
A personal view of APL

by K. E. lverson

This essay portrays a personal view of the
development of several influential dialects of
APL: APLP and J. The discussion traces the
evolution of the treatment of arrays, functions,
and operators, as well as function definition,
grammar, terminology, and spelling.

I t is now 35 years since Professor Howard Aiken
instituted a computer science program at Har-

vard, a program that he calledAutomatic Data Proc-
essing. It is almost that long since I began to de-
velop, for use in writing and teaching in that
program, the programming language that has come
to be known as APL.

Although I have consulted original papers and
compared my recollections with those of col-
leagues, this remains a personal essay that traces
the development of my own thinking about nota-
tion. In particular, my citation of the work of others
does not imply that they agree with my present in-
terpretation of their contributions. In speaking of
design decisions I use the word we to refer to the
small group associated with the early implementa-
tion, a group that included Adin Falkoff, Larry
Breed, and Dick Lathwell, and is identified in “The
Design of APL”’ and “The Evolution of APL.”’
These papers contain full treatments of various as-
pects of the development of APL that are given scant
attention here.

Because my formal education was in mathematics,
the fundamental notions in APL have been drawn
largely from mathematics. In particular, the notions
of arrays, functions, and operators were adopted at
the outset, as illustrated by the following excerpt
from A Programming Language.

582 IVERSON

An operation (such as summation) which is ap-
plied to all components of a vector is called re-
duction. . . . Thus, +/x is the sum, x/x is the
product, and v/x is the logical sum of the com-
ponents of a vector x.

The phrase +/x alone illustrates the three aspects:
afinction +, an operator / (so named from the term
used by Heaviside4 for an entity that applies to a
function to produce a related derived function),
and an array x.

The present discussion is organized by topic, trac-
ing the evolution of the treatments of arrays, func-
tions, and operators; as well as that of other matters
such as function definition, grammar, terminology,
and spelling (that is, the representation of primi-
tives).

As stated at the outset, the initial motive for de-
veloping APL was to provide a tool for writing and
teaching. Although APL has been exploited mostly
in commercial programming, I continue to believe
that its most important use remains to be exploited:
as a simple, precise, executable notation for the
teaching of a wide range of subjects.

When I retired from paid employment, I turned my
attention back to this matter and soon concluded
that the essential tool required was a dialect of APL
that:

@Copyright 1991 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Is available as “shareware,” and is inexpensive
enough to be acquired by students as well as by
schools
Can be printed on standard printers
Runs on a wide variety of computers
Provides the simplicity and generality of the lat-
est thinking in APL

The result has been J, first reported in Reference 5.

Work began in the summer of 1989 when I first
discussed my desires with Arthur Whitney. He pro-
posed the use of C for implementation, and pro-
duced (on one page and in one afternoon) a work-
ing fragment that provided only one function (+),
one operator (/), one-letter names, and arrays lim-
ited to ranks 0 and 1, but did provide for boxed
arrays and for the use of the copula for assigning
names to any entity.

I showed this fragment to others in the hope of
interesting someone competent in both C and APL
to take up the work, and soon recruited Roger Hui,
who was attracted in part by the unusual style of C
programming used by Arthur, a style that made
heavy use of preprocessing facilities to permit writ-
ing further C in a distinctly APL style.

Roger and I then began a collaboration on the de-
sign and implementation of a dialect of APL (later
named J by Roger), first deciding to roughly follow
“A Dictionary of A P L ” ~ and to impose no require-
ment of compatibility with any existing dialect. We
were assisted by suggestions from many sources,
particularly in the design of the spelling scheme
(E. B. Iverson and A. T. Whitney) and in the treat-
ment of cells, items, and formatting (A. T. Whitney,
based on his work on SHARPHP’ and on the dialect
A reported at the ~ ~ 8 9 conference in New York).

E. E. McDonnell of Reuters provided C programs
for the mathematical functions (which apply to
complex numbers as well as to real), D. L. Orth of
IBM ported the system to the IBM RISC System/
6000* in time for the APL90 conference, and L. J.
Dickey of the University of Waterloo provided as-
sistance in porting the system to a number of other
computers.

The features of J that distinguish it from most other
APL dialects include:

1. A spelling scheme that uses ASCII characters in
one- or two-letter words

2. Convenient international use, provided by facil-
ities for alternative spellings for the national use
characters of ASCII, and by facilities to produce
the error messages in any desired language

3. Emphasis on major cells or items; for example,
reduction (f /) applies f between items, and ap-
plication of f between cells of lesser rank is ob-
tained by using the rank operator

4. The function argument to scan (\) is, like all
functions, ambivalent. Scan applies the monadic
case of the function rather than the dyadic. Thus,
the traditional sum scan is given by + / \ a rather
than by +\ a , and < \ a boxes the partitions pro-
vided by the scan.

5. A number of other partitioning adverbs are pro-
vided, including suffix scan (\ .), windows of
width k (as in k f \ a), and oblique (/ .).

6. Use of the hook and fork (discussed later) and
various new operators together with the use of
the copula to assign names to functions. These
facilities permit the extensive use of tacit pro-
gramming in which the arguments of a function
are not explicitly referred to in its definition, a
form of programming that requires no reparsing
of the function on execution, and therefore pro-
vides some of the efficiency of compilation. (See
Reference 8.)

7. An immediate and highly readable display of the
definition of a function f obtained by simply
entering f

Significant use of J in teaching will, of course, re-
quire the development of textual material using it.
Three steps have been taken toward this goal:

1. The dictionary of J includes 45 frames of tutorial
material (suitable for slides) that are brief treat-
ments in J of topics from a dozen different areas.

2. At the urging of L. B. Moore of I. P. Sharp As-
sociates, I prepared for distribution at A P U ~ a
booklet called Tangible Math, designed for in-
dependent study of elementary mathematics. It
was based on the use of Sharpg shareware for the
IBM PC, and required no reference to an APL
manual. I have since produced a J version of
Tangible Math. lo

3. At a four-hour hands-on workshop for teachers
of mathematics organized by Anthony Camacho
of I-APL” and funded by the British APL Asso-
ciation, Anthony and I used Tangible Math to
expose the participants to the advantages of ex-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 IVERSON 583

ecutable mathematical notation. The teachers
left with a copy of J and with enough experience
to continue the use of J on their own. Such work-
shops could be used to bring teachers to a point
where they could develop their own treatments
of isolated topics, and eventually of complete
subjects, on their own.

In the three decades of APL development, many
different ideas have been proposed and explored,
and many have been abandoned. Those that sur-
vived have done so through incorporation in one or
more implementations that define the many dia-
lects of APL.

These dialects fall into several families, two of
which have been particularly influential. I refer to
them by the names of their most recent exem-
plars-mLz1* on the one hand, and J on the oth-
er-and sketch the development of these families
in a later section.

In the remainder of the essay I largely confine my
remarks to those dialects that have influenced, and
been influenced by, my own thinking. This empha-
sis is intended not to denigrate the dialects not
mentioned, but to keep the discussion focused and
to leave their exposition to others more conversant
with them.

Although my motive for producing a new dialect
was for use in teaching, this dialect has led to much
greater emphasis on a style of programming called
functional by Backus,13 and defined in J as tacit
programming (because arguments are not referred
to explicitly). These matters are addressed in the
section on tacit programming.

Terminology

Although terminology was not among the matters
given serious attention at the outset, it will be help-
ful to adopt some of the later terminology imme-
diately. Because of our common mathematical
background, we initially chose mathematical terms.
For example, the sentence

b4 +\a)-. x a f 2 3 5 7

illustrates certain parts of speech, for which we
adopted the mathematical terms shown on the left
as follows:

584 IVERSON

Functions or operators + x - Verbs
Constant (vector) 2 3 5 7 Noun (list)
Variables a b Pronouns
Operator \ Adverb
Operator Conjunction 0 Punctuation

f Copula

I now prefer terms drawn from natural language, as
illustrated by the terms shown on the right. Not only
are they familiar to a broader audience, but they
clarify the purposes of the parts of speech and of
certain relations among them:

1. A verb specifies an “action” upon a noun or
nouns.

2. An adverb applies to a verb to produce a related
verb; thus +\ is the verb “partial sums.”

3. A conjunction applies to two verbs, in the man-
ner of the copulative conjunction and in the
phrase “run and hide.”

4. A name such as a or b behaves like a pronoun,
serving as a surrogate for any referent linked to
it by a copula. The mathematical term variable
applied to a namex in the identity (x+ 1) x (x+3)
equals x2+4x+3 serves to emphasize that the
relation holds for any value of x, but the term is
often inappropriate for pronouns used in pro-
gramming.

5. Although numeric lists and tables are commonly
used to represent the vectors and matrices of
mathematics, the terms list and table are much
broader and simpler, and suggest the essential
notions better than do the mathematical terms.

6. To avoid ambiguity due to the two uses of the
term operator in mathematics (for both a func-
tion and a Heaviside operator) I usually use only
the terms adverb and conjunction, but continue
to use either function or verb, list or vector, and
table or matrix, as seems appropriate.

Spelling

In natural languages the many words used are com-
monly represented (or spelled) in an alphabet of a
small number of characters. In programming lan-
guages the words or primitives of the languages
(such as sin and =:) are commonly represented by
an expanded alphabet that includes a number of
graphic symbols such as + and =.

When we came to implement APL, the alphabet
then widely available on computers was extremely
limited, and we decided to exploit a feature of our

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

company’s newly-developed Selectric” typewriter,
whose changeable typing element allowed us to de-
sign our own alphabet of 88 characters. By limiting
the English alphabet to one case (majuscules), and
by using the backspace key to produce composite
characters, we were able to design a spelling
scheme that used only one-character words for
primitives.

Moreover, the spelling scheme was quite mnemonic
in an international sense, relying on the appearance
of the symbols rather than on names of the functions
in any national language. Thus the phrase krx taks
k elements from x, and J. denotes drop.

Because the use of the APL alphabet was relatively
limited, it was not included in the standard ASCII
alphabet now widely adopted. As a consequence, it
was not available on most printers, and the printing
and publication of APL material became onerous.
Nevertheless, in spite of some experiments with
“reserved words” in the manner of other program-
ming languages, the original APL alphabet has re-
mained the standard for APL systems.

The set of graphics in ASCII is much richer than the
meager set available when the APL alphabet was
designed, and it can be used in spelling schemes for
APL primitives that still avoid the adoption of re-
served words. Such a scheme using variable-length
words was presented in Reference 6, and received
limited use for communicating APL programs using
standard printers, but was never adopted in any
commercial implementation. A much simpler
scheme using words of one or two letters was
adopted in J, in a manner that largely retains, and
sometimes enhances, the international mnemonic
character of APL words.

In a natural language such as English, the process
of word formation is clearly distinguished from pars-
ing. In particular, word formation is static, the rhe-
matic rules applying to an entire text quite indepen-
dently of the meanings or grammatical classes of the
words produced. Parsing, on the other hand, is dy-
namic, and proceeds according to the grammatical
classes of phrases as they evolve. This is reflected in
the use of such terms as noun phrase and verb phrase.

In programming languages this distinction is com-
monly blurred by combining word formation and
parsing in a single process characterized as “syn-
tax.” In J, the word formation and parsing are dis-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

tinct. In its implementations, each process is table-
driven; the parsing table being presented explicitly
in the dictionary of J, and the rhematic rules being
discussed only informally.

It is interesting to note that the words of early APL
included “composite characters” represented by

I largely confine my remarks to
those dialects that have

influenced my own thinking.

two elements of the underlying alphabet; these
were mechanically superposed, whereas in J they
appear side-by-side.

Functions

Functions were first adopted in the forms found in
elementary mathematics, having one argument (as
in Ib I and -b) or two (as in a+b and a -b). In
particular, each had an explicit result, so that func-
tions could be articulated to form sentences, as in
la-bI t (a+b).

In mathematics, the symbol - is used to denote
both the dyadic function subtraction (as in a-b) and
the monadic function negation (as in -b). This am-
bivalent use of symbols was exploited systematically
(as in t for both division and reciprocal, and * for
both power and exponential) to provide mne-
monic links between related functions, and to econ-
omize on symbols.

The same motivations led us to adopt E. E. Mc-
Donnell’s proposal to treat the monadic trigono-
metric (or circular) functions and related hyperbolic
and Pythagorean functions as a single family of dy-
adic functions, denoted by a circle. Thus sine y and
cosine y are denoted by l o y and 20y7 the numeric
left argument being chosen so that its parity (even
or odd) agrees with the parity of the function de-
noted, and so that a negative integer denotes the
function inverse to that denoted by the correspond-
ing positive integer. This scheme was a matter of
following (with rather less justification) the impor-

tant mathematical notion of treating the monadic
functions square, cube, square root, etc. as special
cases of the single dyadic power function.

When the language was formalized and linearized
in APL\36O,l4 anomalies such as xY for power, ,xy
for product, I y I for magnitude, and Mij for index-

Box and enclose have made it
convenient to pass any number of
parameters as explicit arguments.

ing were replaced by x *y and xxy and I y and
M C i ; j 1. At the same time, function definition was
formalized, using headers of the form Z+X F Y and
Z+F Y to indicate the definition of a dyadic or a
monadic function. This form of header permitted
the definition of functions having no explicit result
(as in X F Y), and so-called niladic functions (as in
Z+F and F) having no explicit arguments. These
forms were adopted for their supposed conve-
nience, but this adoption introduced functions
whose articulation in sentences was limited.

In most later dialects such niladic and resultless func-
tions were also adopted as primitives. In J they have
been debarred completely, to avoid the problem of
articulation, to avoid complications in the application
of adverbs and conjunctions to them, and to avoid the
following problem with the copula: if g is a niladic
function that yields the noun n, and if f +g, then is f
a niladic function equivalent to g, or is it the noun n?

In conventional mathematical notation, an expres-
sion such asf(x,y,z) can be interpreted either as a
function of three arguments, or as a function of one
argument, that is, of the vector formed by the cat-
enation of x, y, and z. Therefore the limitation of
APL functions to at most two formal arguments does
not limit the number of scalar arguments to which
a function may apply.

Difficulties with nonscalar arguments first arose in
indexing, and the forms such as ACI ; J ; K1 and
ACI ; ; K 1 that were adopted to deal with it intro-
duced a “nonlocality” into the language: a phrase

586 IVERSON

within brackets had to be treated as a whole rather
than as the application of a sequence of functions
whose results could each be assigned a name or
otherwise treated as a normal result. Moreover, an
index expression for an array A could not be written
without knowing the rank of A.

The introduction of a function to produce an
atomic representation of a noun (known as enclose in
NARS15,16 and APL~, as box in SAX'^ and J, and dis-
cussed in the section on atomic representations)
makes it possible to box arguments of any rank and
assemble them into a single argument for any func-
tion. In particular, it makes possible the use of such
a boxed array as the argument to an indexing func-
tion, adopted in SAX and J and calledfrom.

As may be seen,” the function rotate was initially
defined so that the right argument specified the
amount of rotation. The roles of the arguments
were later reversed to accord with a general mne-
monic scheme in which a left argument a together
with a dyadic function f (denoted in J by a &f)
would produce a “meaningful” monadic function.
Exceptions were, of course, made for established
functions such as divided by. The scheme retains
some mnemonic value, although the commute ad-
verb (-) provided in J and in SAX makes either
order convenient to use. For example, 5 %- 3
would be read as 5 into 3.

In APL\360 it was impossible to define a new function
within a program. This was rectified in APLSV’~ by
defining a canonical representation of a function (a
matrix M whose first row was a header, and whose
succeeding rows were the sentences of the defini-
tion); a Jix function OFX such that OFX M yielded
the name of the function as an explicit result, and
established the function as a side effect; and an in-
verse function OCR, which when applied to the name
of a function produced its canonical representation as
an explicit result. The ability to define ambivalent
functions was added in a University of Massachusetts
system,” and was soon widely adopted.

The function OFX established a function only as a
side effect, but the scheme has been adapted to J by
providing a conjunction (:) such that m : d pro-
duces an unnamed function that may be applied di-
rectly, as in x m : d y, or may be assigned a name,
as in f = . m : d . See the section on name assignment.

Following an idea that Larry Breed picked up at a
lecture by the late Professor A. Perlis of Yale, we

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

adopted a scheme of dynamic localization in which
names localized in a function definition were
known to further functions invoked within it.

This decision made it possible to pass any number
of parameters to subordinate functions, and there-
fore circumvented the limitation of at most two
explicit arguments, but it did lead to a sometimes
confusing profusion of names localized at various
levels. The introduction of atomic representation
(box and enclose) has made it convenient to pass
any number of parameters as explicit arguments; in
J this has been exploited to allow a return to a
simpler localization scheme in which any name is
either strictly local or strictly global.

Arrays

Perhaps because of the influence of a course in
tensor analysis taken as an undergraduate, I
adopted the notion that every function argument is
an array, and that arrays may be classified by their
ranks; a scalar is rank 0, a vector rank I , a matrix
rank 2, and so on.

The application of arithmetic (or scalar) function
such as + and x also followed tensor analysis; in par-
ticular the scalar extension, which allowed two argu-
ments to differ in rank if one were a scalar. In defining
other functions (such as reshape and rotate), we at-
tempted to make the behavior on higher-rank arrays
as systematic as possible, but failed to find a satisijing
uniform scheme. Such a uniform scheme (based on
the notion of cells) is defined in “A Dictionary of
APL,”~ and adopted in SAX and in J.

A rank-k cell of A is a subarray of A along k con-
tiguous final axes. For example, if

A
abcd
efgh
i j k l

m o p
qrs t
UVWX

then the list abcd is a l-cell of A , the table from m
to x is a 2-cell of A , the atom g is a O-cell of A , and
A itself is a 3-cell of A .

Each primitive function has intrinsic ranks, and ap-
plies to arrays as a collection of cells of the appro-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

priate rank. For example, matrix inverse has rank 2,
and applies to an array of shape 5 4 3 as a col-
lection of five 4 by 3 matrices to produce a result
of shape 5 3 4, a collection of five 3 by 4 inverses
of the 4 by 3 cells.

Moreover, the rank conjunction (denoted in J by ‘I)

produces a function of specified rank. For example,
the intrinsic rank of ravel is unbounded and (using
the shape 2 3 4 array A shown above):

, A
a b c d e f g h i j k l m n o p q r s t u v w x

a b c i e f g h i j k l
mnopqrs tuvwx

Further discussion of cells and rank may be found
in the section on tacit programming, and in Ref-
erence 21.

The central idea behind the use of cells and a rank
operator was suggested to me at the 1982 APL con-
ference in Heidelberg by Arthur Whitney. In par-
ticular, Arthur showed that a reduction along any
particular axis (+/ [I I A) could be neatly handled
by a rank operator, as in +/‘I I A. By further adopt-
ing the idea that every primitive possessed intrinsic
ranks (monadic, left, and right) I was able, in Ref-
erence 6, to greatly simplify the definition of prim-
itives: each function need be defined only for cells
having the intrinsic ranks, and the extension to
higher-rank arguments is uniform for all functions.

Adverbs and conjunctions

Even after tasting the fruits of generalizing the 2
notation of mathematics to the form f / that per-
mitted the use of functions other than addition, it
took some time before I recognized the advantages
of a corresponding generalization of the inner or
matrix product to allow the use of functions other
than addition and multiplication. Moreover, I
thought primarily of the derived functions provided
by these generalizations, and neither examined the
nature of the slash itself nor recognized that it be-
haved like a Heaviside operator.

However, when we came to linearize the notation
in the implementation of APL\360, the linearization
of the inner product (which had been written as one
function on top of the other) forced the adoption of
a symbol for the conjunction (as in M + . X N). This

“ 2 A

focused attention on the adverbs and conjunctions
themselves, leading to a recognition of their role
and to the adoption of the term operators to refer
to them.

In reviewing the syntax of operators we were dis-
turbed to realize that the slash used for reduction
applied to the (function) argument to its left, and
even considered the possibility of reversing the or-
der to agree with the behavior of monadic func-
tions. However, Adin Falkoff soon espoused the
advantages of the established scheme, pointing out
that the adoption of a “long left scope” for oper-
ators would allow the writing of phrases such as
+ . x / to denote the function “inner product re-
duction,” which might be applied to a rank-3 array.

We also realized that the use of the slash to denote
compression (as in 1 0 1 0 1/ abcde ’ to yield

ace) seemed to imply that the slash was ambig-
uous, sometimes denoting an operator, and some-
times a function. This view was adopted in NARS
and in the precursor to APL2. Alternatively, adverbs
and conjunctions could be assumed to apply to both
nouns and verbs, giving different classes of derived
verbs in the different cases. In this view, compres-
sion was not a dyadic function denoted by the slash,
but was rather the derived function resulting from
the application of the adverb / to a noun.

The application of adverbs and conjunctions to
nouns was adopted in SHARP, 22 S H A R P ~ P , SAX, and
J, but was resisted in other dialects, in spite of the
fact that the phrase @ C 3 1 for applying reversal on
axis 3 furnished an example of such usage in early
APL, and in spite of the implied use of nouns in
Heaviside’s notation D2 f for the second derivative
o f f .

In calculus, the expression f+g is used to denote the
sum of functionsf and g , that is, (f +g) x is defined
as (f x)+(g x). The utility of such constructs as f+g
and fxg was clear, and I realized that they could be
handled by operators corresponding to the func-
tions + and X. What appeared to be needed was an
adverb that would apply to a function to produce a
conjunction. However, I was reluctant to compli-
cate the grammar by introducing results other than
functions from adverbs, and I began by suggesting,
in Reference 23, a limited solution using composite
symbols such as + overstruck by an overbar.

Somewhat later I discussed this matter with Arthur
Whitney, and he quickly suggested an operator

588 IVERSON

that we modified slightly and presented as the
til operator in Reference 24, using the definition
x (f t i l g) y is (g y) f x.Theforkdiscussed
in the section on grammar and order of execution
now provides a more convenient solution, using ex-
pressions such as f +g and f x g .

In mathematics, the notions of inner product and
outer product are used in rather limited areas. In
APL systems, operators provide generalizations of

The need for parentheses will be
reduced by executing compound

statements from right to left.

them that not only broaden their uses, but make
them more readily comprehensible to nonmathe-
maticians. Much the same is true of “duals” in
mathematics, but because the generalization of APL
is not so widely known or used, it merits some at-
tention here.

It is useful to view almost any task as performed in
three phases: preparation, the main task, and un-
doing the preparation. In programming terms this
would appear as i n v e r s e p m a i n p argument .
In other words, the main function is performed un-
der the preparation p.

In J the under conjunction is denoted by & . and is
defined as follows:

m & . p y is i n v e r s e p m p y
x m&.p y is i n v e r s e p (p x) m (p y)

For example, since . denotes the natural loga-
rithm in J, the expression a +& . . b yields the
product of a and b. The under conjunction is com-
monly used with the function open (whose inverse
is box) discussed in the section on atomic repre-
sentations.

Name assignment

In mathematics, the symbol = is used to denote
both a relation and the copula in name assignment

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

(as in “let x=3”). In APL, the arrow was first used
for the copula in Reference 18, and has been used
in all dialects until the adoption of = . and = : in J.’l

The use of the copula was initially restricted to
nouns, and names were assigned to user-defined
functions by a different mechanism in which the
name of the function was incorporated in the rep-
resentation to which the function UFX was applied,
as discussed in the previous section on functions.
The use of the copula for this purpose was proposed
in Reference 23, implemented in SHARP/HP, and
later adopted in Dyalog= and in J. These imple-
mentations provided for adverbs and conjunctions
in the same manner. However, this use of the cop-
ula has not been adopted in other implementations,
perhaps because the representations used for func-
tions make its adoption difficult.

Indirect assignment was first proposed in Reference
26, and is implemented in J and defined in Refer-
ence 21. Two copulas are used in J, one for local
assignment (= .), and one for global (= :) assign-
ment.

Grammar and order of execution

Grammatical rules determine the order of execu-
tion of a sentence, that is, the order in which the
phrases are interpreted. In Reference 3, the use of
parentheses was adopted as in mathematics, to-
gether with the rule (Reference 3, page 8) that “The
need for parentheses will be reduced by assuming
that compound statements are, except for interven-
ing parentheses, executed from right to left.”

In particular, this rule implies that there is no hi-
erarchy among functions (such as the rules in math-
ematics that power is executed before multiplica-
tion before addition). Long familiarity with this
hierarchy occasioned a few lapses in my book,3 but
the new rule was strictly adopted in the APL\360
implementation. APL\360 also introduced a hierar-
chy, giving operators precedence over functions.

The result was a simple grammar, complicated only
by the bracket-semicolon notation used for index-
ing. This was later complicated by the adoption, in
most systems, of the statement separator (denoted
by a diamond). The utility of the statement sepa-
rator was later vitiated in some systems (including
SHARP, SAX, and J) by the adoption of dyadic func-
tions lev and dex, which yielded their left and right
arguments, respectively.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

The grammatical rules left certain phrases (such as
a sequence of nouns) invalid. In NARS and in APL2
meanings were assigned to a sequence of nouns: if
a and b are the nouns “hold” and “on,” then the
phrase a b yields the two-element list of enclosed
vectors. The adoption of such “strands” led to a
modification of the grammatical rules based upon
left and right “binding strengths” assigned to var-
ious parts of speech, as discussed in References 27
and 28. In particular these rules required that the
phrase 2 3 5[1] bereplacedby (2 3 5) [11 .

Other changes in grammar were adopted in J: the
bracket-semicolon indexing was replaced by a nor-
mal dyadic verb from; and any isolated sequence of
verbs was assigned a meaning based upon the hook
and fork, first proposed in Reference 29 and briefly
explained next. The result is a strict grammar in
which each phrase for execution is chosen from the
first four elements of the execution stack, and eli-
gibility for execution is determined by comparison
with a 14 by 4 parsing table as shown in Reference
21.

Because the hook and fork (as well as several other
previously invalid phrases) play a significant role in
the tacit programming discussed in a later section,
they are further elaborated here. Briefly, if

mean=.+/%#

then

mean x

is equivalent to

(+ / x) % (# x)

The dyadic case is defined analogously. If

d i f f s q = . +*-

then

a d i f f s q b

is

(a+b)*(a-b)

The hook and the fork may be expressed graphi-
cally as follows:

FORK H O O K
9 g 9 9

I \ I \ I \ I \
f h f h y h x h

Y Y X Y X Y Y Y

Two further points should be noted:

1. A longer train of verbs will resolve into a se-
quence of forks and hooks. For example,
t a u t = . <: =<+.= is equivalent to two forks,
as in t a u t = . <: = (< +. =) , and expresses
the tautology that less than or equal (< :) equals
(= I less than (< I or (+. I equal (= I .

2. In the expression (+I % # I 2 3 4 5 to produce
the mean of the list 2 3 4 5, the parentheses
are clearly essential, since +/ % # 2 3 4 5
would yield 0.25, the sum of the reciprocal of the
number of items. However, it must be empha-
sized that the parentheses perform their normal
function of grouping, and are not needed to ex-
plicitly produce forks, as may be seen from the
earlier examples.

I I I \ / \ I I

Atomic representations

It is commonplace that complex constructs may be
conveniently represented by arrays of simpler con-
structs: a word by a list of letters, a sentence by a list
of words, a complex number by a list of two real
numbers, and the parameter of a rotation function
by a table of numbers, and so on.

However, it is much more convenient to use atomic
representations, which have rank 0 and are there-
fore convenient to combine into, and select from,
arrays. For example, the representation 3 j 4 used
for a complex number in APL systems is an atom or
scalar.

In Reference 30, Trenchard More proposed a rep-
resentation scheme in which an enclose function
applied to an array produced a scalar representa-
tion of the argument. This notion was adopted or
adapted in a number of APL systems, beginning with
NARS, and soon followed by A P L ~ .

A somewhat simpler scheme was adopted in SHARP
in 1982, was presented in “A Dictionary of APL”~ in
1987, and later adopted in SAX and J: a function
called box (and denoted by <) applied to any noun
produces an atomic representation of the noun that

590 IVERSON

can be “decoded” by the inverse function open (de-
noted by >) to yield the original argument.

A desire for similar convenience in handling col-
lections of functions led Bernecky and others to
propose (in References 31 and 32) the notion of
function arrays. These have been implemented as
gerunds in J by adopting atomic representations for
functions.

Implementations

Because of a healthy emphasis on standardization,
many distinct implementations differed slightly, if
at all, in the language features implemented. For
example, the IBM publication APLSV User’s Manu-
all9 written originally for APLSV applied equally to
vs APL and the IBM 5100 computer.

Despite the present emphasis on the evolution of
the language itself, certain implementations merit
mention:

1. The IBM 5100 mentioned above is noteworthy as
one of the early desktop computers, and as an
implementation based on an emulator of the IBM
System/360* and a read-only memory copy of
APLSV.

2. The I-APL implementation provided the first
shareware version of APL, aimed at making APL
widely available in schools.

Implementations representing the two main lines of
development mentioned in the introduction are
now discussed briefly. The first is the nested array
system NARS conceived and implemented by Bob
Smith of STSC and incorporating ideas due to Tren-
chard More3’ and J. A. Brown (Doctoral thesis,
University of Syracuse). In addition to the enclose
and related facilities that provide the nested arrays
themselves, this implementation greatly expanded
the applicability of operators. In the A P L ~ imple-
mentation, Brown has followed this same line of
development of nested arrays.

Somewhat after the advent of NARS, the SHARP APL
system was extended to provide boxed elements in
arrays, as reported in Reference 22. New operators
(such as the rank) were also added, but their utility
was severely limited by the fact that operators were
not (as in NARS) extended to apply to user-defined
functions and derived functions. In the succeeding
SAX and J implementations such constraints have
been removed.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Tacit programming

A tacit definition is one in which no explicit mention
is made of the arguments of the function being de-
fined. For example:

sum=. +I
mean=. sum % #
1 i stmean=. mean It 1

[a=. i. 5
0 1 2 3 4

sum a
10

mean a
2

[table=. i . 3 5
0 1 2 3 4
5 6 7 8 9

10 11 1 2 13 14

mean table
5 6 7 8 9

1 i stmean tab1 e
2 7 1 2

By contrast, definition in most APL dialects makes
explicit mention of the argument(s):

OFX 2 7p'Z+SUM X Z++/X'
SUM

Tacit programming offers several advantages, in-
cluding the following:

1. It is concise.
2. It allows significant formal manipulation of def-

3. It greatly simplifies the introduction of program-
initions.

ming into any topic.

Since the phrase +/ produces a function, the po-
tential for tacit programming existed in the earliest
APL; but the restrictions on the copula prevented
assignment of a name to the definition, and there-
fore prohibited tacit programming.

In any case, the paucity of operators and the re-
strictions that permitted their application to (a sub-
class of) primitive functions only, made serious use

of tacit programming impossible. In later dialects
these restrictions have been removed, and the num-
ber of operators has been increased.

I now provide a few examples of tacit programming
in J, first listing the main facilities to be exploited.
The reader may wish to compare such facilities in
J with similar facilities defined by BackusI3 and by
Curry.33 For example, Curry's combinators W (el-
ementary duplicator) and C (commutator) are both
represented by the adverb - in J, according to the
following examples:

I :-b is bl : b (that is, a sort of b)
a %-b is b%a (that is, a into b)

The facilities to be used in the examples include the
hook, fork, and - already defined, as well as the
following which, although defined in terms of spe-
cific verbs, apply generally. It may be necessary to
consult Reference 21 for the meanings of certain
verbs, such as * : (square), % : (square root), and

. (log). Five examples follow.

1. 2 & ^ y is 2^y (Called cunying)
2. A & 2 y is y A 2 (Called cunying)
3. -&^ .y is - " .y Composition
4. x -&". y is (" . x) - (" . y) Composition
5 . x -@" y is - x"y Atop

Some examples from statistics are shown next.

sum=. +I
mean=. sum % #
norm=. - mean
std=.%: & sum & * : & norm

Entry of a function alone causes a display of its
definition, a display that can be captured and ma-
nipulated as a straightforward boxed array. Thus:

s td
+""""""""-+-+""+
+" " " " - -+ -+- -+ & norm

1 1 % : I&Isumli I * : + - - + - + - - - + &

+"+-+"-+
+"""""+-+"+

+""""""""-+.+""+

In function tables, the f outer product of ApL is in
J the dyadic case of f I . For example:

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

[a = . b=. i. 5
0 1 2 3 4

a +/ b
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

a * / b
0 0 0 0 0
0 1 2 3 4

0 3 6 9 1 2
GI 4 8 l ? 1 6

0 2 4 6 a

t a b l e = . / (C ' b y ' l ' o v e r ') \
2 3 5 * t a b l e 1 2 3 4 5

1 1 1 2 3 4 51
+-+""""""-+

+-+""""""-+

a < t a b l e b

I 10 1 2 341
+-+""""-+

+-+""""-+

a ! / b
1 1 1 1 1
0 1 2 3 4 +-+ " " " " _ +

0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

Cited references and note
Such a table can be made easier to interpret by

following tacit definitions:
displaying it with appended arguments, using the 1. A. D. Falkoff and K. E. Iverson, "The Design of APL," IBM

Journal of Research and Development 17, No. 4, 324-334
(1973).

2. A. D. Falkoff and K. E. Iverson, "The Evolution of APL,"
ACM SIGPLAN Notices 13. No. 8, 47-57 (1978).

W) , p. 10.
+. >et: LIK IY I I u c w a edition of Heaviside's Electromagnetic +-+""""-+

Theory and the article by P. Nahin in the June 1990 isiue of I 10 1 2 3 4 1
+-+""""-+ 5. R. K. W. Hui, K. E. Iverson, E. E. McDonnell, and A. T.

Whitney, "APLI?," APL90 Conference Proceedings, APL
Quote Quad 20, No. 4, ACM, New York (1990).

6. K. E. Iverson, "A Dictionary of APL," APL87 Conference
Proceedings, APL Quote Quad 18, No. 1, 202-211, ACM, I
New York (1987).

"

7. R. Hodnkinson. "APL Procedures."APL86 Conference Pro- 7 , u " " u
+-+""""-+ ceedingsy APL Quote Quad 16, No. 4, ACM,.New York

(1986). ~

8. R. K. W. Hui, K. E. Iverson, and E. E. McDonnell, "Tacit
Adverbs mav be defined tacitlv in a number of wavs. Programming," APL91 Conference Proceedings, APL Quote , ~ ~ . . ~ ~ ~~~~~.~

.I ~ ~~~ ~~~-

as follows:
, - 7

Quad 21, No. 4, ACM, New York (1991).

sociates, Toronto, Canada (1979).
9. P. C. Berry, Sharp APL Reference Manual, I. P. Sharp As-

sum \ a 10. K. E. Iverson, Tangible Math, Iverson Software Inc., Tor-
0 1 3 6 1 0 onto, Canada (1990).

11. A. Camacho, "I-APL Status Report," Vector: The Journal of
the British APL Association 4, No. 3, 8-9 (1988).

12. APL2 Programming: System Services Reference, SH20-9218,
IBM Corporation (1988); available through IBM branch of-

13. J. Backus. "Can Programming Be Liberated from the Von

s c a n = . I \
+ s c a n a

0 1 3 6 1 0 fices.

Neumann Style? A function2 Style and
grams," Communications of the ACM 21, No- 8, 6
(1978).

- s c a n a
0 -1 1 -2 2

Its Alnebra of Pro-
113-641,

592 IVERSON IBM SYSTEMS JOURNAL, VOC 30, NO 4, 1991

14. A. D. Falkoff and K. E. Iverson, APLV60 User’s Manual,
IBM Corporation (1966).

15. R. Smith, “Nested Arrays, Operators, and Functions,”
APL81 Conference Proceedings, APL Quote Quad 12, NO. 1,
ACM, New York (1981).

16. C. M. Cheney, Nested Arrays Reference Manual, STSC Inc.,
Rockville, MD (1981).

17. SAX Reference, 0982 8809 El, I. P. Sharp Associates, Tor-
onto, Canada (1986).

18. K. E. Iverson, “The Description of Finite Sequential Proc-
esses,” Proceedings of a Conference on Information Theory,
C. C h e w and W. Jackson, Editors, Imperial College, Lon-

Iverson was employed by I. P. Sharp Associates until 1987. He
has received many honors, in addition to becoming an IBM
Fellow, including the AFIPS Harry Goode Award in 1975, the
ACM Turing Award in 1979, and the IEEE Computer Pioneer
Award in 1982. He is a member of the National Academy of
Engineering in the United States. Currently he is working on J
and the use of J in teaching.

Reprint Order No. (3321-5455.

don (August 1960).
19. APLSV User’s Manual, GC26-3847-3, IBM Comoration

(1973).
20. C. Weidmann, APLUM Reference Manual, University of

Massachusetts (1975).
21. K. E. Iverson, The ISI Dictionary of J, Iverson Software Inc.,

Toronto, Canada (1991).
22. R. Bernecb and K. E. Iverson, “Operators and Enclosed

Arrays,” APL User’s Meeting, I. P. Sharp Associates, Tor-
onto, Canada (1980).

23. K. E. Iverson, Operators and Functions, Research Report
7091, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (1978).

24. A. T. Whitney and K. E. Iverson, “Practical Uses of a Model
of APL,” APL82 Conference Proceedings, APL Quote Quad
13, No. 1, ACM, New York (1982).

25. Dyalog APL Reference Manual, Dyadic Systems Ltd., Alton,
Hants, England (1982).

26. K. E. Iverson, “APL Syntax and Semantics,” APL83 Con-
ference Proceedings, APL Quote Quad 13, No. 3, 223-231,
ACM, New York (1983).

27. J. P. Benkard, “Valence and Precedence in APL Exten-
sions,” in APL83 Conference Proceedings, APL Quote Quad,
13, No. 3, ACM, New York (1983).

28. J. D. Bunda and J. A. Gerth, “APL Two by Two-Syntax
Analysis by Pairwise Reduction,” APL84 Conference Pro-
ceedings, APL Quote Quad 14, No. 4, ACM, New York
(1984).

29. K. E. Iverson and E. E. McDonnell, “Phrasal Forms,”
APL89 Conference Proceedings, APL Quote Quad 19, NO. 4,
ACM, New York (1989).

30. T. More, Jr., “Axioms and Theorems for a Theory of Ar-
rays,” ZBM Journal of Research and Development 17, NO. 2,

31. R. Bernecky, “Function Arrays,” APL84 Conference Pro-
ceedings, APL Quote Quad 14, No. 4, ACM, New York
(1984).

32. J. A. Brown, “Function Assignment and Arrays of Func-
tions,” APL84 Conference Proceedings, APL Quote Quad 14,
No. 4, ACM, New York (1984).

33. H. B. Curry and R. Feys, Combinatory Logic, Vol. 1, North
Holland Publishers, Amsterdam, Netherlands (1968).

135-157 (1973).

Accepted for publication June 25, 1991.

Kenneth E. lverson 70 Erskine Avenue, No. 405, Toronto, On-
tario M4P lY2, Canada. Dr. Iverson received a B.A. in math-
ematics and physics from Queen’s University, Kingston, Canada
in 1950, an M.A. in mathematics in 1951, and a Ph.D. in applied
mathematics from Harvard University. He was an assistant pro-
fessor at Harvard from 1955 to 1960. From 1960 to 1980 he was
employed by IBM Corporation’s Research Division where he
became an IBM Fellow in 1970. After leaving IBM in 1980, Dr.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

