaningful” monadic function. 
Exceptions were, of course, made for established 
functions such as divided by. The scheme retains 
some mnemonic value, although the commute ad- 
verb (-) provided in J and in SAX makes either 
order convenient to use. For example, 5 %- 3 
would be  read as 5 into 3. 

In APL\360 it  was  impossible to define a new function 
within a program. This was  rectified  in APLSV’~ by 
defining a canonical  representation of a function (a 
matrix M whose  first  row  was a header,  and whose 
succeeding rows were the sentences of the defini- 
tion); a Jix function OFX such that OFX M yielded 
the name of the function as an explicit result, and 
established the function as a side  effect;  and an in- 
verse  function OCR, which  when applied to the name 
of a function  produced  its  canonical representation as 
an explicit  result. The ability to define  ambivalent 
functions was added in a University  of Massachusetts 
system,”  and  was  soon  widely adopted. 

The function OFX established a function only as a 
side effect, but  the scheme has been adapted  to J by 
providing a conjunction ( : ) such that m : d pro- 
duces an unnamed  function that may be applied  di- 
rectly, as in x m : d y,  or may be assigned a name, 
as  in f = . m : d . See the section on name assignment. 

Following an idea that Larry Breed picked up  at a 
lecture by the late Professor A. Perlis of Yale, we 
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adopted a scheme of dynamic localization in which 
names localized  in a function definition were 
known to further functions invoked  within  it. 

This decision made it possible to pass any number 
of parameters to subordinate functions, and  there- 
fore circumvented the limitation of at most two 
explicit arguments, but it did lead to a sometimes 
confusing profusion of names localized at various 
levels. The introduction of atomic representation 
(box and enclose) has made it convenient to pass 
any number of parameters as explicit arguments; in 
J this has been exploited to allow a return  to a 
simpler localization scheme in which  any name is 
either strictly  local or strictly  global. 

Arrays 

Perhaps because of the influence of a course in 
tensor analysis taken as an  undergraduate, I 
adopted  the notion that every function argument is 
an array, and  that arrays may be classified by their 
ranks; a scalar is rank 0, a vector rank I ,  a matrix 
rank 2, and so on. 

The application of arithmetic (or scalar) function 
such  as + and x also followed tensor analysis; in par- 
ticular the scalar  extension, which  allowed two argu- 
ments to differ in rank if one were a scalar. In defining 
other functions  (such  as reshape and rotate), we at- 
tempted to make the behavior on higher-rank  arrays 
as  systematic  as  possible,  but  failed to find a satisijing 
uniform  scheme.  Such a uniform  scheme  (based on 
the notion of cells) is defined in “A Dictionary of 
APL,”~ and adopted in SAX and in J. 

A rank-k  cell of A is a subarray of A along k con- 
tiguous final  axes. For example, if 

A 
abcd 
efgh 
i j k l  

m o p  
qrs t 
UVWX 

then  the list abcd is a l-cell of A ,  the table from m 
to x is a 2-cell of A ,  the  atom g is a O-cell  of A ,  and 
A itself  is a 3-cell of A .  

Each primitive function has intrinsic ranks, and ap- 
plies to arrays as a collection of cells of the  appro- 
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priate rank. For example, matrix inverse has rank 2, 
and applies to  an array of shape 5 4 3 as a col- 
lection of  five 4 by 3 matrices to produce a result 
of shape 5 3 4, a collection of  five 3 by 4 inverses 
of the 4 by 3 cells. 

Moreover, the rank conjunction (denoted in J by ‘I) 

produces a function of specified rank. For example, 
the intrinsic rank of ravel  is unbounded and (using 
the  shape 2 3 4 array A shown above): 

, A  
a b c d e f g h i   j k l m n o p q r s t u v w x  

a b c i e f g h i  j k l  
mnopqrs tuvwx  

Further discussion of cells and rank may be found 
in the section on tacit programming, and in Ref- 
erence 21. 

The central idea behind the use of cells and a rank 
operator was  suggested to me at the 1982 APL con- 
ference in Heidelberg by Arthur Whitney. In  par- 
ticular, Arthur showed that a reduction along any 
particular axis (+/ [ I I A) could be neatly handled 
by a rank operator, as  in +/‘I I A. By further adopt- 
ing the idea that every  primitive  possessed intrinsic 
ranks (monadic, left, and right) I was able, in Ref- 
erence 6, to greatly simplify the definition of prim- 
itives: each function need be defined only for cells 
having the intrinsic ranks, and the extension to 
higher-rank arguments is uniform for all functions. 

Adverbs and  conjunctions 

Even after tasting the fruits of generalizing the 2 
notation of mathematics to  the form f / that  per- 
mitted the use of functions other  than addition, it 
took some time before I recognized the advantages 
of a corresponding generalization of the inner or 
matrix product to allow the use of functions other 
than addition and multiplication. Moreover, I 
thought primarily of the derived functions provided 
by these generalizations, and  neither examined the 
nature of the slash  itself nor recognized that it be- 
haved like a Heaviside operator. 

However,  when  we came to linearize the notation 
in the implementation of APL\360, the linearization 
of the inner product (which had been written as one 
function on  top of the  other) forced the adoption of 
a symbol for  the conjunction (as in M + . X N). This 
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focused attention on the adverbs and conjunctions 
themselves, leading to a recognition of their role 
and to  the adoption of the term operators to refer 
to them. 

In  reviewing the syntax of operators we were dis- 
turbed  to realize that  the slash  used for reduction 
applied to  the (function) argument to its left, and 
even considered the possibility of reversing the  or- 
der  to agree with the behavior of monadic func- 
tions. However, Adin Falkoff soon espoused the 
advantages of the established scheme, pointing out 
that  the adoption of a “long left scope” for oper- 
ators would  allow the writing of phrases such as 
+ . x / to  denote  the function “inner product re- 
duction,” which  might be applied to a rank-3 array. 

We also realized that  the use of the slash to  denote 
compression (as in 1 0 1 0 1/ abcde ’ to yield 

ace ) seemed to imply that  the slash  was  ambig- 
uous, sometimes denoting an  operator, and some- 
times a function. This view  was adopted in NARS 
and in the precursor to APL2. Alternatively, adverbs 
and conjunctions could be assumed to apply to both 
nouns and verbs, giving different classes of derived 
verbs in the different cases. In this view, compres- 
sion was not a dyadic function denoted by the slash, 
but was rather  the derived function resulting from 
the application of the adverb / to a noun. 

The application of adverbs and conjunctions to 
nouns was adopted in SHARP, 22 S H A R P ~ P ,  SAX,  and 
J, but was resisted in other dialects, in spite of the 
fact that  the phrase @ C 3 1 for applying reversal on 
axis 3 furnished an example of such usage in  early 
APL, and in spite of the implied use of nouns in 
Heaviside’s notation D2 f for the second derivative 
o f f .  

In calculus, the expression f+g is  used to  denote  the 
sum of functionsf and g ,  that is, (f +g) x is defined 
as (f x)+(g x). The utility of such constructs as f+g 
and fxg was clear, and I realized that they could be 
handled by operators corresponding to  the func- 
tions + and X. What appeared  to be needed was an 
adverb that would  apply to a function to produce a 
conjunction. However, I was reluctant to compli- 
cate  the grammar by introducing results other  than 
functions from adverbs, and I began by suggesting, 
in Reference 23, a limited solution using composite 
symbols such as + overstruck by an overbar. 

Somewhat later I discussed this matter with Arthur 
Whitney, and  he quickly  suggested an operator 
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that we modified  slightly and presented as the 
til operator in Reference 24,  using the definition 
x ( f  t i l  g )  y is ( g  y )  f x.Theforkdiscussed 
in the section on grammar and order of execution 
now provides a more convenient solution, using  ex- 
pressions such as f +g and f x g . 

In mathematics, the notions of inner product and 
outer product are used in rather limited areas. In 
APL systems, operators provide generalizations of 

The  need  for  parentheses  will be 
reduced by executing  compound 

statements  from  right  to  left. 

them that  not only broaden their uses, but make 
them more readily comprehensible to nonmathe- 
maticians. Much the same is true of “duals” in 
mathematics, but because the generalization of APL 
is not so widely  known or used, it merits some at- 
tention here. 

It is  useful to view almost any  task as performed in 
three phases: preparation,  the main task, and un- 
doing the preparation. In programming terms this 
would appear as i n v e r s e p   m a i n  p argument .  
In other words, the main function is performed un- 
der the  preparation p. 

In J the under conjunction is denoted by & . and is 
defined as follows: 

m & .  p y is i n v e r s e p  m p y 
x m&.p y is i n v e r s e p  ( p  x )  m ( p  y )  

For example,  since . denotes  the  natural loga- 
rithm in J, the expression a +& . . b yields the 
product of a and b. The under conjunction is com- 
monly used with the function open  (whose  inverse 
is box) discussed  in the section on atomic repre- 
sentations. 

Name  assignment 

In mathematics, the symbol = is used to  denote 
both a relation and the copula in name assignment 

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 



(as in “let  x=3”). In APL, the arrow was  first used 
for the copula in Reference 18, and has been used 
in  all dialects until the adoption of = . and = : in J.’l 

The use of the copula was  initially restricted to 
nouns, and names were assigned to user-defined 
functions by a different mechanism in which the 
name of the function was incorporated in the  rep- 
resentation to which the function UFX was applied, 
as discussed  in the previous section on functions. 
The use of the copula for this purpose was proposed 
in Reference 23, implemented in SHARP/HP, and 
later  adopted in Dyalog= and in J. These imple- 
mentations provided for adverbs and conjunctions 
in the same manner. However, this use of the cop- 
ula has not  been  adopted in other implementations, 
perhaps because the representations used for func- 
tions make its adoption difficult. 

Indirect assignment was  first proposed in Reference 
26, and is implemented in J and defined in Refer- 
ence 21. Two copulas are used in J, one for local 
assignment (= . ), and one for global (= : ) assign- 
ment. 

Grammar  and  order of execution 

Grammatical rules determine  the  order of execu- 
tion of a sentence, that is, the  order in which the 
phrases are  interpreted.  In  Reference 3, the use of 
parentheses was adopted as in mathematics, to- 
gether with the rule (Reference 3, page 8) that  “The 
need for parentheses will be reduced by assuming 
that compound statements  are, except for interven- 
ing parentheses, executed from right to left.” 

In particular, this rule implies that  there is no hi- 
erarchy among functions (such as the rules in math- 
ematics that power  is executed before multiplica- 
tion before addition). Long familiarity with this 
hierarchy occasioned a few lapses in my book,3 but 
the new rule was  strictly adopted in the APL\360 
implementation. APL\360 also introduced a hierar- 
chy,  giving operators precedence over functions. 

The result was a simple grammar, complicated only 
by the bracket-semicolon notation used for index- 
ing. This was later complicated by the adoption, in 
most  systems, of the statement  separator (denoted 
by a diamond). The utility of the  statement sepa- 
rator was later vitiated in some systems (including 
SHARP, SAX, and J) by the adoption of dyadic func- 
tions lev and dex, which  yielded their left and right 
arguments, respectively. 
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The grammatical rules left certain phrases (such as 
a sequence of nouns) invalid. In NARS and in APL2 
meanings were assigned to a sequence of nouns: if 
a and b are  the nouns “hold” and “on,”  then  the 
phrase a b yields the two-element list of enclosed 
vectors. The adoption of such “strands” led to a 
modification of the grammatical rules based upon 
left and right “binding strengths” assigned to var- 
ious parts of speech, as discussed  in References 27 
and 28. In particular these rules required that  the 
phrase 2 3 5[1] bereplacedby ( 2  3 5 ) [11 .  

Other changes in grammar were adopted in J: the 
bracket-semicolon indexing  was replaced by a nor- 
mal  dyadic verb from; and any isolated sequence of 
verbs was  assigned a meaning based upon the hook 
and fork, first proposed in Reference 29 and briefly 
explained next. The result is a strict grammar in 
which each phrase for execution is chosen from the 
first four elements of the execution stack, and eli- 
gibility for execution is determined by comparison 
with a 14 by 4 parsing table as shown in Reference 
21. 

Because the hook and fork (as well as several other 
previously  invalid phrases) play a significant role in 
the tacit programming discussed  in a later section, 
they are  further elaborated here. Briefly, if 

mean=.+/%# 

then 

mean x 

is equivalent to 

( + / x ) % ( # x )  

The dyadic case is defined analogously. If 

d i f f s q = .  +*- 

then 

a d i f f s q  b 

is 

(a+b)*(a-b) 

The hook and  the fork may be expressed graphi- 
cally as follows: 



FORK H O O K  
9 g 9 9 

I \  I \   I \   I \  
f h f h y h x h  

Y Y X Y X Y  Y Y 

Two further points should be noted: 

1. A longer train of verbs will  resolve into a se- 
quence of forks and hooks. For example, 
t a u t = .  <: =<+.= is equivalent to two forks, 
as in t a u t = .  <:  = ( <  +. = ) ,  and expresses 
the tautology that less than or equal (< : ) equals 
( = I  less than ( < I  or (+.  I equal ( = I .  

2. In the expression (+I % # I 2 3 4 5 to produce 
the mean of the list 2 3 4 5, the parentheses 
are clearly essential, since +/ % # 2 3 4 5 
would  yield  0.25, the sum of the reciprocal of the 
number of items. However,  it must be empha- 
sized that  the  parentheses perform their normal 
function of grouping, and are  not  needed  to ex- 
plicitly produce forks, as may be  seen from the 
earlier examples. 

I I I \ / \  I I 

Atomic  representations 

It is commonplace that complex constructs may be 
conveniently represented by arrays of simpler con- 
structs: a word by a list  of letters, a sentence by a list 
of words, a complex number by a list of two real 
numbers, and  the  parameter of a rotation function 
by a table of numbers, and so on. 

However,  it  is  much more convenient to use atomic 
representations, which  have rank 0 and are there- 
fore convenient to combine into, and select from, 
arrays. For example, the  representation 3 j 4 used 
for a complex number in APL systems  is an atom or 
scalar. 

In Reference 30, Trenchard  More proposed a rep- 
resentation scheme in which an enclose function 
applied to an array produced a scalar representa- 
tion of the argument. This notion was adopted or 
adapted in a number of APL systems, beginning with 
NARS, and soon followed by A P L ~ .  

A somewhat simpler scheme was adopted in SHARP 
in  1982,  was presented in “A Dictionary of APL”~ in 
1987, and  later  adopted in SAX and J: a function 
called box (and  denoted by <) applied to any noun 
produces an atomic representation of the noun that 
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can be “decoded” by the inverse function open (de- 
noted by >) to yield the original argument. 

A desire for similar convenience in handling col- 
lections of functions led Bernecky and others  to 
propose (in References 31 and 32) the notion of 
function arrays. These have been implemented as 
gerunds in J by adopting atomic representations for 
functions. 

Implementations 

Because of a healthy emphasis on standardization, 
many distinct implementations differed slightly, if 
at all, in the language features implemented. For 
example, the IBM publication APLSV User’s Manu- 
all9 written originally for APLSV applied equally to 
vs APL and  the IBM 5100 computer. 

Despite the present emphasis on the evolution of 
the language itself, certain implementations merit 
mention: 

1. The IBM 5100 mentioned above  is noteworthy as 
one of the early desktop computers, and as an 
implementation based on an emulator of the IBM 
System/360* and a read-only memory  copy of 
APLSV. 

2. The I-APL implementation provided the first 
shareware version of APL, aimed at making APL 
widely  available  in  schools. 

Implementations representing the two main lines of 
development mentioned in the introduction are 
now  discussed  briefly. The first  is the nested  array 
system NARS conceived and implemented by Bob 
Smith of STSC and incorporating ideas due  to  Tren- 
chard More3’ and J. A. Brown (Doctoral thesis, 
University of Syracuse). In addition to  the enclose 
and  related facilities that provide the nested arrays 
themselves, this implementation greatly expanded 
the applicability of operators.  In  the A P L ~  imple- 
mentation, Brown has followed this same line of 
development of nested arrays. 

Somewhat after the advent of NARS, the SHARP APL 
system  was extended to provide boxed elements in 
arrays, as reported in Reference 22.  New operators 
(such as the rank) were also added,  but their utility 
was  severely limited by the fact that  operators were 
not (as in NARS) extended to apply to user-defined 
functions and derived functions. In  the succeeding 
SAX and J implementations such constraints have 
been removed. 
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Tacit  programming 

A tacit definition is one in  which no explicit mention 
is made of the arguments of the function being de- 
fined. For example: 

sum=. +I 
mean=.  sum % # 
1 i stmean=.  mean It 1 

[a=. i. 5 
0 1 2 3 4  

sum  a 
10 

mean  a 
2 

[table=. i . 3 5 
0 1 2 3 4  
5 6 7 8 9  

10  11 1 2  13 14  

mean  table 
5 6 7 8 9  

1 i stmean  tab1  e 
2 7 1 2  

By contrast, definition in  most APL dialects makes 
explicit mention of the argument(s): 

OFX 2 7p'Z+SUM X Z++/X' 
SUM 

Tacit programming offers several advantages, in- 
cluding the following: 

1. It is  concise. 
2. It allows  significant formal manipulation of def- 

3. It greatly simplifies the introduction of program- 
initions. 

ming into any topic. 

Since the phrase +/ produces a function, the po- 
tential for tacit programming existed in the earliest 
APL; but  the restrictions on  the copula prevented 
assignment of a name to  the definition, and  there- 
fore prohibited tacit programming. 

In any case, the paucity of operators and the  re- 
strictions that permitted their application to  (a sub- 
class of) primitive functions only, made serious use 

of tacit programming impossible. In later dialects 
these restrictions have been removed, and the num- 
ber of operators has been increased. 

I now provide a few examples of tacit programming 
in J, first  listing the main facilities to be exploited. 
The reader may  wish to compare such facilities in 
J with  similar facilities defined by BackusI3 and by 
Curry.33 For example, Curry's combinators W (el- 
ementary duplicator) and C (commutator) are both 
represented by the adverb - in J, according to  the 
following  examples: 

I :-b is bl : b (that is, a sort of b) 
a %-b is b%a (that is, a into b)  

The facilities to be used  in the examples include the 
hook, fork, and - already defined, as well as the 
following  which, although defined in terms of spe- 
cific verbs, apply generally. It may be necessary to 
consult Reference 21 for  the meanings of certain 
verbs, such as * : (square), % : (square  root), and 

. (log).  Five examples follow. 

1. 2 & ^  y is 2^y  (Called cunying) 
2.  A & 2 y is y A 2  (Called cunying) 
3. -&^ .y  is - " .y  Composition 
4. x -&". y is ( " . x ) - ( " . y )  Composition 
5 .  x -@" y is - x"y Atop 

Some examples from statistics are shown  next. 

sum=. +I 
mean=.  sum % # 
norm=. - mean 
std=.%: & sum & * :  & norm 

Entry of a function alone causes a display of its 
definition, a display that can be captured and ma- 
nipulated as a straightforward boxed array. Thus: 

s td 
+""""""""-+-+""+ 
+" " " " - -+ -+- -+  & norm 

1 1 % :  I&Isumli I * :  + - - + - + - - - +  & 

+"+-+"-+ 
+"""""+-+"+ 

+""""""""-+.+""+ 

In function tables, the f outer product of ApL is  in 
J the dyadic case of f I .  For example: 
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[ a = .  b=.  i. 5 
0 1 2 3 4  

a +/ b 
0 1 2 3 4  
1 2 3 4 5  
2 3 4 5 6  
3 4 5 6 7  
4 5 6 7 8  

a * / b  
0 0 0  0 0 
0 1 2  3 4 

0 3 6  9 1 2  
GI 4 8 l ?  1 6  

0 2 4  6 a 

t a b l e = .   / ( C ' b y ' l ' o v e r ' ) \  
2 3 5 * t a b l e  1 2 3 4 5 

1 1 1  2 3 4 51 
+-+""""""-+ 

+-+""""""-+ 

a < t a b l e  b 

I 10 1 2  341 
+-+""""-+ 

+-+""""-+ 

a !  / b  
1 1 1 1 1  
0 1 2 3 4  +-+ " " " " _  + 

0 0 1 3 6  
0 0 0 1 4  
0 0 0 0 1  
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