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Abstract. These are the notes from the colloquium talk given by Jordan Ellenberg
on December 9, 2005 a the University of Wisconsin.

(joint work with Akshay Venkatesh) A famous theorem of Langrange asserts that
every positive integer is the sum of four squares. One can ask many more general
questions about representations of integers by quadratic forms, or quadratic forms
by quadratic forms. We will describe a theorem ”of Lagrange type” whose proof
relies on ideas from ergodic theory. No prior knowledge of quadratic forms or ergodic
theory will be assumed.

1. Introduction

A classical result is concerned with the following question about the sum of squares:
Which integers are the sum of two squares? Lagrange proved every integer is the sum
of four squares and it is completely understood which are the sum of two squares.
Question. So the natural question to ask is how do we push this question forward?

(1) We can ask how many ways can a number be represented as the sum of four
squares? This question was considered by Jacobi and is classical.

(2) More generally, we define a quadratic form is a function Q : Zn → Z given
by a homogenous of degree 2 and we write rank(Q) = n. Then we can ask if
every integer is represented by Q.

For example, x2 + xy + y2 + z2 is a quadratic form of rank 3.

Definition 1.1. We say that Q represents an integer N if there exists x1, . . . , xn ∈ Z
such that Q(x1, . . . , xn) = N .

Even more generally we are led to the following problem.

2. General Problem

Given two quadratic forms Q,Q′ with ranks n and m with m < n. Can we find
linear forms L1, . . . , Ln in m variables such that Q(L1, . . . , Ln) = Q′. If so we say Q′

is represented by Q over Z.
I ask the following question:

Question. What can we say when n = m? I suspect the problem is not difficult.
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Remark. Representation of integers by Q is the case when m = 1.

It is natural to ask what is so special about Quadratic forms? Why don’t we
consider equations of the form x3 + y3 = n? People certainly have done these, but
for our purposes it is too high to do higher degree equations then degree 2, and doing
degree 1 is trivial.

In the end this reduces to finding integral points on certain algebraic varieties.

3. Local Arguments

It is easy to use local arguments to show Q does not represent Q′. For example
x2 + y2 does not represent −5 over Z or over Q or over R. In this case it is easy to
check you can’t do it over R thus you can’t do it over Z.

As another example x2 + y2 does not represent 7 over Q. It is easy to check over Z
just by plugging in enough numbers. Over Q we may rewrite this equation as a2+b2 =
7c2 for a, b, c ∈ Z. So this problem is more like representing a rank 1 quadratic form
by a rank 2 quadratic form. Reducing modulo 7 we obtain a contradiction, which
shows there are no solutions over Q to our original problem.

Here we only used that we could reduce modulo 7. This only shows that x2 + y2

does not represent over Q7 and Q7 is a local field of Q.
The moral here is that you should always check that you have solutions in local

fields, because if you don’t then you would have them in the field you are interested
in. The upshot is that if Q represents Q′ over Z (resp. Q) it represents Q′ over R
and all Zp for all p (resp. Qp).

What about the converse? The converse are called local-to-global principals.

Theorem 3.1 (Hasse-Minkowski). If Q represents Q′ over all Qp and over R then
Q represents Q′ over Q.

But our goal are not representing things over Q but over Z. So do we have the
same theorem in our case with Qp replaced by Zp. It would be great if we had this
theorem, but it does not hold in general. That is to say in general, we cannot pass
from local solutions to a global solution.

For a nice survey see “On the passage from local to global in number theory” by
B. Mazur in the Bulletin of the AMS in 1992.

Example. This local-to-global is not true over Z. We define Q1 : x2 + 55y2 and
Q2 : 11x2 + 5y2 are isomorphic over Zp for all p and R. But Q2 represents 5 over Q
and Q1 does not.

4. Fixing Local-to-Global

Instead of a single Q consider Q1, Q2, . . . , Qh the set of forms isomorphic to Q over
every Zp and R. This set is the genus of Q. It is not clear, but is true, that the genus
is finite. For us, isomorphic means a linear change of variables.
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Theorem 4.1 (Siegel-Mass Formula). If rQ(Q′) is the number of representations of
Q′ by Q. Then

rQ1 + · · ·+ rQh

has a precise asymptotic expression. (asymptotic means something about the size of
the matrix which represents Q′ which is measured by the size of the eigenvalues)

But how do we separate out one of these rQj
from another. Well if h = 1 then we

win!
Letting Q′ be “sufficiently large” we have the following results:

(1) Kloosterman (1924-thesis) if n ≥ 5 and m = 1 then every sufficiently large n
which is locally represented by Q is globally represented by Q.

(2) For n = 4 and m = 1 Kloosterman-Tarkatovski prove the same thing
(3) For n = 3 and m = 1 Duke-Schulzer-Pillat make some huge advances.

Definition 4.2. Denote the property LG(n, m) to hold if for all Q of rank n then
there exists a positive integer c(Q) ∈ Z such that if Q′ has rank m and we have the
following properties

(1) Q′ represents no integer less than c(Q)
(2) Q′ locally represented by Q

then Q′ is represented by Q over Z.

Example. L2
1 + L2

2 + 10L2
3 = x2 + 2y2 has no solutions in linear forms.

Question. For what values of n,m do we have LG(n,m)? We may as well just
consider m ≤ n − 2. This is because there exists easy examples for m = n − 1 that
show that we cannot have LG(n,m).

(1) LG(n, 1) for n ≥ 4 is due to Kloosterman
(2) LG(3, 1) by D-S-P
(3) LG(n,m) when n ≥ 2m + 3 is due to Chsia, Kitav, Knesar in 1978
(4) LG(6, 2) is due to Jöcher

Theorem 4.3 (E, Venkantesh 2005). LG(n,m) for n ≥ m + 7.

We notice that the best we could hope for is n ≥ m + 2.
The following group theory puzzle is at the heart of this result. Any improvement

in this result could lead to a stronger version of this theorem.
Question. Suppose V/K is a vector space (in our case we have K = Qp or a non-
archimedean local field). Let T1, T2, . . . be a sequence of subspaces of codimension
d so that no infinite subsequence is contained in a proper subspace of V . Given Q
a quadratic form and let O(V ) be the orthogonal group, O(Tj) ⊂ O(V ) be a group
fixing Tj element-wise. We want to show that for d ≥ 2 (but the best we have is
d ≥ 7) then O(Tj) generate O(V ).
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5. Idea of the Proof

Set Hom(Q′, Q) over the representations of Q′ by Q to be a variety X. We can act
by the orthogonal group G := SOQ. We are interested in X(Z). We think of Q as
a vector space with a quadratic form then we want a homomorphism between vector
spaces that respect the quadratic form.

To begin with Siegel-Maass says there is a isomorphic form with an x0 ∈ X̃(Z)
where X̃ = Hom(Q′, Q1) for some Q1 in the genus of Q. We show that all other
forms that have the same genus will have a point in Z.

The proof then rests on ergodic theory and a very general theorem of Raftner gives
us what we want.

Jordan believes there is probably a measure theoretic version of this theorem that
might tell you each of the forms in the genus represent the chosen Q′ an equal number
of times. This is open but it might be painful to work out, but should be within reach
of the method.
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