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Abstract

We consider spinors carrying a representation of the Clifford algebra generated by
a complex 2r-dimensional vector space V . Certain spinors, called pure, admit a re-
markable geometrical interpretation since they may be placed in correspondence with
maximal totally isotropic subspaces of dimension r. This correspondence has allowed
the orbit structure of pure spinors under the action of the Spin group to be classified.
An ‘impure’ spinor u may be put into correspondence with an isotropic subspace of
dimension ν < r. Except for low dimensions, the classification of the impure spinor
orbits is incomplete. In the first part of the thesis, we present a coarse classification of
impure spinors based on (1) the value of ν and (2) the decomposition of u into pure
components.

In later chapters we examine certain equations for spinor fields on manifolds. On
spacetime, we show that the conformal Killing equation for a null vector field is equiv-
alent to a generalisation of the twistor equation. From it we derive Sommers’ equation
for a spinor corresponding to a null shear-free geodesic. We also find equations for a
Dirac spinor equivalent to the conformal Killing and shear-free conditions for a timelike
vector field.

Finally, it is shown that a pair of shear-free Weyl spinors may be used to construct
a 2-form satisfying a generalised conformal Killing-Yano equation. Via spinors, the
conformal Killing-Yano 2-form is used to construct symmetry operators for the massless
Dirac equation and the vacuum Maxwell equation. In the case of the Dirac equation,
we are able to construct a symmetry operator from a conformal Killing-Yano tensor of
any degree in arbitrary dimensions.
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Chapter 1

Introduction

The discovery of spinors may be attributed to Cartan [Car13]. For n > 2, the group
SO(n) is not simply-connected. As a consequence, Cartan observed that the Lie algebra
of SO(n) has representations which do not lift to representations of SO(n). Rather, they
lift to representations of Spin(n), the simply-connected double covering of SO(n). Spin-
ors may be thought of as vectors which carry an irreducible representation of Spin(p, q),
that is, the Spin group of an orthogonal space with signature (p, q). In the case where
the orthogonal space has maximal Witt index, Cartan discovered a remarkable geomet-
rical interpretation of certain spinor directions, called pure [Car66]. The pure spinor
directions are in one-to-one correspondence with the maximal isotropic subspaces of
the underlying orthogonal space. In even dimensions, such spinors determine (projec-
tively) a null (n/2)-form given by the product of a basis for the corresponding maximal
isotropic subspace. Since a complex orthogonal space has maximal Witt index, the
notion of pure spinors can be extended to a real orthogonal space with any signature
by complexification.

Spinors may also be defined as vectors carrying an irreducible representation of the
Clifford algebra generated by an orthogonal space. As a vector space, this algebra is
isomorphic to the space of exterior forms. Since all Clifford algebras are either simple
or semi-simple, the regular representation on a minimal left ideal is irreducible. The
space of spinors may be identified with a minimal left ideal of the Clifford algebra.
Spinors of a non-simple Clifford algebra are usually referred to as semi-spinors. Since
the Spin group is contained in the Clifford algebra, the spinor representation of the
Clifford algebra induces a spinor representation of the Spin group. In Chapter 2 we
establish our conventions and notation for Clifford algebras, spinors and exterior forms.

For n ≤ 6, the dimension of the space of maximal isotropic subspaces is equal to
that of the space of spinor directions, so in these cases all spinors are pure. In higher
dimensions a spinor must satisfy a set of quadratic constraint equations in order to be
pure. Another characterisation is given by considering the action of the Spin group
on the projective spinor space. An orbit of the Spin group forms a submanifold in the
space of spinor directions, whose structure is determined by the isotropy group of a
representative spinor. Pure spinors of a given parity form a single orbit, characterised
by having the least dimension amongst the orbits of projective spinors. Thus the co-
dimension of an orbit provides a ‘measure of purity’ for spinors. In general, the problem
of classifying spinor orbits is difficult, and little is known for n > 14 [Igu70, Pop80]. In

2



1. Introduction 3

Chapter 3 we examine other measures of the purity of a spinor. Using our technique,
we are able to determine the isotropy groups of certain impure spinors. This in turn
leads to a reduction in holonomy of a manifold admitting a parallel impure spinor.

Our motivation for studying spinors in higher dimensions comes from recent trends
in mathematical physics. Spinors first came to the attention of physicists with Dirac’s
quantum theory of the electron [Dir28]. For the most part, the study of spinors has
been restricted to those occurring in spacetime, where they have proven particularly
useful in general relativity [PR86a]. Since all spinors are pure in this dimension, there
has been no need to introduce pure spinors as a separate concept. They are implicit in
Penrose’s notion of ‘flag planes’, which correspond to the maximal isotropic spaces of a
complex 4-dimensional orthogonal space. As the underlying real space has Lorentzian
signature, pure spinors also exhibit a real structure: they determine a real null direction,
or ‘flagpole’, in Penrose’s terminology. This correspondence means that pure spinors
are useful for studying the properties of null congruences. It is well-known that a
vector field tangent to a congruence of null shear-free geodesics (NSFG) corresponds to
a spinor field satisfying Sommers’ equation [Som76]. This equation is a generalisation
of the twistor equation involving an additional vector field. In Chapter 4 we derive
Sommers’ equation and interpret the additional terms as gauge terms of the covariant
derivative. By replacing the standard covariant derivative with a GL(1,C)-gauged
covariant derivative, we obtain an equation of the same form as the twistor equation.
We refer to spinors satisfying this equation as being shear-free. As a special case,
we show that a null conformal Killing vector corresponds to a U(1)-gauged twistor
equation. Since a non-null vector can be written as a sum of two null vectors, a non-
null vector corresponds to a pair of spinors, which may be thought of as a single Dirac
spinor. We examine the condition that the vector field corresponding to a Dirac spinor
is shear-free or conformal Killing. As in the null case, this may be written as an equation
for a Dirac spinor of the same form as the twistor equation.

Currently, spinors play a prominent role in theories requiring higher dimensions.
For this reason it is likely that pure spinors will become more relevant to physics, a
view which has been advocated most notably by Budinich and Trautman ([BT86, BT88]
and references therein). A significant result utilising pure spinors is due to Hughston
and Mason, who discovered a generalisation of Robinson’s theorem to all dimensions
[HM88]. In four dimensions, Robinson’s theorem can be stated as the following: a null
self-dual 2-form is proportional to a solution of Maxwell’s equations if and only if it
admits a real null eigenvector tangent to a NSFG congruence [Rob61]. More generally,
a spin-(s/2) field is a solution of the massless field equation iff its s-fold principal spinor
is shear-free. In higher (even) dimensions, it is natural to consider pure spinors, since
these can be correlated with a distribution of null (n/2)-planes. Hughston and Mason
have generalised Robinson’s theorem to all even dimensions, provided that the s-fold
principal spinor is pure. The shear-free condition is replaced by what they refer to as
the Frobenius-Cartan integrability condition. This is the equation a pure spinor must
satisfy if the corresponding null distribution is to be integrable. In four dimensions the
Frobenius-Cartan condition is equivalent to Sommers’ equation. As a special case, it
is shown that a null self-dual (n/2)-form is exact iff its 2-fold principal spinor satisfies
the integrability condition.

An alternative way of stating Robinson’s theorem in four dimensions comes from a
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generalisation of the conformal Killing-Yano equation. Killing-Yano tensors were first
introduced as a generalisation of Killing’s equation to totally antisymmetric tensors
[Yan52]. The conformal extension of the Killing-Yano (CKY) equation was found by
Tachibana [Tac69]. The CKY equation can be expressed very compactly using exterior
calculus [BCK97]. In the same paper, it is shown that by replacing the ordinary
covariant derivative with a GL(1,C)-gauged covariant derivative, the CKY equation
for a self-dual 2-form is equivalent to the condition that the eigenvectors of the 2-form
be NSFG. For this reason, we refer to forms satisfying the gauged CKY equation as
‘shear-free’. The shear-free 2-form equation was first studied by Dietz and Rüdiger
[DR80], although they did not interpret the additional terms as arising from a gauged
covariant derivative. A non-null self-dual 2-form admits two real eigenvectors, while a
null 2-form admits only one. Thus by Robinson’s theorem a null self-dual gauged CKY
2-form is proportional to a solution of Maxwell’s equation. In Chapter 5 we review the
properties of the gauged CKY equation and its relationship to shear-free spinors. We
also calculate integrability conditions for the gauged CKY equation and the shear-free
spinor equation, which will be used extensively in Chapter 6.

In Chapter 6 we consider an application of shear-free spinors to solving the vacuum
Maxwell and Dirac equations. In conformally flat spacetime, Penrose has shown that a
solution of the massless field equation may be constructed by ‘raising’ a Debye potential
with a twistor [Pen75, PR86b]. Conversely, a Debye potential may be generated by
‘lowering’ a solution of the massless field equation with a twistor. More generally,
a massless field can be used to generate another massless field of a different spin by
repeated raising and lowering. In algebraically special spacetime, we show that solutions
of the Dirac and Maxwell equations can be obtained from a Debye potential by raising
with a shear-free spinor if the spinor is aligned with a repeated principal null direction.
Under the same conditions, a Debye potential can be obtained from a Maxwell or Dirac
field by lowering with a shear-free spinor. From this we obtain symmetry operators for
the Maxwell and Dirac equations. Using the correspondence between shear-free spinors
and CKY tensors, these operators may be written in terms of CKY tensors only. We
then show how a CKY p-form may be used to construct a symmetry operator for the
Dirac equation on a manifold of arbitrary dimension and signature [BC97].



Chapter 2

Clifford Algebras and Spinors

In this chapter we provide our conventions and notation for exterior forms, Clifford
algebras, spinors, and the related differentiable structures on manifolds. For ease of
reference, we have attempted to include here all of the standard results that will be
used in this thesis. We make no attempt to prove them, except as examples in cases
where our notation differs substantially from the norm. For the most part, these results
can be found in Benn and Tucker [BT87], whose conventions we follow. The reader
familiar with this notation may comfortably move on to later chapters, returning to
check conventions as necessary.

2.1 The exterior algebra

Let V be an n-dimensional vector space over a field F = R or C. The dual space V ∗

is the n-dimensional space of linear functions on V . Given a basis {ea} for V where
a ∈ {1, 2, . . . , n}, the dual basis {Xa} for V ∗ is defined in terms of the Kronecker delta
symbol by

Xa(eb) = δba . (2.1.1)

Equivalently, we may regard elements of V as linear functions on V ∗ by defining

x(X) ≡ X(x) ∀ x ∈ V, X ∈ V ∗ . (2.1.2)

We normally take this view, since in this chapter we will take V to be the space of
covectors. With this notation, a tensor N of type (p, q) is a multilinear mapping

N : V ∗ × V ∗ × . . .× V ∗︸ ︷︷ ︸
p

×V × V × . . .× V︸ ︷︷ ︸
q

−→ F .

The space of such tensors is denoted Tpq(V ). When q is zero, we say that N has degree
p, and the index q will be omitted.

The space of totally antisymmetric tensors of degree p is denoted by Λp(V ), and
its elements are referred to as p-forms. The space of p-forms has dimension (np ). It
is convenient to identify the field F with Λ0(V ), and V itself with Λ1(V ). Because of
antisymmetry, forms of degree greater than n are zero. The space of exterior forms

5



§2.1 The exterior algebra 6

Λ(V ) is formed by taking the direct sum of the p-form subspaces,

Λ(V ) =
n∑
p=0

⊕Λp(V ) (2.1.3)

hence dim Λ(V ) = 2n. This decomposition of Λ(V ) induces a set of projection operators
S p which map an arbitrary form to its p-form component. Thus a form ω may be
written as

ω =
n∑
p=0

S p(ω) . (2.1.4)

A form which lies completely in one of the p-form subspaces is called homogeneous.
The exterior algebra is an associative algebra formed from Λ(V ) and the exterior

product on p-forms. We define the exterior product using the operator Alt, which maps
a tensor of degree p to a totally antisymmetric tensor. For N ∈ Tp(V ),

AltN(X1, X2, . . . , Xp)

=
1
p !

∑
σ

ε(σ)N(Xσ(1), Xσ(2), . . . , Xσ(p)) ∀ Xi ∈ V ∗ , (2.1.5)

where the sum is over all permutations σ, and ε(σ) is +1 on even permutations, −1
otherwise. Then the exterior product of two homogeneous forms is given by

∧ : Λp(V )× Λq(V ) −→ Λp+q(V )
ω, φ 7−→ ω ∧ φ = Alt(ω ⊗ φ) . (2.1.6)

The exterior product on inhomogeneous forms is defined by extending Alt to be dis-
tributive over addition. A simple calculation shows that

ω ∧ φ = (−1)pq φ ∧ ω ω ∈ Λp(V ), φ ∈ Λq(V ) . (2.1.7)

Similary, the symmetrising operator is defined by

SymN(X1, X2, . . . , Xp)

=
1
p !

∑
σ

N(Xσ(1), Xσ(2), . . . , Xσ(p)) ∀ Xi ∈ V ∗ . (2.1.8)

The direct sum decomposition (2.1.3) gives Λ(V ) the structure of a Z-graded al-
gebra. This induces two canonical isomorphisms. The automorphism η is defined on
homogeneous forms by

ηω = (−1)pω ω ∈ Λp(V ) . (2.1.9)

As an automorphism, it is a linear mapping such that

η(ω ∧ φ) = ηω ∧ ηφ ω, φ ∈ Λ(V ) . (2.1.10)
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It is involutory, meaning that η2 = 1. Since the eigenvalues of η are ±1, the automor-
phism induces a Z2-grading on Λ(V ). Those eigenvectors with eigenvalue +1 will be
called even, and the space of even forms will be denoted Λ+(V ). Likewise, eigenvec-
tors with eigenvalue −1 will be called odd, and belong to the subspace Λ−(V ). The
isomorphism ξ is defined as the involutory anti-automorphism which fixes each 1-form,

xξ = x ∀ x ∈ V . (2.1.11)

To say that ξ is an anti-automorphism means that it is a linear mapping which reverses
the order of exterior multiplication. That is,

(ω ∧ φ)ξ = φξ ∧ ωξ ∀ φ, ω ∈ Λ(V ) . (2.1.12)

Since any exterior form can be written as a linear combination of homogeneous forms,
these two properties are sufficient to define ξ on Λ(V ). For a homogeneous form,

ωξ = (−1)p(p−1)/2ω

= (−1)bp/2cω ω ∈ Λp(V ) , (2.1.13)

where bp/2c means the integer part of p/2, that is, the ‘floor’ function.
If X is in V ∗ then the interior derivative with respect to X is denoted by X . It

is an anti-derivation with respect to η, meaning a linear mapping such that

X (ω ∧ φ) = X ω ∧ φ+ ηω ∧X φ ω, φ ∈ Λ(V ) . (2.1.14)

To complete the definition, we specify the action of X on 1-forms and scalars as

X x = x(X) ∀ x ∈ V
X λ = 0 ∀ λ ∈ F .

By considering its action on decomposable forms, it can be shown that if ω is a p-form
then X ω is a (p− 1)-form. Then X η = −ηX , from which it follows that

Y X ω = −X Y ω X, Y ∈ V ∗, ω ∈ Λ(V ) . (2.1.15)

Clearly X X ω = 0. With our conventions,

ea ∧Xa ω = pω ∀ ω ∈ Λp(V ) . (2.1.16)

As usual, a summation convention is employed on matching upper and lower indices.
A metric g on V is a symmetric, non-degenerate (0, 2) tensor. To say that g is

non-degenerate means that for x ∈ V , g(x, y) = 0 for all y ∈ V if and only if x = 0.
The combination (V, g) is called an orthogonal space. Occasionally, it will be convenient
to use the components of g with respect to some basis. We assign gab = g(ea, eb), while
the scalars gab are defined as satisfying the condition

gacgcb = δab . (2.1.17)

This provides a convention for the raising and lowering of indices. We define ea ≡ gabe
b
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and Xa ≡ gabXb. Similarly, indices of more general objects can be raised and lowered
with the components of g. Note that this convention can be applied to any indexed
objects, be they components of a tensor, sets of indexed forms, or more general tensors.
Care is needed in the ordering of mixed indices, however. We will always stagger our
indices so that lower indices have a place to which they can be raised, and vice-versa.

If g has signature (p, q) then there exists a basis such that

g(ea, eb) =


+1 for a = b = 1, 2, . . . , p
−1 for a = b = p+ 1, p+ 2, . . . , p+ q = n
0 for a 6= b .

Such a basis is called g-orthonormal. The quantity min{p, q} is the Witt index of g.
From any orthonormal basis we obtain a volume n-form z,

z = e1 ∧ e2 ∧ . . . ∧ en . (2.1.18)

Apart from a sign, the choice of z is independent of the choice of orthonormal basis.
Choosing a sign amounts to choosing an orientation for V . We will frequently use the
abbreviation eab for ea ∧ eb, and similarly for forms of higher degree, so z = e12...n.

The existence of a metric provides a canonical isomorphism between V and V ∗.
The mapping ] : V → V ∗ is defined by

y(x]) = g(x, y) ∀ y ∈ V . (2.1.19)

If x is written in components as x = xae
a, then x] is the vector obtained by raising the

components of x with the metric tensor. That is,

x] = gabxbXa

= xaXa . (2.1.20)

The inverse of ] is the mapping [ : V ∗ → V , where Y [ is defined implicitly as the 1-form
such that

y(Y ) = g(y, Y [) ∀ y ∈ V . (2.1.21)

Likewise, if Y is written in components as Y = Y aXa, then Y [ is the 1-form obtained
by lowering the components of Y with g,

Y [ = gabY
bea

= Yae
a . (2.1.22)

We then obtain a metric on V ∗ by defining

g∗(X,Y ) = g(X[, Y [) ∀ X, Y ∈ V ∗ . (2.1.23)

From now on, we will use the same symbol g for the metric on V ∗, since there is little
scope for confusion. More generally, the ‘musical isomorphisms’ allow us to change the
type of any tensor.
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The metric on V induces a linear isomorphism

∗ : Λp(V ) −→ Λn−p(V )
ω 7−→ ∗ω

called the Hodge dual. It may be defined recursively by requiring that

∗ (ω ∧ x) = x] ∗ω ∀ x ∈ V, ω ∈ Λp(V ) . (2.1.24)

This formula can be applied to a decomposable p-form to produce

∗(x1 ∧ x2 ∧ . . . ∧ xp) = xp
] xp−1

] . . . x1
] ∗1 (2.1.25)

where we define the Hodge dual of a 0-form by ∗1 = z. If g has signature (s, t) then
the inverse ∗−1 is given by

∗∗ω = (−1)p(n−p)+t ω ∀ ω ∈ Λp(V ) . (2.1.26)

The Hodge dual and its inverse are extended to Λ(V ) by linearity.
If ω and φ are p-forms then ω ∧ ∗φ is an n-form, hence it is proportional to ∗1. It

follows from the symmetry of g that

ω ∧ ∗φ = φ ∧ ∗ω ω, φ ∈ Λp(V ) . (2.1.27)

This defines an inner product on p-forms given by

ω ∧ ∗φ = (ω · φ) ∗1 ω, φ ∈ Λp(V ) , (2.1.28)

which may be expressed using the basis vectors as

ω · φ =
1
p !
Xa1 Xa2 . . . Xap ω Xa1 Xa2 . . . Xap φ . (2.1.29)

2.2 The Clifford algebra

The Clifford algebra C(V, g) consists of the vector space Λ(V ) together with the Clifford
product, denoted by juxtaposition. The identity element is the unit element of F . The
Clifford product of a 1-form and an arbitrary form is given by

xω = x ∧ ω + x] ω (2.2.1)
ωx = x ∧ ηω − x] ηω x ∈ V, ω ∈ Λ(V ) . (2.2.2)

From these relations, the Clifford product of two arbitrary forms can be determined.
For a pair of 1-forms we have the familiar equation

xy + yx = 2g(x, y) ∀ x, y ∈ V . (2.2.3)
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The exterior product and interior derivative may be expressed as

x ∧ ω =
1
2

(xω + ηω x) (2.2.4)

x] ω =
1
2

(xω − ηω x) . (2.2.5)

From (2.1.16) and the Clifford relations we have the useful identity

eaωea = (−1)p(n− 2p)ω ∀ ω ∈ Λp(V ) . (2.2.6)

Since elements of the Clifford algebra are simply exterior forms, all of the operations
defined in §2.1 can be applied to the Clifford algebra. For this reason, we will often
refer to elements of the Clifford algebra as Clifford forms. From equations (2.2.1) and
(2.2.2) it is clear that η is an automorphism of C(V, g) and ξ is an anti-automorphism of
C(V, g), hence η(ωφ) = ηω ηφ and (ωφ)ξ = φξωξ. Similarly, X is an anti-derivation
over the Clifford product with respect to η. Since Clifford multiplication does not
preserve homogeneity, C(V, g) is not a Z-graded algebra. However, the action of η does
induce a Z2-grading in the same way as for Λ(V ), and we classify elements of C(V, g)
as being odd or even accordingly. The even elements of the Clifford algebra form the
even subalgebra C+(V, g).

Equations (2.1.25) and (2.2.1) show that the Hodge dual on a Clifford form satisfies

∗ω = ωξz ω ∈ C(V, g) . (2.2.7)

The metric on homogeneous forms may be written as

ω · φ = S 0(ωξφ) ω, φ ∈ Λp(V ) . (2.2.8)

Since the dot product is symmetric, it follows that for arbitrary Clifford forms

S 0(ωφ) = S 0(φω) ω, φ ∈ C(V, g) . (2.2.9)

This fact will be useful in calculations.
Certain elements of C(V, g) are invertible. For example, from (2.2.3) it follows that

x2 = g(x, x) for x ∈ V . If g(x, x) 6= 0 then

x−1 =
1

g(x, x)
x . (2.2.10)

Denoting the group of invertible elements by C∗(V, g), the Clifford group is the subgroup

Γ =
{
s ∈ C∗(V, g) : sV s−1 = V

}
. (2.2.11)

The vector representation χ is a mapping χ : Γ → Aut C(V, g) such that

χ(s)ω = sωs−1 ∀ ω ∈ C(V, g) . (2.2.12)
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Since

2g(χ(s)x, χ(s)y) = sxs−1 sys−1 + sys−1 sxs−1

= 2g(x, y) x, y ∈ V ,

clearly χ(s) ∈ Ø(V, g), the group of orthogonal transformations on (V, g). The range
of χ depends on the parity of n. From now on, we will only consider the Clifford
algebra generated by an even-dimensional space where n = 2r. In even dimensions,
χ(Γ) = Ø(V, g). For a non-null 1-form, the operator ρx : V → V given by

ρx(y) = y − 2g(x, y)
g(x, x)

x ∀ y ∈ V (2.2.13)

is the reflection of V in the the plane orthogonal to x. Any orthogonal transformation
on V extends to an automorphism on C(V, g), hence any non-null 1-form x is in Γ
with χ(x) = ηρx. Since any orthogonal transformation can be written as a product of
reflections, it follows that elements of Γ are of the form λx1x2 . . . xh, where each xi is a
non-null 1-form and λ is in the center of C(V, g), which is F for n even. Even elements
of Γ form the subgroup Γ+.

In even dimensions, the kernel of χ consists of the non-zero elements of F , denoted
by F ∗ . We can find a subgroup of Γ with the same range under χ by imposing a
normalising condition. We will treat the real and complex cases separately. When
F = C, the metric is not characterised by any signature, so the structure of the Clifford
algebra depends only on the dimension. Accordingly, we will use the notation C2r(C)
for the Clifford algebra of an 2r-dimensional complex space. For the subgroup

Pin(2r,C) =
{
s ∈ Γ : sξs = 1

}
(2.2.14)

we have χ(Pin(2r,C)) = O(2r,C). Since the orthogonal transformations on V formed
from an even number of reflections have determinant +1, for the subgroup

Spin(2r,C) =
{
s ∈ Γ+ : sξs = 1

}
(2.2.15)

we have

χ(Spin(2r,C)) = SO(2r,C) . (2.2.16)

When F = R, the structure of C(V, g) depends only on the signature of g, so we
will use the notation Cp,q(R). The Pin and Spin groups are defined slightly differently
in the real case,

Pin(p, q) =
{
s ∈ Γ : sξs = ±1

}
(2.2.17)

Spin(p, q) =
{
s ∈ Γ+ : sξs = ±1

}
. (2.2.18)

The images under χ are

χ(Pin(p, q)) = O(p, q) (n even) (2.2.19)
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χ(Spin(p, q)) = SO(p, q) . (2.2.20)

In (2.2.16) and (2.2.20), the kernel of χ is the multiplicative group Z2 = {1, −1}, thus
the Spin group is a double covering of the special orthogonal group. For a 2-form φ
and an arbitrary form ω, the Clifford commutator is

[φ, ω] = −2Xa φ ∧Xa ω φ ∈ Λ2(V ), ω ∈ Λ(V ) . (2.2.21)

With this commutator, the space Λ2(V ) forms the Lie algebra of the Spin group. The
exponential mapping given by

exp(ω) =
∞∑
k=0

ωk

k !
ω ∈ C(V, g) (2.2.22)

sends this Lie algebra into the component of the Spin group connected to the identity.

2.3 Spinors

In this section, we will only consider the complexified Clifford algebra of an even-
dimensional orthogonal space. From a real orthogonal space (V, g) we obtain a complex
orthogonal space (V C, g), where V C is the complexification of V and g is extended to
a metric on V C by complex linearity. The complex Clifford algebra generated by V C is
isomorphic to the complexification of C(V, g),

C(V C, g) ' C⊗C(V, g) . (2.3.1)

If w ∈ V C, then w = x + iy for some x, y ∈ V . The complex conjugate of w is given
by w̄ = x− iy. This operation extends to an algebra automorphism of C(V C, g), from
which we can recover C(V, g),

<eC(V C, g) =
{
ω ∈ C(V C, g) : ω̄ = ω

}
(2.3.2)

= C(V, g) . (2.3.3)

As we are working over the complex field, the structure of C(V C, g) will depend only
on n. However, the presence of a natural complex conjugate induces certain real struc-
tures which have properties related to the signature of g. On occasions, we will write
Cp,q(C) to mean the complexified Clifford algebra generated by an orthogonal space
with signature (p, q). It is understood that Cp,q(C) ' Cp+q(C). We will take the stan-
dard volume form z to be the volume form of V so that it is real. The square of z then
depends on the signature, with

z2 = (−1)(n
2+p−q)/2 ∀ n (2.3.4)

= (−1)(p−q)/2 (n even), (2.3.5)

although we can always choose ž such that ž2 = 1 by taking ž = z or ž = iz as
appropriate. In even dimensions, ž commutes with even elements of the Clifford algebra
and anti-commutes with odd elements. We can use this fact to write the action of η on
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a Clifford form as

ηω = žωž ∀ ω ∈ C2r(C) . (2.3.6)

Note that in odd dimensions, the volume form is in the center of the Clifford algebra.
For n even, the Clifford algebra is isomorphic to a total matrix algebra,

C2r(C) ' M2r(C) (2.3.7)

and is thus simple. A left ideal L of an algebra A is a subalgebra of A such that
AL ⊆ L. It is minimal if it contains no left ideals apart from itself and zero. If A
is simple, the regular representation given by the left action of A on L is faithful. It
is also irreducible, since the only subspaces of L fixed by the representation are the
trivial ones. The spinor representation of C2r(C) is the regular representation on a
minimal left ideal S ⊂ C2r(C). The minimal left ideal is called the spinor space, and
its elements are spinors. These are usually referred to in the physics literature as Dirac
spinors. If C2r(C) is thought of as a matrix algebra, an example of a minimal left ideal
is the subalgebra of matrices with all columns but the first being zero. However, it is a
fact that all irreducible representations of a simple algebra are equivalent [Alb41]. We
will therefore regard any space carrying an irreducible representation of C2r(C) as a
spinor space, although for many calculations it will be convenient to use a minimal left
ideal as the spinor space. A spinor space must therefore be a complex vector space of
dimension 2r. In any case, the action of a Clifford form ω on a spinor ψ will be denoted
by the juxtaposition ωψ.

The spinor representation of C2r(C) induces a reducible representation of the even
subalgebra. This subalgebra has the structure

C+
2r(C) ' M2r−1(C)⊕M2r−1(C) . (2.3.8)

An algebra that is either simple or a direct sum of simple components is called semi-
simple. Since ž2 = 1, the action of ž on S gives a decomposition

S = S+ ⊕ S− (2.3.9)

where S+ and S− are eigenspaces of ž with eigenvalues +1 and −1, respectively. These
subspaces are preserved under the action of the even subalgebra, since if ψ is an eigen-
spinor of ž with eigenvalue ε = ±1, then

žωψ = ωžψ

= εωψ ∀ ω ∈ C+
2r(C) . (2.3.10)

Thus the representation of C+
2r on S is reducible, while the representation of C+

2r(C)
on S+ or S− is irreducible. These representations are called the even and odd semi-
spinor representations, with elements of S+ and S− being even or odd semi-spinors.
They are often referred to as Weyl spinors. Each semi-spinor space is a vector space of
complex dimension 2r−1. Spinors lying in the same eigenspace are said to have the same
parity. By restriction, the semi-spinor representations of C+

2r(C) induce inequivalent
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p− q (mod 8) z2 c c2

0 z2 = +1 preserves S+ and S− (ψc)c = +ψ

2 z2 = −1 swaps S+ and S− (ψc)c = +ψ

4 z2 = +1 preserves S+ and S− (ψc)c = −ψ
6 z2 = −1 swaps S+ and S− (ψc)c = −ψ

Table 2.1: Properties of the charge conjugate.

irreducible representations of Spin(2r,C).
Spinor space admits an isomorphism c : S → S called the charge conjugate, with

the property that

(ωψ)c = ω̄ψc ∀ ω ∈ C2r(C) . (2.3.11)

The precise definition of the charge conjugate depends subtly on the dimension. For
our purposes we only require certain properties, which are summarised in Table 2.1.
The spinor representation of C2r(C) induces real representations of the real subalgebra,
which may or may not be reducible. When p−q ≡ 4 or 6 (mod 8), the complex spinors
regarded as a real vector space carry an irreducible representation of Cp,q(R). When
p− q ≡ 0 or 2 (mod 8), Table 2.1 shows that the charge conjugate has real eigenvalues
±1. Equation (2.3.11) shows that the real subalgebra preserves the eigenspaces of c,
therefore the complex spinors induce a reducible representation of Cp,q(R). Spinors
which satisfy

ψc = ±ψ (2.3.12)

are called Majorana spinors. Each space of Majorana spinors carries an irreducible
representation of Cp,q(R). For p − q ≡ 0 (mod 8), the eigenvalues of z are also real,
so the Majorana spinors carry a reducible representation of the real even subalgebra.
Spinors satisfying both (2.3.12) and zψ = ±ψ are called Majorana-Weyl spinors, and
carry irreducible representations of the real even subalgebra.

The spinor space possesses a non-degenerate, C-bilinear inner product ( , ) : S×S →
C with ξ as adjoint. For ω ∈ C2r(C) we have

(ωψ, φ) = (ψ, ωξφ) ∀ ψ, φ ∈ S , (2.3.13)

showing that ( , ) is Spin-invariant. The symmetries of ( , ) depend only on the
dimension n, and are summarised in Table 2.2. Where the inner product is block
diagonal on S+ ⊕ S−, we mean that the inner product of an odd spinor and an even
spinor is zero.

The inner product induces an isomorphism between S and its dual space S∗. If
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n (mod 8) ( , )

0 symmetric, block diagonal on S+ ⊕ S−

2 symmetric

4 antisymmetric, block diagonal on S+ ⊕ S−

6 antisymmetric

Table 2.2: Properties of the inner product on S.

ψ ∈ S, then ψ̄ ∈ S∗ is defined such that

ψ̄(φ) = (ψ, φ) ∀ φ ∈ S . (2.3.14)

This should not be confused with the Dirac adjoint, which is the adjoint with respect
to a Hermitian inner product. The space S ⊗ S∗ may be regarded as a set of linear
transformations on S by taking

(ψ ⊗ φ̄)α = (φ, α)ψ ∀ α ∈ S . (2.3.15)

When the Clifford algebra is simple, it is isomorphic as an algebra to S ⊗ S∗. The
Clifford product of two tensors is given by

(φ⊗ ψ̄)(α⊗ β̄) = (ψ, α)φ⊗ β̄ . (2.3.16)

Thus we can always think of a Clifford form as either an exterior form or an element of
S ⊗ S∗. From the Clifford action on spinors, we can deduce the product of a Clifford
form and a tensor, since if ω ∈ C2r(C),

ω(ψ ⊗ φ̄)α = (φ, α)ωψ
= (ωψ ⊗ φ̄)α ∀ α ∈ S . (2.3.17)

Thus

ω(ψ ⊗ φ̄) = ωψ ⊗ φ̄ . (2.3.18)

Similarly,

(ψ ⊗ φ̄)ω = ψ ⊗ ωξφ . (2.3.19)

Elements of S ⊗ S∗ may be classified as odd or even under η using (2.3.6), since

η(ψ ⊗ φ̄) = (−1)ržψ ⊗ žφ . (2.3.20)

We can also determine the action of ξ, using the inner product. Table 2.2 shows that

(ψ, φ) = (−1)br/2c(φ, ψ) ∀ ψ, φ ∈ S . (2.3.21)
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From (2.3.13), we have

(α, (ψ ⊗ φ̄)ξβ) = ((ψ ⊗ φ̄)α, β)
= (φ, α)(ψ, β)
= (−1)br/2c(α, φ)(ψ, β)
= (−1)br/2c(α, (φ⊗ ψ̄)β) ∀ α, β ∈ S (2.3.22)

therefore

(ψ ⊗ φ̄)ξ = (−1)br/2cφ⊗ ψ̄ ∀ ψ, φ ∈ S . (2.3.23)

Since the Clifford algebra is isomorphic to a matrix algebra, it has a well-defined
trace given by

Tr(ω) = 2rS 0(ω) ∀ ω ∈ C2r(C) . (2.3.24)

Using the trace, we are able to express a given Clifford form in terms of a basis for
forms {eA}, where A is a multi-index over the set of naturally ordered sequences of
distinct indices. Then {eA} is a set of forms chosen so that

ω = Tr(ωeA)eA ∀ ω ∈ C2r(C) . (2.3.25)

It follows that the trace on S ⊗ S∗ is given by

Tr(ψ ⊗ φ̄) = (φ, ψ) . (2.3.26)

Then an element of S ⊗ S∗ can be expanded in the basis {eA} as

ψ ⊗ φ̄ = (φ, eAψ)eA . (2.3.27)

The slight abuse of the equals sign is justified by the fact that S ⊗ S∗ and C2r(C) are
canonically isomorphic. We can then use the projection operators to obtain homoge-
neous components of ψ ⊗ φ̄. The components obey the duality condition

S 2r−p
(
ψ ⊗ φ̄

)
= (−1)rS p

(
ψ ⊗ žφ

)
ž . (2.3.28)

With these conventions, the Fierz rearrangement formula is found in the following way.
For Clifford forms M and N , equation (2.3.14) shows that

(φ, (Mψ ⊗N ξα)β) = (φ,Mψ)(N ξα, β)
= (φ,Mψ)(α,Nβ) (2.3.29)

for spinors ψ, φ, α and β. From (2.3.19) and (2.3.27) we also have

(φ, (Mψ ⊗N ξα)β) = (φ, eAβ)(α,NeAMψ) (2.3.30)
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from which we obtain the Fierz formula,

(φ,Mψ)(α,Nβ) = (φ, eAβ)(α,NeAMψ) . (2.3.31)

We are now in a position to introduce the notion of a pure spinor. A totally isotropic
subspace X is a subspace of V C satisfying

g(x, y) = 0 ∀ x, y ∈ X .

If X has dimension h, then zX denotes the r-form product of some basis for X. Since
g is degenerate on X, zX is determined only up to complex scalings. X is maximal if
it is of the highest possible dimension, given by the Witt index of g. As we are working
over the complex field, a maximal totally isotropic subspace (MTIS) has dimension r.
A spinor ψ may be correlated with an isotropic subspace in the following way. The null
space Tψ of ψ is the subspace of V C given by

Tψ =
{
x ∈ V C : xψ = 0

}
. (2.3.32)

For non-zero ψ, Tψ is clearly an isotropic space, since for x, y ∈ Tψ,

2g(x, y)ψ = (xy + yx)ψ
= 0 .

From the definition of χ it follows that

Tsψ = χ(s)Tψ ∀ s ∈ Γ , (2.3.33)

while from (2.3.11) we have

Tψc = Tψ . (2.3.34)

The nullity of ψ is the (complex) dimension of Tψ, denoted by N(ψ). This term appears
to have been used first by Trautman [TT94]. If the metric on the real space V has
indefinite sign then V admits real null vectors. The real index of an isotropic subspace
is dimC(X ∩ X̄). The real index of ψ is the real index of Tψ.

In general, there may be many spinors correlated with a given null space. We say
that a non-zero spinor ψ is pure if Tψ is maximal. Up to scalings, there is a one-to-one
correspondence between ψ and Tψ, thus ψ is said to represent Tψ. Pure spinors are
necessarily semi-spinors, hence we may classify a MTIS as odd or even according to
the parity of its representative spinor. In the following lemma, we summarise some
standard results. The proof may be found in [BT87].

Lemma 2.3.35 Let u and v be pure spinors representing Tu and Tv.

(1) u and v have the same parity iff dimC(Tu ∩ Tv) ≡ r (mod 2).

(2) For λ, µ ∈ C∗, λu+ µv is pure iff dimC(Tu ∩ Tv) = r or r − 2.

(3) (u, v) = 0 iff Tu ∩ Tv 6= {0}.
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(4) If dimC(Tu ∩ Tv) = h then S p(u⊗ v̄) = 0 for all p < h and p > 2r − h, while

S h(u⊗ v̄) = zTu∩Tv . (2.3.36)

Part (2) of the lemma shows that all semi-spinors are pure for r ≤ 3. In higher
dimensions, part (4) shows that a semi-spinor u is pure if and only if

S p(u⊗ ū) = 0 ∀ p 6= r . (2.3.37)

This is Cartan’s characterisation of pure spinors. Then u ⊗ ū is a decomposable form
of degree r, which we may identify with zTu . This form is an eigenvector of the Hodge
dual, since

∗ (u⊗ ū) = (−1)r(r+1)/2 u ⊗ zu (2.3.38)

where zu = ±u or ±iu, depending on the signature of g and the parity of u. The Hodge
dual decomposes the space of r-forms into two eigenspaces, one consisting of self-dual
forms and the other of anti self-dual forms. Since the choice of which space is ‘self-dual’
is purely conventional, we will choose our space of self-dual forms so that the tensor
product of an even pure spinor with itself is self-dual.

2.4 Calculus on manifolds

Until now we have considered purely algebraic properties of Clifford algebras. We now
consider Clifford algebras and spinors on manifolds. Let (M, g) be an n-dimensional
pseudo-Riemannian manifold. We use the standard notation TpM for the space of
tangent vectors at p ∈M. The collection of tangent spaces is the tangent bundle TM.
Similarly, the dual space of cotangent vectors at p ∈ M is T ∗pM and the cotangent
bundle is T ∗M. The bundle of differential forms is denoted by ΛM. A subscript is
used to indicate a bundle of homogeneous forms, thus we can identify Λ1M with T ∗M
and Λ0M with the space of functions F(M). We use the prefix Γ to indicate the space
of sections of a bundle. For example, a vector field on M is an element of ΓTM.

From g we obtain the unique g-compatible torsion-free covariant derivative ∇ on
tensor fields. The covariant derivative has certain fundamental tensors associated with
it. The curvature operator is a derivation on tensor fields given by

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] X, Y ∈ ΓTM . (2.4.1)

This operator is F-linear in X, Y and its operand, thus we may use it to define the
(3, 1) curvature tensor Curv, given by

Curv(X,Y, Z, ω) = ω(R(X,Y )Z) (2.4.2)

where X, Y and Z are arbitrary vector fields and ω is an arbitrary 1-form. Since
R(X,Y ) is antisymmetric in X and Y , the curvature tensor may be written in terms
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of a set of curvature 2-forms Rab as

Curv = 2Rab ⊗ eb ⊗Xa . (2.4.3)

By contracting Curv we obtain the (2, 0) Ricci tensor,

Ric(X,Y ) = Curv(Xa, X, Y, e
a) . (2.4.4)

The Ricci tensor may be written using a set of Ricci 1-forms Pa as Ric = Pa⊗ea where
Pa = Xb Rba. Contracting once more we obtain the curvature scalar R ,

R = Xa Pa

= Ric(Xa, X
a) . (2.4.5)

We will sometimes make use of the first Bianchi identity,

Rab ∧ eb = 0 (2.4.6)

and the contracted Bianchi identities

Xd Xc Rab −Xb Xa Rcd = 0 (2.4.7)
Xb Pa −Xa Pb = 0 (2.4.8)

Pa ∧ ea = 0 . (2.4.9)

For n > 2, the (3, 1) conformal tensor is constructed from the curvature tensor in such
a way that it is invariant under conformal rescalings of the metric. We write it using a
set of conformally invariant conformal 2-forms Cab as

C = 2Cab ⊗ eb ⊗Xa (2.4.10)

where

Cab = Rab −
1

n− 2
(Pa ∧ eb − Pb ∧ ea) +

1
(n− 2)(n− 1)

R eab . (2.4.11)

The conformal tensor has the same symmetries as the curvature tensor, while the
conformal 2-forms satisfy a ‘pairwise symmetry’ condition similar to (2.4.7).

In the absence of torsion, the exterior derivative d : ΓΛpM → ΓΛp+1M may be
expressed in a basis as

d = ea ∧∇Xa . (2.4.12)

It is nilpotent with d2 ≡ 0, and is an anti-derivation over the exterior product with
respect to η. Its adjoint operator, the co-derivative d∗ : ΓΛpM→ ΓΛp−1M is given by

d∗ = ∗−1d∗η . (2.4.13)

The co-derivative is not an anti-derivation, but it does satisfy (d∗)2 ≡ 0. From the
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metric-compatibility of ∇, it follows that

∇X∗ = ∗∇X ∀ X ∈ ΓTM (2.4.14)

hence we may write the co-derivative as

d∗ = −Xa ∇Xa . (2.4.15)

The complexified Clifford bundle CC(M, g) is identified with the complexification
of the exterior bundle,

ΛCM =
⋃
p∈M

Λ(T ∗pMC) . (2.4.16)

The Clifford product and exterior operations are defined on each fibre of this bundle as
in §2.2. Since ∇ commutes with contractions, it follows that it is a derivation on the
tensor and exterior products. If we allow the covariant derivative to act on complex
forms, the Clifford relations (2.2.1) and (2.2.2) show that ∇ is also a derivation over
Clifford products. The curvature operator on a Clifford form is related to the curvature
2-forms and the Clifford commutator by

R(X,Y )ω =
1
2
ea(X)eb(Y ) [Rab, ω] ∀ ω ∈ ΓΛCM . (2.4.17)

Since we regard Clifford forms as complex exterior forms, we can differentiate a Clifford
form with the exterior derivative or co-derivative. In addition, we have the Hodge-de
Rham operator d/ defined in terms of the Clifford action by

d/ = ea∇Xa

= d− d∗. (2.4.18)

Clearly d/ maps a homogeneous form to an inhomogeneous form. Its square, the Laplace-
Beltrami operator 4 given by

4 = −(dd∗ + d∗d) (2.4.19)

preserves the degree of a form. On a Clifford form ω we have

4ω = ∇2ω − 1
4
R ω − 1

4
Rabωe

ab (2.4.20)

where ∇2 is the trace of the Hessian,

∇2 = ∇Xa∇Xa −∇∇aXa . (2.4.21)

The fibre CC
p(M, g) at p ∈M is isomorphic to C(T ∗pMC, g) ' Cn(C). Although we

can always find a spinor representation for the Clifford algebra at each p ∈ M, there
are topological obstructions to forming a bundle of such representations. If M admits
a spinor bundle S(M), it is called a spin manifold. Locally, we may always consider
the spinor bundle to be isomorphic to a sub-bundle of the Clifford bundle, with each
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fibre being a minimal left ideal of the Clifford algebra.
A spinor field on M is a section of the spinor bundle. The covariant derivative on

tensors naturally induces a covariant derivative on spinor fields, for which we will use
the same symbol ∇. The covariant derivative is a derivation with respect to the Clifford
action, so for ω ∈ ΓΛCM and ψ ∈ ΓS(M) the derivative of the spinor ωψ obeys the
Leibniz rule,

∇X(ωψ) = ∇Xω ψ + ω∇Xψ ∀ X ∈ ΓTM . (2.4.22)

It is also compatible with the inner product,

X(ψ, φ) = (∇Xψ, φ) + (ψ,∇Xφ) ∀ ψ, φ ∈ ΓS(M) (2.4.23)

and the charge conjugate,

(∇Xψ)c = ∇Xψ
c ∀ ψ ∈ ΓS(M) . (2.4.24)

The action of the curvature operator on spinor fields is given by

R(X,Y )ψ =
1
2
ea(X)eb(Y )Rabψ ∀ ψ ∈ ΓS(M) . (2.4.25)

An important operator on spinor fields is the Dirac operator D, given by

D = ea∇Xa . (2.4.26)

Note that the Dirac operator formally resembles the Hodge-de Rham operator. Anal-
ogously to the Laplace-Beltrami operator on forms, the spinor Laplacian is the square
of the Dirac operator. It is related to the Hessian and curvature scalar by

D2ψ = ∇2ψ − 1
4
R ψ ∀ ψ ∈ ΓS(M) . (2.4.27)



Chapter 3

Classification of Spinors

The problem of classifying spinors is usually formulated as

(1) determining the structure of the spinor orbits under the action of the Spin group;

(2) calculating the isotropy group (stabilizer) of each orbit; and

(3) describing the algebra of invariants of the spinor space.

The orbit of a spinor direction under the Spin group forms a manifold whose structure
is determined by the isotropy group of the spinor. Classification of spinors was first
studied by Chevalley, who examined the orbit of pure spinor directions [Che54]. He
found that the Clifford group acts transitively on the space of pure spinor directions,
and that the orbit of pure spinors is the orbit of least dimension. Chevalley’s analysis
classifies spinors in all dimensions up to six, since in those cases all spinors are pure.
More recently, Igusa has classified spinors in dimensions up to twelve [Igu70]. In Igusa’s
formulation, spinors carry a representation of the Clifford algebra generated by a vector
space W equipped with a non-degenerate quadratic form f . The base field F is of
characteristic different from 2, and it is assumed that f has maximal index over F . A
representative of each orbit is presented, together with its isotropy group as a subgroup
of the Spin group, for all dimensions n of W up to twelve. Using similar techniques, full
classifications of spinors have been found in thirteen dimensions by Kac and Vinberg
[KV78] and in fourteen dimensions by Popov [Pop80] and Zhu [Zhu92]. Popov notes
that the case of fourteen dimensions

“. . . is one of the last where the problem of classifying spinors [in the sense
of Igusa] has a reasonable meaning and can be conclusively solved (the cases
of Spin(15) and Spin(16) can, apparently, be completely decomposed, but
in higher dimensions difficulties in principal arise).”

The case of sixteen dimensions has been settled by Antonyan and Èlashvili [AE82].
The subspaces ofW on which f is identically zero are called isotropic. The condition

that f has maximal index means that the maximal totally isotropic subspaces (MTIS)
of W are of dimension r = bn/2c. There is a one-to-one correspondence between
MTIS’s and pure spinor directions. A metric g on W can be constructed by taking
g(x, y) = f(x + y) − f(x) − f(y) for all x, y ∈ W . When W is a real vector space,

22
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g must have signature (p, q) where |p − q| = 0 or 1, and r = min{p, q}. If W is a
complex vector space then g is not characterised by any signature. However, if W
is the complexification of a real vector space V , and g is a metric on V extended to
W by complex linearity, then W exhibits certain real structures which depend on the
signature of g. Little is known about the classification of spinors of a complexified space
under the action of the real Spin group, however Kopczyński and Trautman have show
that Pin(p, q) acts transitively on the space of pure spinor directions with a given real
index, and that Spin(p, q) acts transitively on the space of pure spinor directions with
a given real index and a given parity [KT92].

In this chapter we consider a ‘coarse’ classification of semi-spinors using two prop-
erties which are invariant under the action of the Spin group (in the following we will
usually refer to semi-spinors simply as spinors). The motivation for the first of these
is the following. A spinor basis consisting only of pure spinors can always be found,
so any spinor can be expressed as a sum of pure spinors. However, the dimension of
the space of spinors grows exponentially with n, since it is 2bn/2c. We first pose the
question: what is the minimum number of pure spinors required in order to express a
given spinor as a sum of pure spinors? Since pure spinors are the ‘simplest’ spinors,
many calculations are easier if the spinor is expressed in this minimal form.

Secondly, we consider the possible values for the nullity of a spinor, which for
an impure spinor is necessarily less than r. This property has also been studied by
Trautman and Trautman [TT94]. They have calculated the dimension of the space of
spinors of a given nullity. In particular, for n = 8 and n > 10, they show that a ‘generic’
spinor has nullity 0. Trautman and Trautman also found that there are no spinors of
nullity ν such that r−4 < ν < r or ν = r−5. The classification of spinors given in this
chapter is coarser than that given by Igusa in the sense that there are many distinct
spinor orbits for which these two characteristics are the same.

In the following we will only consider spinors of the complexified Clifford algebra
generated by a real 2r-dimensional vector space equipped with a positive-definite met-
ric. Although the base field is the complex numbers, the choice of metric provides
applications to the geometry of Riemannian manifolds. The existence of a globally
parallel spinor field on such a manifold leads to a reduction in holonomy, which can
be calculated if the isotropy group of the spinor as a subgroup of the real Spin group
is known. It is well known that the existence of a parallel pure spinor field implies a
reduction of holonomy to SU(r) [LM89]. Using our classification, we are are able to
determine the isotropy group of an impure spinor in some instances.

3.1 Pure spinors

The complexification of a real 2r-dimensional orthogonal space (V, g) generates the
Clifford algebra C2r(C), which is the complexification of C2r(R). Since the dimension
of V is even, C2r(C) is isomorphic to the algebra of 2r × 2r complex matrices. The
spinor representation of C2r(C) induces a pair of inequivalent irreducible semi-spinor
representations of the complex Spin group. The real Spin group is a subgroup of
Spin(2r,C), defined as in §2.2. Note that we must have sξs = +1 for s ∈ Spin(2r) since
the metric is positive-definite. When extended by complex linearity to a metric on V C, g
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has maximal Witt index, and so pure spinors correspond to MTIS’s of dimension r. We
will be considering a classification of semi-spinors based on some of their geometrical
properties. We begin by reviewing some aspects of the geometry of pure spinors.

Given G ⊆ Γ, a pair of spinors ψ and φ will be called G-equivalent if there exists
s ∈ G such that ψ = sφ. If this is the case we will write ψ

G∼ φ. This relation
decomposes S into equivalence classes or G-orbits. If a G-orbit is represented by ψ,
then the structure of the orbit is determined by the subgroup of G which fixes ψ.
When the base field is the complex numbers, Igusa has classified spinors where G is the
complex Spin group. For our purposes, however, it is the action of the real Spin group
on complex spinors that is of interest. We therefore define the isotropy group Gψ as

Gψ = {s ∈ Spin(2r) : sψ = ψ} . (3.1.1)

Note that Igusa’s classification is valid for any field of characteristic different from 2,
provided that the signature of g is maximal. So if the base field is the real numbers,
we have a classification of real spinors under Spin(r, r), but not under Spin(2r).

The correspondence between pure spinors and MTIS’s allows the isotropy group
of a pure spinor to be found. Firstly, we show that given a pure spinor, V C can be
decomposed into the direct sum of a MTIS and its complex conjugate. Let ψ be a pure
spinor representing Tψ. If x ∈ Tψ ∩ Tψ then xψ = 0 and x̄ψ = 0. The vector i(x − x̄)
is real, and we have

g(i(x− x̄), i(x− x̄))ψ = −(x− x̄)2ψ
= 0

therefore g(i(x− x̄), i(x− x̄)) = 0. Then i(x− x̄) = 0, since g is positive-definite, and
thus x̄ = x. But x is null, and the only real null vector in V C is the zero vector, so we
have Tψ ∩ Tψ = {0}. Since dimC Tψ = r, V C can be decomposed as the direct sum

V C = Tψ ⊕ Tψ . (3.1.2)

The decomposition (3.1.2) induces an orthogonal complex structure on (V, g), that
is, an orthogonal transformation J : V → V such that J2 = −1. Let J be a C-linear
mapping on V C defined by

Jx = ix ∀ x ∈ Tψ ,
Jx = Jx̄ ∀ x ∈ V C . (3.1.3)

Then Tψ is also an eigenspace of J with eigenvalue −i. Certainly J2 = −1, so the
restriction of J to V is a complex structure on V . We can regard V as a complex
vector space of dimension r by defining the action of C on V by

(λ+ iµ)v = λv + µJv ∀ λ, µ ∈ R, v ∈ V . (3.1.4)

We now show that J is an orthogonal transformation on (V C, g). By (3.1.2), we can
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always write v ∈ V C as v = x+ y where x ∈ Tψ and y ∈ Tψ. Then

g(Jv, Jv) = g(ix− iy, ix− iy)
= −g(x, x)− g(y, y) + 2g(x, y)
= g(x, x) + g(y, y) + 2g(x, y) , since x and y are null
= g(x+ y, x+ y)
= g(v, v) . (3.1.5)

Since g is symmetric, this implies that g(Ju, Jv) = g(u, v) for all u, v ∈ V C. Then
the restriction of J to V is an orthogonal complex structure on (V, g). Regarding V as
a complex vector space via (3.1.4), an Hermitian form 〈 , 〉 on V can be constructed
from g and J by taking

〈x, y〉 = g(x, y) + ig(x, Jy) ∀ x, y ∈ V . (3.1.6)

Now we show that J commutes with χ(Gψ). If s ∈ Gψ and x ∈ Tψ then

χ(s)xψ = sxs−1ψ

= sxψ

so χ(s)xψ = 0. Then χ(s)x ∈ Tψ, and we have

χ(Gψ)Tψ = Tψ (3.1.7)

and

χ(Gψ)Tψ = Tψ (3.1.8)

since Gψ is real. This implies that for s ∈ Gψ and v = x+ y where x ∈ Tψ and y ∈ Tψ
we have

Jχ(s)v = Jχ(s)(x+ y)
= Jsxs−1 + Jsys−1

= isxs−1 − isys−1 by (3.1.8)
= sJxs−1 + sJys−1

= χ(s)Jv . (3.1.9)

Clearly, χ(s) is an isometry of the Hermitian form 〈 , 〉 for each s ∈ Gψ. These
properties of pure spinors give rise to the following well-known result. The proof is a
modification of that found in Lawson and Michelsohn [LM89].

Theorem 3.1.10 For a pure spinor ψ in 2r dimensions, Gψ ' SU(r).

Proof. If s ∈ Spin(2r) and sψ = λψ, λ ∈ C, then χ(s)Tψ = Tψ. By (3.1.9) we have
χ(s) ∈ U(r) where

U(r) = {σ ∈ SO(2r) : σJ = Jσ} . (3.1.11)
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Conversely, if σ ∈ U(r) then there exists s ∈ Spin(2r) such that χ(s) = σ. Since χ(s)
commutes with J , it must leave Tψ and Tψ fixed. Now

sxψ = (sxs−1)sψ
= 0 ∀ x ∈ Tψ (3.1.12)

Since sxs−1 ∈ Tψ, this implies that sψ = λψ, λ ∈ C. Thus

U(r) = χ ({s ∈ Spin(2r) : sψ = λψ, λ ∈ C}) . (3.1.13)

To find the determinant of χ(s) we need the fact that for an n-form z in an n-
dimensional vector space, we have τz = det(τ)z for τ ∈ GL(n,C). Consider an Hermi-
tian form 〈 , 〉′ on Tψ defined by

〈x, y〉′ = g(x̄, y) . (3.1.14)

Now U(r) is isomorphic to the group{
τ ∈ Aut Tψ : 〈τx, τy〉′ = 〈x, y〉′ ∀ x, y ∈ Tψ

}
and Aut Tψ ' GL(r,C). The r-form zTψ may be identified with ψ ⊗ ψ̄, and so

χ(s)(ψ ⊗ ψ̄) = s(ψ ⊗ ψ̄)s−1

= sψ ⊗ sψ

= λ2ψ ⊗ ψ̄ (3.1.15)

hence detχ(s) = λ2. Thus

SU(r) = χ ({s ∈ Spin(2r) : sψ = ±ψ}) . (3.1.16)

Since SU(r) is simply connected, χ−1(SU(r)) consists of two connected components,
one containing 1 and the other containing −1. The component containing −1 cannot
fix ψ and so Gψ is isomorphic to SU(r).

We now consider an application of spinor geometry to the geometry of Riemannian
manifolds. Let M be a connected, n-dimensional Riemannian manifold. Given a
closed curve γ based at p ∈ M, let σγ : TpM→ TpM be the transformation given by
parallel translation around γ. The set of all such transformations forms the group Hx ⊆
O(TpM, g) ' O(n). The conjugacy class of Hp as a subgroup of O(n) is independent
of p. The holonomy group H(M) of M is the conjugacy class of Hp in O(n). A spinor
ψ is parallel if ∇Xψ = 0 for all X ∈ ΓTM. The following theorem of Lawson and
Michelsohn [LM89] shows how the holonomy group of M is restricted by the presence
of a parallel spinor field.

Theorem 3.1.17 Let M be an n-dimensional Riemannian spin manifold admitting a
globally parallel spinor field ψ. Then

H(M) ⊆ Gψ (3.1.18)
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where Gψ is the conjugacy class of Gψp in Spin(n) at p ∈M. Conversely, if Hp ⊆ Gψp
for ψp, then ψp may be extended to a globally parallel spinor field on M.

Theorem 3.1.10 and Theorem 3.1.17 imply that if a 2r-dimensional manifold M
admits a parallel pure spinor field ψ then H(M) ⊆ SU(r). The existence of a parallel
spinor also imposes strict integrability conditions. We have

R(X,Y )ψ = 0 ∀ X, Y ∈ ΓTM . (3.1.19)

Then from (2.4.25) we have

Rabψ = 0 . (3.1.20)

Multiplying on the left with eb shows that

Paψ = 0 (3.1.21)

since ebRab = −Pa by (2.4.6). Since each Pa annihilates ψ it is null, but it is also real
so we must have Pa = 0 for each a. Thus an even-dimensional Riemannian manifold
admitting a parallel spinor is Ricci-flat.

Now ψ determines a collection of null covectors Tψ(M) given by

Tψ(M) =
{
x ∈ ΓT ∗MC : xψ = 0

}
. (3.1.22)

The cotangent vectors of Tψ(M) at a point p ∈ M form a MTIS of T ∗pMC, and
so Tψ(M) determines a distribution of null r-planes contained in the complexified
cotangent bundle. Since ψ is pure, in the same way as (3.1.3) we have a tensor field
J ∈ ΓT1

1M such that J2x = −x for all x ∈ ΓT ∗M. Such a tensor field is an almost
complex structure for M. In this case, (3.1.5) shows that J is also an orthogonal
transformation. For x ∈ ΓT ∗MC and X ∈ ΓTM we have

∇X (xψ) = ∇Xxψ + x∇Xψ

= ∇Xxψ . (3.1.23)

If x ∈ Tψ(M), this shows that ∇Xxψ = 0, hence ∇Xx ∈ Tψ(M). Since ∇ commutes
with complex conjugation, it is also true that if y ∈ Tψ(M) then ∇Xy ∈ Tψ(M). Any
v ∈ ΓT ∗M can be written as v = x+ y where x ∈ Tψ(M) and y ∈ Tψ(M). Then

∇X(Jv) = i∇Xx− i∇Xy (3.1.24)

but also

∇X(Jv) = ∇XJ v + J∇Xv

= ∇XJ v + i∇Xx− i∇Xy (3.1.25)

and so J is parallel. A Riemannian manifold admitting a parallel orthogonal almost
complex structure is called a Kähler manifold. This result together with (3.1.21) shows
that an even-dimensional Riemannian manifold admitting a parallel pure spinor is
Kähler and Ricci-flat.
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3.2 Invariants of spinor space

In general, finding the isotropy group of an impure spinor is a difficult problem. Our
approach is to investigate some properties of impure spinors which are invariant under
the action of the Clifford group Γ. Given an equivalence relation ∼ on S, an invariant
is a function f on S such that f(ψ) = f(φ) if ψ ∼ φ. A set of invariants is complete if
it contains an element f such that f(ψ) 6= f(φ) for any pair of spinors such that ψ 6∼ φ.
A complete set of invariants is said to separate the orbits. In this section, we introduce
a pair of invariants which in some sense indicate the amount by which a spinor deviates
from being pure. For some spinors, knowledge of these invariants allows us to place
restrictions on the corresponding isotropy group, and hence on the holonomy group of
a manifold admitting a parallel impure spinor.

In 2r dimensions, we can choose a basis of pure spinors for the (2r−1)-dimensional
space of semi-spinors, hence any spinor can be written as a sum of at most 2r−1 pure
spinors. Obviously, not all linear combinations of pure spinors will be pure, but it is
possible to find pure subspaces where each element (excluding the zero spinor) is pure.

Lemma 3.2.1 Let {u1, . . . , um} be a set of linearly independent pure spinors such
that ui + uj is pure for all i, j ∈ {1, . . . ,m}. Then every non-zero spinor ψ ∈
spC{u1, . . . , um} is pure.

Proof. Adopting the summation convention, let ψ be a non-zero spinor such that
ψ = λiui, λi ∈ C. In 2r dimensions, ψ is pure if and only if S p(ψ ⊗ ψ̄) = 0 for all
p 6= r. Now

S p(ψ ⊗ ψ̄) = λiλjS p(ui ⊗ ūj) . (3.2.2)

Symmetrising, we see that

S p(ψ ⊗ ψ̄) =
1
2
λiλjS p(ui ⊗ ūj + uj ⊗ ūi) . (3.2.3)

But each ui + uj is pure, therefore

0 = S p

(
(ui + uj)⊗ (ui + uj)

)
∀ p 6= r

= S p(ui ⊗ ūi) +S p(uj ⊗ ūj)
+S p(ui ⊗ ūj + uj ⊗ ūi) (3.2.4)

Since each ui is pure, S p(ui ⊗ ūi) = 0 for all p 6= r hence

S p(ui ⊗ ūj + uj ⊗ ūi) = 0 ∀ p 6= r (3.2.5)

so ψ is pure.

We can always find pure subspaces of dimension r. To illustrate this, we will
construct a spinor representation using a minimal left ideal of C2r(C). Suppose that
Y is a maximal totally isotropic subspace of V C, and let zY be an r-form product of
some basis for Y . Then the subspace C2r(C)zY is a minimal left ideal, hence we may
identify it with the space of spinors S. Given a second MTIS X complementary to Y ,



§3.2 Invariants of spinor space 29

we have the decomposition V C = X ⊕ Y . Bases {xi} and {yi} for X and Y may be
chosen so that

xiyj + yjxj = δij ∀ i, j ∈ {1, . . . , r} . (3.2.6)

Such a basis is known as a Witt basis (in the following, the indices i and j run from 1
to r). In this basis, we can fix zY = y1 ∧ y2 ∧ . . .∧ yr. Now any element of C2r(C) can
be written in terms of the xi ’s and yi ’s. Using (3.2.6), an element of C2r(C) may be
written with all the yi ’s occurring on the right-hand side. Since vectors in Y annihilate
zY it is clear that C2r(C)zY = C(X, g)zY . As X is isotropic, its Clifford algebra is
identical to its exterior algebra, thus S = Λ(X)zY . The odd and even semi-spinor spaces
S± may be identified with the corresponding spaces of odd and even forms, Λ±(X)zY .
Each of these carries an irreducible representation of the even subalgebra, and hence
of Spin(2r,C). This identification of the space of spinors will be used throughout the
chapter. A basis for S+ is given by{

zY , x
ijzY , x

ijklzY , . . . , x
12...rzY

}
where we have used the abbreviation xi ∧ xj = xij . Each element of this basis is a
pure spinor. For example, zY represents Y , while x12zY represents the space spanned
by {x1, x2, y3, y4, . . . , yr}. Note that since g is positive-definite on real vectors, we can
always choose X = Y and xi = ȳi, however any MTIS complementary to Y may be
used, a fact which will be useful later on.

A pure subspace must necessarily consist of spinors with the same parity. It can
easily be verified that the set P of linearly independent even spinors

P =
{
zY , x

12zY , x
13zY , . . . , x

1rzY
}

(3.2.7)

has the property that the MTIS’s corresponding to any pair of distinct elements inter-
sect in r − 2 dimensions. This shows that the sum of any two elements of P is pure,
and so by Lemma 3.2.1, P is a basis for a pure subspace of dimension r. For r > 3,
extending P by adding another element of the form xijzY , 2 ≤ i < j ≤ r introduces
impure spinors, since the MTIS of such an element would intersect with the MTIS of at
least one element of P in less that r−2 dimensions. In addition, extending P by adding
adding an element of the form xi1...i2pzY , p ≥ 2 also introduces impure spinors, since
the MTIS of such an element would intersect with the MTIS of zY in r−2p dimensions.
Thus it seems that r is the maximal dimension of a pure subspace for r > 3. Note that
for r = 3 the set

P3 =
{
zY , x

12zY , x
13zY , x

23zY
}

(3.2.8)

is the basis of a pure subspace, which shows that all semi-spinors are pure for r ≤ 3.
In view of this we might suppose that any semi-spinor can be written as a sum of at
most d2r−1/re pure spinors. In fact, in low dimensions it is possible to do much better
than this. For a spinor ψ, we define the pure index P (ψ) to be the least number of
pure spinors {ui} such that ψ =

∑
i ui. It is easy to show that P (ψ) is an invariant of
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the orbit. Let s ∈ Γ and suppose that P (ψ) = m and P (sψ) = n. Then we can write

sψ = u1 + u2 + · · ·+ un (3.2.9)

where ui is pure for each i ∈ {1, 2, . . . , n}. So

ψ = s−1u1 + s−1u2 + · · ·+ s−1un. (3.2.10)

Now if u is pure, then so is su, and so we have P (ψ) = m ≤ n. By the same argument,
n ≤ m and so P (ψ) = P (sψ).

The second invariant is the nullity of a spinor, as discussed in §2.3. Pure spinors are
characterised by the fact that they correspond to maximal totally isotropic subspaces,
and this correspondence is one-to-one up to scalings. Impure spinors also induce totally
isotropic subspaces via (2.3.32), but these are not maximal, nor is the correspondence
unique. From (2.3.33), it is clear that the nullity of a spinor is invariant under the
action of the Clifford group, and hence of the Spin group. A pure spinor always has
P (ψ) = 1 and N(ψ) = r. The following lemma places an upper bound on the nullity
of an impure spinor. A similar result has been found independently by Trautman and
Trautman [TT94]. Details are given in §3.5.

Lemma 3.2.11 For an impure semi-spinor ψ in 2r dimensions, N(ψ) ≤ r − 4.

Proof. Suppose that the spinor space of C2r(C) is identified with Λ(X)zY as above.
Now the Clifford group acts transitively on the space of pure spinors, so for any pair
of pure spinors u and v there exists s ∈ Γ such that su = v and hence χ(s)Tu = Tv.
The null space of an impure semi-spinor ψ is contained in some MTIS represented by
a pure spinor, which we can map to zY using an element of Γ. That is, there exists
s ∈ Γ such that sψ is even and sTψs−1 ⊆ Y , thus ysψ = 0 for all y ∈ sTψs−1. Suppose
that N(ψ) = h. We can choose a Witt basis {xi, yi} for V C such that {xi} is a basis
for X, {yi} is a basis for Y and {yr−h+1, . . . , yr} is a basis for sTψs−1. Now sψ can be
written as

sψ = ωzY (3.2.12)

where ω ∈ Λ+(X). For each basis vector yi,

yiωzY =
(
[yi, ω] + ωyi

)
zY

= [yi, ω]zY since yizY = 0,
= 2(yi)] ωzY since ω is even. (3.2.13)

Now yisψ = 0 for i ∈ {r − h+ 1, . . . , r}, hence

(yi)] ωzY = 0 for i ∈ {r − h+ 1, . . . , r}. (3.2.14)

Since {xi, yi} is a Witt basis, (yi)] ω ∈ Λ−(X) and so (3.2.14) implies that

(yi)] ω = 0 for i ∈ {r − h+ 1, . . . , r}. (3.2.15)



§3.2 Invariants of spinor space 31

This can only be true if ω ∈ Λ+(X̂) where X̂ = spC{x1, . . . , xr−h}. Now we examine
some cases. If h = r − 1 then Λ+(X̂) is 1-dimensional, thus sψ is proportional to zY ,
which is pure. But sψ is pure if and only if ψ is pure. This is a contradiction since
h < r. If h = r − 2 then

sψ =
(
λ1 + λ2x

12
)
zY , λi ∈ C . (3.2.16)

Thus ψ is a linear combination of two pure spinors with corresponding MTIS’s Y and
spC{x1, x2, y3, . . . , yr}. Since the dimension of their intersection is r − 2, sψ is pure,
which is a contradiction. If h = r − 3 then

sψ =
(
λ1 + λ2x

12 + λ3x
13 + λ4x

23
)
zY , λi ∈ C . (3.2.17)

As noted in (3.2.8), any linear combination of these spinors is pure, which is a contra-
diction, so N(ψ) ≤ r − 4.

In the case of a spinor ψ with pure index 2, Lemma 3.2.11 can be used to show that
the null space of ψ is precisely the intersection of the MTIS’s of its pure components.

Lemma 3.2.18 Let ψ be an impure semi-spinor such that ψ = u1 + u2, where u1 and
u2 are pure. Then Tψ = Tu1 ∩ Tu2.

Proof. It is clear that Tu1 ∩ Tu2 ⊆ Tψ. Consider w ∈ Tψ. Now

(xw + wx)ψ = 0 ∀ x ∈ Tu1 ∩ Tu2 (3.2.19)

so g(x,w) = 0 for all x ∈ Tu1 ∩Tu2 , that is, w ∈ (Tu1 ∩Tu2)
⊥. Suppose that dimC Tu1 ∩

Tu2 = h. Since Tu1 ∩ Tu2 ⊆ Tψ, in 2r dimensions we must have h ≤ r − 4 by Lemma
3.2.11. We may choose a Witt basis {xi, yi} such that Tu1 = spC{x1, . . . , xr}, Tu1∩Tu2 =
spC{x1, . . . , xh} and Tu2 = spC{x1, . . . , xh, yh+1, . . . , yr}. Let U1 = spC{xh+1, . . . , xr}
and U2 = spC{yh+1, . . . , yr}. Then Tu1 ∩ Tu2 is orthogonal to U1, U2 and itself. These
subspaces are pairwise-disjoint, and the sum of their dimensions is 2r−h so we see that

(Tu1 ∩ Tu2)
⊥ = (Tu1 ∩ Tu2)⊕ U1 ⊕ U2 . (3.2.20)

Hence we can write w as

w = w0 + w1 + w2 (3.2.21)

where
w0 ∈ Tu1 ∩ Tu2 , w1 ∈ U1 and w2 ∈ U2 .

Suppose that w1 = 0. Then since w, w0 ∈ Tψ and w2 ∈ Tu2 we have w2u1 = 0. But
then w2 ∈ Tu1 and so w2 = 0. That is, w ∈ Tu1 ∩ Tu2 . Similarly, if w2 = 0 then
w ∈ Tu1 ∩ Tu2 .

Conversely, suppose that w1 6= 0 and w2 6= 0. Since w ∈ Tψ, it is null, therefore
g(w1, w2) = 0 and we may choose a new Witt basis so that

xh+1 = w1 and yh+2 = w2 .
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Then since wψ = 0 we have

xh+1u2 = −yh+2u1 . (3.2.22)

Now h+ 4 ≤ r, so we can multiply both sides of (3.2.22) by xh+3 to obtain

xh+3xh+1u2 = −xh+3yh+2u1

= yh+2xh+3u1

= 0 . (3.2.23)

But also

yh+3xh+3xh+1u2 =
(
1− xh+3yh+3

)
xh+1u2

= xh+1u2 (3.2.24)

so xh+1u2 = 0, which is a contradiction. Thus the only possibility is that w1 = w2 = 0,
and w ∈ Tu1 ∩ Tu2 .

Since the MTIS’s corresponding to a pair of pure spinors with the same parity must
intersect in r (mod 2) dimensions, an immediate consequence of Lemma 3.2.18 is that
a spinor ψ with P (ψ) = 2 has N(ψ) ≡ r − 4 (mod 2). This is not necessarily the case
if P (ψ) > 2. For example, in fourteen dimensions (r = 7), Table 3.2 in §3.5 shows that
there are spinors of nullity 0. As we shall see in the next sections, for dimensions eight
and ten the value of N(ψ) determines P (ψ), and vice-versa.

While these two functions are invariants of the spinor space, in general they do not
separate the orbits. In the next sections we will determine the pure index and nullity
for all spinors up to twelve dimensions, and partially in fourteen dimensions. While
this relies partly on the classification of spinors in twelve and fourteen dimensions, since
our aims are modest we are able to use more elementary techniques than those used in
[Igu70] and [Pop80] for the full classification.

3.3 Spinors in eight dimensions and triality

Eight dimensions (r = 4) is the lowest even dimension which admits impure spinors.
Since the semi-spinor spaces are 8-dimensional and admit 4-dimensional pure subspaces
we can determine the pure index and nullity of an impure spinor.

Theorem 3.3.1 Let ψ be an impure semi-spinor in eight dimensions. Then N(ψ) = 0
and P (ψ) = 2.

Proof. The space of even semi-spinors S+ can be decomposed into two pure subspaces
S+

1 and S+
2 where

S+
1 = spC

{
zY , x

12zY , x
13zY , x

14zY
}
,

S+
2 = spC

{
x23zY , x

24zY , x
34zY , x

1234zY
}
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and S+ = S+
1 ⊕ S+

2 . A similar decomposition is possible for the space of odd semi-
spinors S−. Hence ψ can always be written as a sum of two pure spinors, one lying in
S+

1 and the other in S+
2 . The intersection of the MTIS’s represented by the two pure

spinors must have dimension 4 (mod 2), but it cannot be 4 or 2 since then ψ would be
pure. By Lemma 3.2.18 we must have N(ψ) = 0.

The spinor representation of Spin(8,C) has the interesting property of triality. The
three spaces V C, S+ and S− each have complex dimension eight, and the Spin-invariant
inner product ( , ) with ξ as adjoint is symmetric, C-bilinear and non-degenerate on
each of the semi-spinor spaces. We may take the inner product to be scaled so that

(ψ, φ) = (ψc, φc) ∀ ψ, φ ∈ S . (3.3.2)

Then the three spaces (V C, g), S+ and S− with ( , ) as metric are isomorphic as
orthogonal spaces. Cartan’s ‘principle of triality’ is the existence of an isometry which
cyclically permutes these three spaces. For this dimension and signature, the complex
semi-spinors are simply the complexifications of the real semi-spinors, and the charge
conjugation operator preserves the semi-spinor spaces. From Table 2.1, we can see that
this only occurs when the signature satisfies p − q ≡ 0 (mod 8). It then makes sense
to talk about the real semi-spinor spaces given by <eS± = {ψ ∈ S± : ψc = ψ}. On
<eS±, the inner product is positive-definite, so V , <eS+ and <eS− are also isomorphic
as real orthogonal spaces. For a semi-spinor u, equation (2.3.20) shows that u ⊗ ū is
an even form, while (2.3.23) shows that it is also even under ξ. In eight dimensions,
the only forms which satisfy both conditions are 0-forms, 4-forms and 8-forms. The
0-form component of u⊗ ū is proportional to (u, u), and dual to the 8-form component
by (2.3.28), so u is pure if and only if (u, u) = 0. Since the inner product is positive-
definite, pure spinors are necessarily complex.

Theorem 3.1.10 shows that the isotropy group of a pure spinor in eight dimensions
is SU(4). In general, the converse is not true. The following procedure due to Benn
shows how a pure spinor can be constructed from a complex impure semi-spinor of a
certain type [Ben90]. We then show that the isotropy group of the impure spinor is also
SU(4). Consider an impure semi-spinor u. Since (u, u) 6= 0 we can scale u to obtain
a unit spinor û. The charge conjugate ûc has the same parity as û and is also a unit
spinor by (3.3.2). Now (û, ûc) is real, and we have the inequality

(û, ûc) ≥ 1 (3.3.3)

with equality if and only if û = ûc. To see this, we observe that i(û − ûc) is a real
spinor. The inner product is positive-definite on real spinors, thus

−((û− ûc), (û− ûc)) ≥ 0 (3.3.4)

from which (3.3.3) is immediate.
Now it is clear that if (û, ûc) = 1 then u is proportional to a real spinor. On the

other hand, if we suppose that u is proportional to a real spinor, say u′, then the only
possible normalisations of u are û = ±1/

√
(u′, u′) u′. Thus û is real and so (û, ûc) = 1.

That is, (û, ûc) = 1 if and only if u is proportional to a real spinor.
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Suppose that u is not proportional to a real spinor. Then (û, ûc) > 1, and with
λ = (û, ûc) the spinor v̂ given by

v̂ =
λû− ûc

√
λ2 − 1

(3.3.5)

is orthogonal to û with (v̂, v̂) = −1. So if ψ is given by

ψ = û+ v̂ (3.3.6)

then ψ is null and hence pure. This argument can be used to show that the isotropy
group of u is SU(4), as was noted by Lawson and Michelsohn [LM89].

Theorem 3.3.7 Let u be a semi-spinor in eight dimensions such that u is not propor-
tional to a real spinor. Then Gu ' SU(4).

Proof. If u is pure then the result follows from Theorem 3.1.10. If u is impure then
we can construct a pure spinor ψ from u as in (3.3.6). Clearly Gu = Gû and Gû = Gûc

since the isotropy group is a real subgroup, hence Gu ⊆ Gψ.
Consider s ∈ Gψ. Expressing ψ in terms of û and ûc, the equation sψ = ψ can be

written as (√
λ2 − 1 + λ

)
sû− sûc =

(√
λ2 − 1 + λ

)
û− ûc . (3.3.8)

Taking the charge conjugate of (3.3.8) we have

sû−
(√

λ2 − 1 + λ
)
sûc = û−

(√
λ2 − 1 + λ

)
ûc (3.3.9)

since s and λ are real, and λ > 1. As
√
λ2 − 1 + λ > 1, we can solve the system of

equations (3.3.8) and (3.3.9) to show that sû = û, hence Gu = Gψ ' SU(4).

If we now consider u to be a spinor field on an 8-dimensional Riemannian spin
manifold M, then ψ is a pure spinor field on M. Furthermore, if u is globally parallel
then Theorem 3.1.17 shows thatH(M) ⊆ SU(4). The spinor ψ is also parallel, since the
covariant derivative is compatible with the spinor inner product and commutes with
charge conjugation. Thus the only parallel semi-spinors which do not immediately
imply a reduction of H(M) to SU(4) are those proportional to a real spinor, which
are necessarily impure. It is well-known that the principle of triality may be used to
determine the isotropy group of a real semi-spinor as follows. Let

E = V ⊕ <eS+ ⊕ <eS− . (3.3.10)

Then we have a faithful representation ρ : Spin(8) → Aut E induced from χ and the
spinor representation by

ρ(s)(x+ u+ v) = χ(s)x+ su+ sv (3.3.11)

where x ∈ V , u ∈ <eS+ and v ∈ <eS−. With the metric G defined by

G(Φ1,Φ2) = g(x1, x2) + (u1, u2) + (v1, v2) (3.3.12)
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for Φi = xi+ui+vi, we have an orthogonal space (E,G). Given a mapping σ ∈ SO(E,G)
which preserves each of the subspaces V , <eS+ and <eS−, there exists s ∈ Spin(8)
such that σ = ρ(s).

Because of the isometry between V , <eS+ and <eS−, it is possible to construct
an orthogonal transformation on (E,G) which permutes these three spaces, the triality
map T . The construction of T is given in [BT87]. The triality map is an isometric
isomorphism which sends

T : V −→ <eS+ −→ <eS− −→ V .

Associated with T is the triality automorphism τ of Spin(8). Given s ∈ Spin(8) we have
Tρ(s)T−1 ∈ SO(E,G), and Tρ(s)T−1 preserves V , <eS+ and <eS−. Thus Tρ(s)T−1 =
ρ(t) for some t ∈ Spin(8). Since ρ is faithful we can define τ by

Tρ(s)T−1 = ρ(τs) . (3.3.13)

We wish to find the subgroup of Spin(8) which leaves a spinor in <eS+ fixed, and
then see how V transforms under this subgroup. Because of the triality map, this is
equivalent to finding the group which leaves a vector in V fixed, and seeing how real
semi-spinors transform under it. The subgroup of SO(8) that leaves a vector x in V
fixed is isomorphic to SO(7). Denoting the pre-image of this group under χ by Gx, we
have Gx ' Spin(7) ⊂ Spin(8). The spinor space of Spin(7) has real dimension 8, so
the real semi-spinor spaces <eS+ and <eS− each carry an irreducible representation
of Gx. Now if ρ(s)x = x then ρ(τs)Tx = Tx. Since Gx leaves x fixed under the
vector representation, this shows that τGx ' Spin(7) leaves Tx ∈ <eS+ fixed under
the spinor representation. Since Gx acts irreducibly (under ρ) on <eS+ and <eS−, τGx
acts irreducibly on <eS− and V . Thus the isotropy group of a real spinor is Spin(7).

It is worth pointing out that the orbit structure is substantially different if semi-
spinors are classified under the complex Spin group. We have shown that there are at
least three distinct orbit types for spinors in eight dimensions, consisting of either pure
spinors, impure spinors with isotropy group SU(4), or impure real spinors with isotropy
group Spin(7). Under Spin(8,C), Igusa has shown that there are only two orbit types:
the orbit of pure spinors, and a collection of impure spinor orbits. The isotropy group
of an impure spinor under Spin(8,C) is Spin(7,C), while a pure spinor has isotropy
group SL(4,C) · (Ca)6. Here, the symbol · denotes the semi-direct product, and Ca is
the additive group of complex numbers.

3.4 Spinors in ten dimensions

In ten dimensions (r = 5) we shall once again represent the spinor space by a minimal
left ideal of the Clifford algebra. Later, we will utilise the fact that S admits pure
subspaces. The 1-dimensional subspaces spanned by x12345zY and zY are pure, rep-
resenting X and Y respectively. The 5-dimensional subspaces Λ1(X)zY and Λ4(X)zY
have bases {

x1zY , x
2zY , x

3zY , x
4zY , x

5zY
}
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and {
x2345zY , x

1345zY , x
1245zY , x

1235zY , x
1234zY

}
.

In each basis, the pairwise-intersection of the MTIS’s corresponding to each basis vector
intersect in three dimensions, so Λ1(X)zY and Λ4(X)zY are pure subspaces. From this
we can determine the pure index and nullity of an impure spinor in ten dimensions.

Theorem 3.4.1 Let ψ be an impure semi-spinor in ten dimensions. Then N(ψ) = 1
and P (ψ) = 2.

Proof. Since Γ acts transitively on the space of pure spinors, there exists s ∈ Γ which
maps some pure component of ψ to zY , hence sψ = (1 + ω)zY for some ω ∈ Λ+(X)
with S 0(ω) = 0. If S 2(ω) = 0 then ω ∈ Λ4(X), so ωzY is pure. In that case, clearly
P (ψ) = 2. Suppose that S 2(ω) 6= 0. The Lie algebra of Spin(2r,C) is the space of
two forms Λ2(V C) with the Clifford commutator as Lie bracket. Since Spin(2r,C) is
connected, exponentiation maps this Lie algebra onto Spin(2r,C), thus exp (−S 2(ω)) ∈
Spin(2r,C)∩Λ+(X). Since X is isotropic, its Clifford algebra is identical to its exterior
algebra. Using the definition of the exponential we have

exp (−S 2(ω)) = 1−S 2(ω) +
1
2
S 2(ω)2 , (3.4.2)

noting that forms of degree higher than five must vanish. Then it is clear that

exp (−S 2(ω)) sψ = (1 + ω′)zY where ω′ ∈ Λ4(X) . (3.4.3)

Thus ψ can be written as

ψ = s−1 exp (S 2(ω)) zY + s−1 exp (S 2(ω))ω′zY . (3.4.4)

Each of the components in (3.4.4) is pure, hence P (ψ) = 2.
The two spinors in (3.4.4) have the same parity, so the corresponding MTIS’s must

intersect in 1, 3 or 5 dimensions. They cannot intersect in 3 or 5 dimensions, since then
ψ would be pure. So by Lemma 3.2.18, N(ψ) = 1.

Knowing the pure index and nullity of an impure spinor in ten dimensions allows us
to relate it to a spinor in eight dimensions. Previously, we have used the fact that the
(complex) Clifford group acts transitively on the space of pure spinors. In the following
we show how the isotropy group of a spinor in ten dimensions is related to that of a
spinor in eight dimensions. Since the isotropy group is a subgroup of the real Spin
group, we must first show that in some instances two spinors are in the same orbit
under Spin(2r) rather than Spin(2r,C). Only in the former case can we guarantee that
their isotropy groups are isomorphic.

Lemma 3.4.5 Let (V, g) be a real 2r-dimensional orthogonal space with r > 1, and
let Y be a maximal totally isotropic subspace of V C. Given a null vector v there exists
s ∈ Spin(2r) such that χ(s)v ∈ Y .
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Proof. Consider a null vector v ∈ V C. Since g is positive-definite, we can put X = Y
and write V C = X ⊕ Y . Then v may be written as

v = x+ y for x ∈ X, y ∈ Y (3.4.6)

where x and y satisfy the inequalities g(x, x̄) ≥ 0 and g(y, ȳ) ≥ 0, with equality only
when x = 0 or y = 0. Since v is null we have g(x, y) = 0.

Now for any non-zero null vector u ∈ V C, the vector σu given by

σu =
1√

2g(u, ū)
(u+ ū) (3.4.7)

is a real unit vector. Its image under χ is a reflection in the plane orthogonal to u+ ū
followed by η, hence σu ∈ Pin(2r) with σu

−1 = σu. The action of σu on an arbitrary
vector w ∈ V C is given by

χ(σu)w = σuwσu
−1

= (2g(w, σu)− wσu)σu
= 2g(w, σu)σu − w (3.4.8)

since σu2 = 1. Furthermore, σu sends u to ū since

χ(σu)u =
2g(u, u+ ū)

2g(u, ū)
(u+ ū)− u

= ū . (3.4.9)

Suppose that y 6= 0. Then

χ(σy)v = σyv σy
−1

= −x+ ȳ (3.4.10)

and clearly χ(σy)v ∈ X. By (3.4.9), we can map w = χ(σy)v into Y by acting on it
with σw. That is,

χ(σwσy)v = χ(σw)χ(σy)v
= χ(σw)w
= −x̄+ y . (3.4.11)

Thus s = σwσy is in Spin(2r) and χ(s)v ∈ Y .
Now suppose that y = 0. Since r > 1 there is at least one vector x0 ∈ X which is

independent from x. From x0 we can construct x1 such that g(x, x1) = g(x, x̄1) = 0 by
taking

x1 = x0 −
g(x, x̄0)
g(x, x̄)

x . (3.4.12)
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Then

χ(σx1)x = −x (3.4.13)

and so

χ(σxσx1)x = χ(σx)χ(σx1)x
= −χ(σx)x
= −x̄ . (3.4.14)

Thus s = σxσx1 is in Spin(2r) and χ(s)v ∈ Y .

Note that in all even dimensions (not just r > 1) we can map v into Y using an
element of Pin(2r), either the identity if v ∈ Y (in which case x = 0) or σx if x 6= 0,
since then

χ(σx)v = x̄− y . (3.4.15)

Let ψ be an impure even spinor in ten dimensions. By Theorem 3.4.1, we can write

ψ = u1 + u2 (3.4.16)

where u1 and u2 are pure. Now N(ψ) = 1, so Lemma 3.2.18 shows that the intersection
of the MTIS’s represented by u1 and u2 is 1-dimensional. In fact, the vectorS 1(u1⊗ū2)
is in the intersection of Tu1 ∩ Tu2 and thus spans Tψ. For this dimension, the inner
product is symmetric, and it follows from (2.3.23) that

S 1 (u1 ⊗ ū2) = S 1 (u2 ⊗ ū1) . (3.4.17)

Then

S 1
(
ψ ⊗ ψ̄

)
= S 1(u1 ⊗ ū1) +S 1(u2 ⊗ ū2) + 2S 1(u1 ⊗ ū2) . (3.4.18)

Now u1 and u2 are pure, so S p(ui ⊗ ūi) = 0 for p 6= 5. Thus the vector v given by

v = S 1(ψ ⊗ ψ̄) (3.4.19)

also spans Tψ.
By Lemma 3.4.5, there exists s ∈ Spin(10) such that χ(s)v ∈ Y , thus acting on ψ

with s produces a spinor which is annihilated by χ(s)v ∈ Y . Putting φ = sψ, we have
Tφ = χ(s)Tψ ⊂ Y . Furthermore, since s ∈ Spin(10) it follows that Gφ ' Gψ (note that
it is important that s be in the real Spin group: this would not necessarily be the case
if s were in Spin(10,C)). Putting X = Y , we can choose a Witt basis {xi, yi} for V C

such that

y5 = χ(s)v
= sS 1(ψ ⊗ ψ̄)s−1

= S 1(sψ ⊗ sψ)
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= S 1(φ⊗ φ̄) (3.4.20)

and

xi = ȳi ∀ i ∈ {1, . . . , 5} . (3.4.21)

Now y5φ = 0, and it follows that φ can be written in the form

φ = ωzY , ω ∈ Λ+(X̂) (3.4.22)

where X̂ = spC{x1, x2, x3, x4} (compare this with Lemma 3.2.11). Now Λ+(X̂)zY
carries a spinor representation of the complexification of a real Clifford subalgebra. We
can construct an orthonormal basis {ea} for V by putting

e2j−1 = xj + yj

e2j = i(xj − yj) ∀ j ∈ {1, . . . , 5} . (3.4.23)

Then we have an orthogonal decomposition of V given by

V = V̂ ⊕W (3.4.24)

where

V̂ = sp{ea}, a ∈ {1, . . . , 8}
W = sp{e9, e10} . (3.4.25)

Putting Ŷ = spC{y1, y2, y3, y4} we have

V̂ C = X̂ ⊕ Ŷ . (3.4.26)

If ĝ is the restriction of g to V̂ C, it is clear that Λ+(X̂)zY carries a spinor representation
for C(V̂ C, ĝ) ' C8(C), that is, the complexified Clifford algebra generated by an 8-
dimensional orthogonal space. With this in mind, it is reasonable to ask how the
isotropy group of a spinor in ten dimensions is related to the isotropy group of a spinor
in eight dimensions.

Since V̂ is a subspace of V , it will be convenient to refer to the real Spin group of
C(V̂ C, ĝ) as Spin(V̂ , ĝ), noting that Spin(V̂ , ĝ) ' Spin(8) and Spin(V̂ , ĝ) ⊂ Spin(10).
Let

Ĝφ =
{
s ∈ Spin(V̂ , ĝ) : sφ = φ

}
. (3.4.27)

As shown in §3.3, Ĝφ is isomorphic to either SU(4) or Spin(7), and clearly Ĝφ ⊆ Gφ.
Our aim is to show that Ĝφ = Gφ.

Consider s ∈ Gφ. It is true that s is even with sξs = 1, so in order to show that
s ∈ Ĝφ we only need demonstrate that s ∈ C(V̂ , ĝ) and sV̂ s−1 = V̂ . Since s fixes φ we
have

χ(s)y5 = sS 1(φ⊗ φ̄)s−1
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= S 1(sφ⊗ sφ)
= y5 . (3.4.28)

From the reality of s it follows that sx5s−1 = x5. Now e9 = x5+y5 and e10 = i(x5−y5),
thus χ(s) fixes each element of W . We have

(ea)] s =
1
2

(eas− sea)

= 0 for a = 9 or a = 10 (3.4.29)

which implies that s is generated by V̂ only. That is, s ∈ C(V̂ , ĝ).
Since χ(s) ∈ SO(V, g) and V̂ is orthogonal to W , we can easily show that sV̂ s−1 =

V̂ . Consider v ∈ V̂ . Since V = V̂ ⊕W we can write

χ(s)v = v0 + w for some v0 ∈ V̂ , w ∈W . (3.4.30)

Now χ(s) fixes w, thus

g(χ(s)v, χ(s)w) = g(v0 + w,w)
= g(w,w) . (3.4.31)

But v and w are orthogonal, so g(w,w) = 0 and so w = 0. We can conclude that
Gφ = Ĝφ, and since Gψ ' Gφ, the isotropy group of an impure spinor in ten dimen-
sions is either SU(4) or Spin(7). Again, this is different if spinors are classified under
Spin(10,C), where it has been shown that there are only two distinct orbit types.

3.5 Spinors in twelve and higher dimensions

In the case when V is 12-dimensional (r = 6), it has proven difficult to extend our
classification of spinors without appealing to Igusa’s classification. This can be at-
tributed to the scarcity of pure spinors in higher dimensions, since the semi-spinor
spaces in twelve dimensions have dimension 32, while the pure subspaces have dimen-
sion at most 6. However, it is possible to put bounds on the pure index and nullity of
an impure spinors by using a dimensional reduction argument similar to that used in
§3.4. Let X̂ = spC{x1, . . . , x5} and Ŷ = spC{y1, . . . , y5}. Then in a similar manner to
(3.4.25), we have a real 10-dimensional subspace V̂ of V such that V̂ C = X̂ ⊕ Ŷ . The
spaces Λ(X) and Λ±(X) can be decomposed as

Λ(X) = Λ(X̂)⊕
(
x6 ∧ Λ(X̂)

)
Λ±(X) = Λ(X̂)± ⊕

(
x6 ∧ Λ∓(X̂)

)
(3.5.1)

and the subspaces Λ±(X̂)zY of S each carry a semi-spinor representation of C(V̂ C, g),
which is isomorphic to C10(C). It is convenient to write Ŝ± = Λ±(X̂)zY and so
S± = Ŝ± ⊕ x6Ŝ∓. Thus an even spinor ψ may be written as

ψ = ω1zY + x6ω2zY (3.5.2)
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where ω1 ∈ Λ+(X̂) and ω2 ∈ Λ−(X̂). Now ω1zY and ω2zY are in Ŝ+ and Ŝ−, respec-
tively, so by Theorem (3.4.1) they can each be written as a sum of at most two pure
spinors in ten dimensions. Note that by a “pure spinor in ten dimensions” we mean a
spinor which is annihilated by a 5-dimensional totally isotropic subspace of V̂ C. Since
each spinor in Ŝ+ is annihilated by y6, and each spinor in x6Ŝ− is annihilated by x6,
it is clear that ω1zY and x6ω2zY can each be written as a sum of at most two pure
spinors in twelve dimensions. Thus P (ψ) ≤ 4.

If ψ is impure then by Lemma 3.2.11 we have N(ψ) = 0, 1 or 2. We will see later
that there exist spinors of nullity 0 and 2. Suppose that N(ψ) = 1. There exists s ∈ Γ
such that sTψs−1 ⊆ Y , and we may choose a Witt basis such that y6 spans sTψs−1.
Then sψ has the form

sψ = ωzY , ω ∈ Λ+(X̂) . (3.5.3)

Since ωzY is an impure spinor in ten dimensions, it is annihilated by a 1-dimensional
subspace of V̂ C, as well as by y6. This is a contradiction, hence N(ψ) = 0 or 2.

We have established that there may be spinors with pure index at most four. How-
ever, given an impure spinor written as a sum of 3 or 4 pure spinors, it is difficult to
say whether or not it could be written as a sum of only 2 or 3 pure spinors. In the
following we state a necessary condition that an impure spinor must satisfy in order to
have pure index 2, and consequently we are able to give an example of a spinor with
pure index 3.

Proposition 3.5.4 Let ψ be an impure semi-spinor in twelve dimensions with P (ψ) =
2. Then S 2(ψ ⊗ ψ̄) is either decomposable or of maximal rank.

Proof. Let ψ = u1 + u2 where u1 and u2 are pure. From (2.3.23) we have

S 2(ψ ⊗ ψ̄) = 2S 2(u1 ⊗ ū2) . (3.5.5)

Since ψ is impure, N(ψ) = 0 or 2. If N(ψ) = 2, then S 2(u1 ⊗ ū2) = zTu1∩Tu2
by

Lemma 2.3.35, and so it is decomposable.
Suppose that N(ψ) = 0. Now there exists s ∈ Γ such that su1 = zY , and since the

MTIS represented by su2 is complementary to Y , we may choose X = Tsu2 . So we may
assume without loss of generality that that u1 represents Y and u2 represents X. We
can construct an orthonormal (but not real) basis {ea} for V C by taking

e2j−1 = xj + yj

e2j = i(xj − yj) ∀ j ∈ {1, . . . , 6}. (3.5.6)

In this basis, the 2-form part of u1 ⊗ ū2 can be written as

S 2(u1 ⊗ ū2) = − 1
128

Tr(u1 ⊗ ū2eab)eab

= − 1
128

(u2, eabu1)eab . (3.5.7)

(The factor of 128 is twice the trace of the identity, noting that for r = 6 the Clifford
algebra is isomorphic to M64(C).) Since the basis is orthonormal, ea = ea for each a,



§3.5 Spinors in twelve and higher dimensions 42

so we can expand (3.5.7) to

−128S 2(u1 ⊗ ū2) =
r∑

j,k=1

(u2, (e2j ∧ e2k)u1)e2j ∧ e2k

+
r∑

j,k=1

(u2, (e2j−1 ∧ e2k−1)u1)e2j−1 ∧ e2k−1

+ 2
r∑

j,k=1

(u2, (e2j ∧ e2k−1)u1)e2j ∧ e2k−1 (3.5.8)

where

e2j ∧ e2k = −xjk − yjk + xjyk − xkyj

e2j−1 ∧ e2k−1 = xjk + yjk + xjyk − xkyj

e2j ∧ e2k−1 = i
(
xjk − yjk + xjyk + xkyj − δjk

)
= i

(
xjk − yjk + xj ∧ yk + xk ∧ yj

)
. (3.5.9)

Since yju1 = 0 and xju2 = 0 for all j, the first two summations in (3.5.8) vanish, and
we have

−64S 2(u1 ⊗ ū2) = (u2, u1)
r∑

j,k=1

δjk
(
xjk − yjk + xj ∧ yk + xk ∧ yj

)
= 2(u2, u1)

(
x1 ∧ y1 + x2 ∧ y2 + · · ·+ x6 ∧ y6

)
. (3.5.10)

Now (u2, u1) 6= 0 since Tu1 ∩Tu2 = {0}, so S 2(u1⊗ ū2) is of maximal rank, in the sense
that the 12-form

S 2(u1 ⊗ ū2) ∧ . . . ∧S 2(u1 ⊗ ū2)︸ ︷︷ ︸
6

(3.5.11)

is non-zero.

Now that we have some necessary conditions for spinor in twelve dimensions to have
pure index 2, we can construct a spinor which does not satisfy these conditions. Let

u1 = x12zY

u2 = x34zY

u3 = x56zY .

These spinors have been chosen so that they are each pure, with dimC Tui ∩ Tuj =
2 for i 6= j, and so that the sum ψ = u1 +u2 +u3 is impure. On calculating the 2-form
part of ψ ⊗ ψ̄ we find that

S 2(ψ ⊗ ψ̄) =
1
8
(zY , x123456zY )

(
y12 + y34 + y56

)
. (3.5.12)
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ω N(ωzY ) P (ωzY )

(1) 1 6 1

(2) 1 + x2356 2 2

(3) 1 + x2356 + x1346 0 3

(4) 1 + x2356 + x1346 + λx1245 , λ ∈ C∗ 0 2

Table 3.1: Representatives of the orbits of S+ under Spin(12,C).

Clearly S 2(ψ ⊗ ψ̄) is neither decomposable nor of maximal rank, hence ψ cannot be
written as a sum of two pure spinors. So P (ψ) must be 3.

Unfortunately, we have been unable to settle the question of whether or not there
are spinors with pure index 4. We must appeal to Igusa’s classification, which shows
that such spinors do not exist in this dimension. Table 3.1 gives the representatives
listed in [Igu70]. We have calculated the nullity and pure index of each representative.

By direct calculation, we can show that if ψ =
(
1 + x2356 + x1346

)
zY then

S 2(ψ ⊗ ψ̄) = −1
8
(zY , x123456zY )

(
x36 + y14 + y25

)
, (3.5.13)

so we can conclude that spinor (3) has pure index 3. For each non-zero λ, a spinor of
type (4) represents a distinct orbit. Although this spinor is written as a sum of four pure
spinors, Igusa has shown that it is equivalent to a spinor of the form

(
1 + µx123456

)
zY ,

where µ ∈ C∗, so spinors of this type have pure index 2.
Table 3.2 lists the representatives of the orbits of S+ in fourteen dimensions (r = 7),

based on Popov’s classification [Pop80]. Each spinor in the table represents a distinct
orbit, with the exception of the spinors of type (5). Two spinors of type (5) with
parameters λ1 and λ2 are equivalent if and only if (λ1)8 = (λ2)8. While it is a simple
matter to determine the null space of a spinor, and hence the nullity, we have been
unable to calculate the pure index of all the spinors in Table 3.2. Recall that in
fourteen dimensions, a spinor with pure index 2 must have nullity 1 or 3. From this we
can deduce that spinor (4) has pure index 3, spinors (5), (6) and (9) have pure index
either 3 or 4, and the pure index of spinor (7) is 3, 4 or 5. In the case of spinor (8), we
can refer to Table 3.1. Let ψ be spinor (8) and suppose that P (ψ) = 2. Then

ψ = (ω1 + ω2) zY (3.5.14)

where ω1zY and ω2zY are pure. But Tψ is spanned by y7, so by Lemma 3.2.18 we must
have

y7ω1zY = 0 and
y7ω2zY = 0 , (3.5.15)

which implies that ω1 and ω2 are in Λ+(X̂) where X̂ = spC{x1, . . . , x6}. Thus they
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ω N(ωzY ) P (ωzY )

(1) 1 7 1

(2) 1 + x4567 3 2

(3) 1 + x123456 1 2

(4) 1 + x1237 + x123456 0 3

(5) λ
(
1 + x1237 + x4567 + x123456

)
, λ ∈ C∗ 0 -

(6) 1 + x1237 + x3457 + x123456 0 -

(7) 1 + x1237 − x3457 − x2567 + x123456 0 -

(8) 1 + x2356 + x1346 1 3

(9) 1 + x1237 + x2356 + x1346 0 -

Table 3.2: Representatives of the orbits of S+ under Spin(14,C).

are also pure spinors in twelve dimensions. This contradicts the fact that spinor (3) in
Table 3.1 cannot be written as a sum of two pure spinors, hence P (ψ) = 3.

Since the pure index of a spinor in fourteen dimensions is at most 5, dimensional
reduction shows that a spinor in sixteen dimensions has pure index at most 10. Accord-
ing to [Pop80], sixteen is the highest number of dimensions in which it is reasonable to
attempt a classification of spinors of the type described by Igusa. This has been done
in [AE82]. Difficulties in principle arise in higher dimensions. Recently, a coarse classi-
fication of spinors using their nullity has been given by Trautman and Trautman for all
dimensions [TT94]. In their notation, Σh

r is the space of semi-spinors of 2r-dimensional
space with nullity h. For each h, Σh

r is either empty or consists of a collection of spinor
orbits. The key theorem of [TT94] is that

(1) dim Σr
r = 1 + 1

2r(r − 1),

(2) Σr−1
r , Σr−2

r , Σr−3
r and Σr−5

r are empty, and

(3) dim Σh
r = h(2r − 1

2(3h+ 1)) + 2r−h−1 for h = r − 4 or h < r − 5.

In particular, they show that Σ0
r is open and dense in the space of semi-spinors, so in

sufficiently high dimensions, a generic semi-spinor has nullity 0.



Chapter 4

Spinor Equations for Shear-free
Congruences

In the previous chapter we examined the properties of spinors in a purely algebraic con-
text. In this chapter, we use the relationship between real null vector fields and spinors
to analyse certain equations for vector fields. We restrict our attention to spacetime
(M, g), where we take the Lorentzian signature to be (3, 1). For this signature, the
complexification of the tangent space at each p ∈ M admits 2-dimensional MTIS’s
with real index 1. That is to say, each MTIS has a 1-dimensional subspace spanned
by a real null vector. In four dimensions all semi-spinors are pure, and so the corre-
spondence between pure spinor directions and MTIS’s gives rise to a correspondence
between semi-spinors and real null directions. We can fix the scaling factor by using
the isomorphism between S⊗S∗ and C3,1(C) described in §2.3. Then any equation for
a null vector field has an equivalent spinorial form. This technique has been used with
great success in the study of null shear-free congruences. In a basis {ea}, the condition
that the real null vector k determined by a semi-spinor u be tangent to a congruence
of null shear-free geodesics (NSFG) is

(u,∇Xau)e
au = 0 . (4.1)

We will refer to spinors satisfying (4.1) as shear-free.
In our notation, the twistor equation is

∇Xu−
1
4
X[Du = 0 ∀ X ∈ ΓTM . (4.2)

By putting X = Xa and multiplying on the left by ea, it can be seen that the numer-
ical factor is chosen precisely so that we cannot conclude that u is parallel. Spinors
satisfying (4.2) are called twistors. On spacetime, Penrose has defined the null vector
field corresponding to a twistor as being tangent to a ‘Robinson congruence’ [PR86a].
A Robinson congruence is shear-free, however not all shear-free congruences are Robin-
son congruences. Sommers [Som76] has shown that the shear-free condition (4.1) is
equivalent to a modification of the twistor equation, with terms involving a complex
1-form appearing on the right-hand side of (4.2). Sommers’ equation is usually pre-
sented using the 2-component Newman-Penrose formalism. In this chapter we show

45
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how Sommers’ equation may be written in ‘index-free’ notation. We interpret the ad-
ditional 1-form terms as arising from a GL(1,C)-gauged covariant derivative, for which
Sommers’ equation is the corresponding ‘gauged’ twistor equation.

As a preliminary to the study of null shear-free vector fields, we examine the spinor
equation for a null conformal Killing vector k. Such vectors form a special case of
NSFG’s, however there appears to be no simple condition similar to (4.1) for the cor-
responding spinor. Usually, the conformal Killing (CK) equation is expressed in terms
of the Lie derivative of g with respect to k. It may also be expressed as an equa-
tion for the 1-form k[ using the covariant derivative, the exterior derivative and the
co-derivative. In this form it is easy to see the relationship between CK vectors and
NSFG vectors. Benn has shown that the shear-free equation can be interpreted as a
‘gauged’ version of the CK equation [Ben94]. From this form of the CK equation, we
are able to show that a conformal Killing vector corresponds to a spinor satisfying a
U(1)-gauged twistor equation. It is then a simple matter to obtain the spinorial form
of the shear-free equation by adding an extra term to the U(1)-covariant derivative.

A vector field k satisfying Benn’s shear-free equation is shear-free whether k is null
or non-null, on a manifold of arbitrary dimension and signature. On spacetime, a real
non-null vector corresponds (not uniquely) to a pair of semi-spinors, or equivalently, to
a Dirac spinor. In §4.8, we determine a spinor equation for a Dirac spinor ψ which is
equivalent to the condition that the vector corresponding to ψ is shear-free. For special
choices of ψ and gauge terms, this reduces to the conformal Killing and shear-free
equations in both the null and non-null cases.

4.1 Spinors of Lorentzian space

As the Clifford algebra of a vector space with Lorentzian signature has certain special
properties not found in a general Clifford algebra, a brief review is worthwhile. The
real Clifford algebra C3,1(R) is isomorphic to the algebra of 4 × 4 real matrices. An
arbitrary basis {ea} for covectors is indexed by elements of the set {0, 1, 2, 3}, where
e0 is timelike, that is, g(e0, e0) < 0. We take the set {eA} = {1, ea, eab (a < b), eaz, z}
to be the ‘standard’ basis for forms, and hence for C3,1(R). In an orthonormal basis
the volume 4-form is z = e0 ∧ e1 ∧ e2 ∧ e3.

The Clifford algebra C3,1(C) is simply the complexification of C3,1(R), so it iso-
morphic to the algebra of 4 × 4 complex matrices. Then the space S of Dirac spinors
has complex dimension four. Table 2.1 shows that the charge conjugate is involutory,
thus S decomposes into two spaces of Majorana spinors (with real dimension four),
each carrying an irreducible representation of the real subalgebra. As z2 = −1, the
charge conjugate interchanges the semi-spinor spaces. With ž = iz, the semi-spinor
spaces are the 2-dimensional eigenspaces of ž with eigenvalues ±1. They each carry
an irreducible representation of C+

3,1(C), which induce irreducible representations of
Spin(4,C) ' SL(2,C) × SL(2,C). The inner product on S is antisymmetric, and may
be scaled so that

(ψ, φ) = (ψc, φc) ∀ ψ, φ ∈ S . (4.1.1)

The inner product is block-diagonal on S+ ⊕ S−, so the inner product of two semi-



§4.1 Spinors of Lorentzian space 47

spinors of opposite parity is zero. However, the restriction of ( , ) to S+ or S− remains
non-degenerate. Since each semi-spinor space is 2-dimensional, it follows from the
antisymmetry of ( , ) that

(u, v)w + (v, w)u+ (w, u)v = 0 (4.1.2)

for u, v and w lying in the same semi-spinor space.
Using (2.3.27), an element of S ⊗ S∗ can be expanded in the standard basis for

C3,1(C). So that (2.3.25) is satisfied, we choose {eA} so that

{eA} =
{

1
4
,

1
4
ea, −

1
4
eab (a < b),

1
4
eaz, −

1
4
z

}
. (4.1.3)

Then for any spinors ψ, φ ∈ S,

ψ ⊗ φ̄ =
1
4
(φ, ψ) +

1
4
(φ, eaψ)ea − 1

8
(φ, eabψ)eab +

1
4
(φ, eazψ)eaz − 1

4
(φ, zψ)z .

Note that the 2-form component picks up an extra factor of 1/2 due to double-counting.
From the properties of the inner product, certain components of a symmetric or an-
tisymmetric combination of two semi-spinors will vanish. Suppose that u and v are
semi-spinors with the same parity. From (2.3.20) we can see that u⊗ v̄ is an even form.
We use the convention that a (1, 1) tensor is symmetric if the (0, 2) tensor related by
to it by metric duality is symmetric. Then

Sym(u⊗ v̄) =
1
2

(u⊗ v̄ + v ⊗ ū)

=
1
2

(
u⊗ v̄ − (u⊗ v̄)ξ

)
by (2.3.23)

=
1
2

(u⊗ v̄ −S 0(u⊗ v̄) +S 2(u⊗ v̄)−S 4(u⊗ v̄))

= S 2(u⊗ v̄)

= −1
8
(v, eabu)eab u, v ∈ S+ or S− . (4.1.4)

This 2-form is an eigenvector of the Hodge dual, since

∗(u⊗ v̄ + v ⊗ ū) = i (u⊗ v̄ + v ⊗ ū)ž by (2.2.7)
= i

(
u ⊗ žv + v ⊗ žu

)
= ± i (u⊗ v̄ + v ⊗ ū) u, v ∈ S± . (4.1.5)

We will refer to eigenvectors of the Hodge dual with eigenvalue +i or −i as self-dual
or anti self-dual, respectively. Similarly,

Alt(u⊗ v̄) =
1
2

(u⊗ v̄ − v ⊗ ū)

= S 0(u⊗ v̄) +S 4(u⊗ v̄)

=
1
4
(v, u) +

1
4
(v, žu)ž
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=
1
4
(v, u)± 1

4
i∗(v, u) u, v ∈ S± . (4.1.6)

If u and v have opposite parity then u⊗ v̄ is an odd form, and we have

Alt(u⊗ v̄) = S 1(u⊗ v̄)

=
1
4
(v, eau)ea u ∈ S±, v ∈ S∓ (4.1.7)

Sym(u⊗ v̄) = S 3(u⊗ v̄)

= −1
4
(v, eažu)eaž

= ∓ i∗S 1(u⊗ v̄) u ∈ S±, v ∈ S∓ . (4.1.8)

Using equation (4.1.7), we can associate a real null vector with a semi-spinor u. In
four dimensions, u and uc are pure spinors with opposite parity. By Lemma 2.3.35, the
intersection of Tu and Tuc is 1-dimensional. Suppose that x spans Tu∩Tuc . Then xu = 0
and xuc = 0, but also x̄uc = 0 and x̄u = 0. Therefore x̄ ∈ Tu ∩ Tuc , and we must have
x̄ = eiλx for some λ ∈ R. Then the covector k[ = eiλ/2x is real, null and spans Tu∩Tuc .
Thus any semi-spinor uniquely determines a real null direction. Conversely, a real null
vector uniquely determines a semi-spinor direction. Suppose that k[ is contained in a
MTIS X. Then there exists a semi-spinor u which represents X, hence k[u = 0. Given
another semi-spinor v independent from u, we have a basis {u, v} for semi-spinors of a
given parity. In four dimensions, Lemma 2.3.35 shows that the intersection of Tu and
Tv can only be {0} for independent semi-spinors. Now suppose that k[(λu+µv) = 0 for
some λ, µ ∈ C. Then µk[v = 0, but k[ cannot annihilate v, hence µ = 0. So u is unique
up to complex scalings. From Lemma 2.3.35 it is clear that Tu ∩ Tuc is 1-dimensional,
so in fact k[ spans Tu ∩ Tuc . By (4.1.1) and the properties of the inner product, we
have (uc, eau) = −(uc, eau). So for a given u, we can fix k by taking

k[ = 4S 1(iu⊗ ūc)
= (iuc, eau)ea . (4.1.9)

For a given k there is still a U(1)-scaling freedom in the choice of u, since the transfor-
mation u 7→ eiλu, λ ∈ R leaves k fixed.

4.2 Vector fields associated with spinors

On a spacetime (M, g), the relations given in §4.1 show the correspondence between
spinor fields and differential forms on M. In particular, (4.1.9) shows the relationship
between a semi-spinor and a real null vector field. In a similar fashion, we can obtain
a real timelike vector field from a Dirac spinor field ψ by taking the 1-form part of
ψ ⊗ zψc. Let

x = 4S 1(ψ ⊗ zψc)
= (zψc, eaψ)ea . (4.2.1)
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Then x is real since

x̄ = (zψ, eaψc)ea

= −(eaψc, zψ)ea

= (zψc, eaψ)ea . (4.2.2)

Any Dirac spinor can be written as the sum of an odd semi-spinor and an even semi-
spinor. Suppose that ψ = u+vc where u, v ∈ S+(M), with corresponding null vectors

k[ = (iuc, eau)ea and l[ = −(ivc, eav)ea .

Then

x = (−ižψc, eaψ)ea

= (iuc − iv, eau+ eav
c)ea

= k[ − l[ . (4.2.3)

Then g(x, x) = −2g(k[, l[). We can find g(x, x) in terms of u and v using the Fierz
rearrangement formula (2.3.31). Then

g(x, x) = 2(uc, eau)(v, eavc)
= 2(uc, eAvc)(v, eaeAeau) by (2.3.31) . (4.2.4)

Since u and v have the same parity, the only contributions to the sum over A come
from even basis elements. Furthermore, by (2.2.6) we have eaebcea = 0. Thus

g(x, x) =
1
2
(uc, vc)(v, eaeau)−

1
2
(uc, zvc)(v, eazeau)

= 2(uc, vc)(v, u) + 2(uc, zvc)(v, zu)
= −4|(u, v)|2 . (4.2.5)

Hence x is timelike if and only if u and v are linearly independent. In particular, x
is null if ψ is a semi-spinor, or if it is Majorana. Similarly, it can be shown that the
vector field (iψc, eaψ)Xa is real and spacelike.

4.3 The conformal Killing equation

A vector field K is conformal Killing if

LKg = 2λg λ ∈ F(M) . (4.3.1)

Geometrically, this means that the operation of Lie transporting vectors along the flows
of a Killing field is a conformal isometry. Equation (4.3.1) can also be written in terms
of the covariant derivative. For an arbitrary vector field, the covariant derivative ∇K[

of K is a (2, 0) tensor given by

∇K[(X,Y ) = g(∇XK,Y ) ∀ X, Y ∈ ΓTM . (4.3.2)
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The covariant derivative can be decomposed into symmetric and antisymmetric com-
ponents, and the symmetric component can be decomposed further into a trace-free
component and the trace. For arbitrary K, the Lie derivative of g is related to ∇ by

LKg(X,Y ) = g(∇XK,Y ) + g(∇YK,X) , (4.3.3)

from which it is clear that 2Sym(∇K[) = LKg. Then in four dimensions, the covariant
derivative can be written as

∇XK
[ =

1
2
X dK[ − 1

4
d∗K[X[ +

1
2

(
LKg −

1
4
Tr(LKg)g

)
(X) ,

where the trace of a (2, 0) tensor T is T (Xa, X
a). Note that for a symmetric (2, 0)

tensor, the 1-form field T (X) is defined unambiguously. Then (4.3.1) is equivalent to

∇XK
[ =

1
2
X dK[ − 1

4
d∗K[X[ ∀ X ∈ ΓTM . (4.3.4)

Putting X = Xa and wedging ea onto both sides of (4.3.4) shows that the numerical
coefficients are such that we cannot conclude that dK[ = 0. Similarly, by taking the
interior derivative with respect to Xa, we cannot conclude that d∗K[ = 0. Contracting
(4.3.3) on Xa and Xa, it is clear that when K satisfies (4.3.1) we have λ = −1

4d
∗K[.

When λ = 0, K is called a Killing vector.
Now we will derive the spinorial version of the conformal Killing equation. If x is

the null or timelike covector field corresponding to a Dirac spinor ψ as in (4.2.1), we
have

∇Xax = Xa(zψc, ebψ)eb + (zψc, ebψ)∇Xae
b

= (z∇Xaψ
c, ebψ)eb + (zψc,∇Xaeb ψ)eb

+ (zψc, eb∇Xaψ)eb + (ψc, ebzψ)∇Xae
b . (4.3.5)

For a metric-compatible connection we have

Xc ∇Xae
b +Xb ∇Xaec = 0 (4.3.6)

so the terms in (4.3.5) involving derivatives of the basis covectors cancel, hence

∇Xax = (z∇Xaψ
c, ebψ)eb + (zψc, eb∇Xaψ)eb

= 2<e(zψc, eb∇Xaψ)eb . (4.3.7)

The remaining terms of (4.3.4) are given by

d∗xX[
a = −2<e(zψc,Dψ)ea

= −2<e(zψc, gabDψ)eb (4.3.8)
Xa dx = ∇Xax−∇Xbx(Xa)eb

= 2<e(zψc, eb∇Xaψ)eb − 2<e(zψc, ea∇Xbψ)eb

= 2<e(zψc, eb∇Xaψ − ea∇Xbψ)eb . (4.3.9)
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Thus x] is a null or timelike conformal Killing vector if and only if ψ satisfies

<e(zψc, ea∇Xbψ + eb∇Xaψ −
1
2
gabDψ) = 0 . (4.3.10)

Since the conformal factor is related to ψ by λ = 1
2 <e(zψc,Dψ), x] is a Killing vector

if it satisfies <e(zψc,Dψ) = 0 in addition to (4.3.10). We will refer to (4.3.10) as the
spinorial conformal Killing equation. We can re-write (4.3.10) in a compact form using
the twistor operator LX , given by

LXψ = ∇Xψ −
1
4
X[Dψ ψ ∈ ΓS(M) . (4.3.11)

Now

X[LY ψ + Y [LXψ = X[∇Y ψ −
1
4
X[Y [Dψ + Y [∇Xψ −

1
4
Y [X[Dψ

= X[∇Y ψ + Y [∇Xψ −
1
2
g(X,Y )Dψ (4.3.12)

so (4.3.10) is equivalent to

<e(zψc, X[LY ψ + Y [LXψ) = 0 ∀ X, Y ∈ ΓTM . (4.3.13)

4.4 Null conformal Killing vectors

The simplest case of (4.3.13) is for a null vector field. Consider a semi-spinor u, with k[

defined as in (4.1.9). Since the null space of u is 2-dimensional, there exists a complex
vector m independent from k such that m[u = 0. We can scale m so that g(m, m̄) = 1.
We can also find a real null vector l such that g(k, l) = 1, with all other pairs zero, so
that {k, l,m, m̄} is a a null basis. The Clifford relations then imply that

k[l[ + l[k[ = 2
m[m̄[ + m̄[m[ = 2 (4.4.1)

while all other pairs anti-commute. We can obtain a basis {u, v} for semi-spinors by
setting v = 1

2m̄
[l[u. Clearly, the null space of v is spanned by {l[, m̄[}. Multiplying v

on the left by k[m[, it follows that u = 1
2k

[m[v. Now

(iuc, eav)ea =
1
2
(iuc, eam̄

[l[u)ea

=
1
2
(iuc, (2m̄a − m̄[ea)l[u)ea

= (iuc, l[u)m̄[ since m̄[uc = 0
= m̄[ since g(k, l) = 1 . (4.4.2)
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We can find the remaining basis vectors in a similar fashion, giving

k[ = (iuc, eau)ea m[ = (ivc, eau)ea

l[ = −(ivc, eav)ea m̄[ = (iuc, eav)ea .
(4.4.3)

Our goal now is to find an equation for a semi-spinor corresponding to a null CK vector
which has a form similar to that of the twistor equation. It is simplest to work with
the components of the twistor operator. Since the twistor operator is linear in X and
preserves the parity of u, there exist complex 1-forms α and β such that

LXu = α(X)u+ β(X)v . (4.4.4)

Since eaLXa = 0, these 1-forms satisfy the relation αu + βv = 0. We can expand a
1-form in the null basis as

α = α(l)k[ + α(k)l[ + α(m̄)m[ + α(m)m̄[ . (4.4.5)

Then from αu + βv = 0 and the relationship between u and v, the components of α
and β are related by

α(k) + β(m̄) = 0 and α(m)− β(l) = 0 . (4.4.6)

Since žu = ±u, we have zu = ∓iu and (4.3.13) is equivalent to

<e(iuc, X[LY u+ Y [LXu) = 0 ∀ X, Y ∈ ΓTM . (4.4.7)

Substituting the components of LXu into (4.4.7), we have

<e(iuc, α(X)Y [u+ α(Y )X[u+ β(X)Y [v + β(Y )X[v) = 0 (4.4.8)

for all real vector fields X and Y . Clearly, (4.4.8) is not linear over complex vectors,
however we can write it as a real tensor equation. First we define a complex symmetric
(2, 0) tensor W by

W (X,Y ) = (iuc, α(X)Y [u+ α(Y )X[u+ β(X)Y [v + β(Y )X[v) . (4.4.9)

Then it is clear that (4.4.8) is equivalent to

<e [W (X,Y )] = 0 (4.4.10)

for all real vector fields X and Y . If W acts on complex vector fields we have

W (X,Y ) = W̄ (X̄, Ȳ ) . (4.4.11)

However, since X and Y are real (4.4.10) is equivalent to

<e [W ] (X,Y ) = 0 . (4.4.12)
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Now for an arbitrary (real or complex) vector field X we have

(iuc, X[u) = k[(X) and (iuc, X[v) = m̄[(X) (4.4.13)

so from (4.4.9) we see that

W = 2Sym
(
α⊗ k[ + β ⊗ m̄[

)
. (4.4.14)

Then the real symmetric tensor T = 2<e[W ] is given by

T = 2Sym
(
(α+ ᾱ)⊗ k[ + β̄ ⊗m[ + β ⊗ m̄[

)
.

It is clear that (4.4.8) is equivalent to T = 0. Since T is symmetric, it has ten indepen-
dent components. Evaluating T (k, k), T (k, l),. . . , T (m̄, m̄), we find that the equation
T = 0 is equivalent to the following six equations for the components of LXu:

<e[α(k)] = 0 (4.4.15)
β(k) = 0 (4.4.16)

<e[α(l)] = 0 (4.4.17)
α(m) + ᾱ(m) + β(l) = 0 (4.4.18)

β(m) = 0 (4.4.19)
<e[β(m̄)] = 0 . (4.4.20)

Using these equations together with (4.4.6), we can show that u satisfies the twistor
equation of a U(1)-gauged covariant derivative.

Theorem 4.4.21 Let u be a semi-spinor on a spacetime (M, g). If k = (iuc, eau)Xa

is conformal Killing then there exists a real 1-form A such that

∇̂Xu−
1
4
X[D̂u = 0 ∀ X ∈ ΓTM (4.4.22)

where

∇̂Xu = ∇Xu+ iA(X)u (4.4.23)
D̂u = Du+ iAu . (4.4.24)

Conversely, if u satisfies (4.4.22) for some real A, then k is conformal Killing.

Proof. The gauged Dirac operator in (4.4.22) is simply the Dirac operator of ∇̂, that
is, D̂ = ea∇̂Xa . Exposing A, it is clear that (4.4.22) is equivalent to

LXu = −iA(X)u+
1
4
iX[Au ∀ X ∈ ΓTM. (4.4.25)

Using the Clifford relations, we can rearrange this as

LXu = −iA(X)u+
1
4
i(2A(X)−AX[)u
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= −1
2
iA(X)u− 1

4
AX[u . (4.4.26)

Equation (4.4.25) is clearly linear in X, so if it holds for real vectors then it also holds
for complex vectors. We will show that there exists a real 1-form A such that (4.4.25)
is satisfied for all complex vectors. If k is a conformal Killing vector then u satisfies
(4.4.7), and hence the components of LXu satisfy the equations (4.4.15)–(4.4.20). Now
we simply evaluate (4.4.26) on each basis vector to solve for the components of A. For
X = k we have

α(k)u = −1
2
iA(k)u ,

since β(k) = 0 and k[u = 0. Therefore

A(k) = 2iα(k) . (4.4.27)

Since <e[α(k)] = 0 we know that α(k) is pure imaginary, so this equation is consistent
with A being real. Similarly, if X = m then we find that

α(m)u = −1
2
iA(m)u

and so

A(m) = 2iα(m) . (4.4.28)

The calculations for the remaining vectors are only slightly more complicated. When
X = l we first expand A using the null basis. Then

α(l)u+ β(l)v = −1
2
iA(l)u− 1

4
i
(
A(l)k[ +A(k)l[ +A(m̄)m[ +A(m)m̄[

)
l[u

= −iA(l)u− 1
2
iA(m)v

hence

A(l) = iα(l) (4.4.29)
A(m) = 2iβ(l) . (4.4.30)

Once again, α(l) is pure imaginary, so this is consistent with the reality of A. By
(4.4.6), equation (4.4.30) is consistent with (4.4.28). Finally, when X = m̄ we have

α(m̄)u+ β(m̄)v = −1
2
iA(m̄)u− 1

4
i
(
A(l)k[ +A(k)l[ +A(m̄)m[ +A(m)m̄[

)
m̄[u

= −iA(m̄)u+
1
2
iA(k)v

hence

A(k) = −2iβ(m̄) (4.4.31)
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A(m̄) = iα(m̄) . (4.4.32)

Equation (4.4.31) is consistent with (4.4.27) by (4.4.6). Since we require A to be real
we must have A(m) = A(m̄). Taking the conjugate of (4.4.18), from (4.4.32) we have

A(m̄) = −i
(
α(m) + β̄(l)

)
= −2iα(m) by (4.4.6)
= A(m) . (4.4.33)

So if k is conformal Killing then u satisfies (4.4.25) where A is real. We can easily
express the components of A in terms of the twistor operator by contracting on v:

(u, v)A(k) = 2i(Lku, v) (u, v)A(l) = i(Llu, v)
(u, v)A(m) = 2i(Lmu, v) (u, v)A(m̄) = i(Lm̄u, v)

(4.4.34)

Now suppose that u satisfies (4.4.25). We observe that for a p-form ω,

(iuc, ωu) = (−iu, ω̄uc)
= (iω̄uc, u)
= (iuc, ω̄ξu) ω ∈ ΓΛp(M) (4.4.35)

hence

<e(iuc, ωu) = 0

{
if ω real with p = 2, 3 or
if ω pure imag. with p = 0, 1 or 4 .

(4.4.36)

For real vector fields X and Y ,

X[LY u+ Y [LXu = −iA(Y )X[u+
1
4
iX[Y [Au

− iA(X)Y [u+
1
4
iY [X[Au

= −iA(Y )X[u− iA(X)Y [u+
1
2
ig(X,Y )Au . (4.4.37)

In each of the three terms above, the 1-form preceding u is pure imaginary, therefore
by (4.4.36), equation (4.4.7) is satisfied for all real vector fields X and Y . It follows
that k is conformal Killing.

Equation (4.4.22) is the twistor equation for the covariant derivative ∇̂. It is a
U(1)-gauged covariant derivative in the sense that, for a real function λ,

∇X(eiλu) = eiλ (∇Xu+ i dλ(X)u)

= eiλ
(
∇̂Xu− i(A− dλ)(X)u

)
. (4.4.38)

Then

∇X(eiλu) + i(A− dλ)(X)eiλu = eiλ∇̂Xu (4.4.39)
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and so using the transformations

u 7−→ eiλu
A 7−→ A− dλ , λ ∈ F(M) (4.4.40)

we have

∇̂Xu 7−→ eiλ∇̂Xu . (4.4.41)

Of course, we could have anticipated that the spinorial conformal Killing equation for a
null vector would have this covariance, since k only determines u up to a U(1)-scaling.

4.5 Shear-free vector fields

In this section we show that the condition that a vector field be shear-free may be inter-
preted as a generalisation of the conformal Killing equation (4.3.1). We then show that
a semi-spinor corresponding to a null shear-vector field satisfies a generalisation of the
twistor equation. In a similar way to the conformal Killing equation, we may interpret
this generalised twistor equation as a ‘gauged’ twistor equation, with a GL(1,C) gauge
term. The pure imaginary part of this gauge term arises from the U(1)-scaling covari-
ance mentioned in the previous section, while the real part of the gauge term comes
from the fact that any vector proportional to a shear-free vector is also shear-free.

On an n-dimensional pseudo-Riemannian manifold (M, g), it is usual to define
the shear of a vector field K in one of two ways, depending on whether K is null or
non-null. In addition, the shear of a null vector is only defined if K is tangent to a
geodesic congruence, that is, if ∇KK = fK for some f ∈ F(M). We will refer to
such vector fields as ‘geodesic’, since their integral curves may be reparametrised so
as to be geodesic. An alternative characterisation of the shear-free property is given
by the observation that a shear-free vector field induces a conformal isometry on its
orthogonal space. Thus we say that K is shear-free if

LKg(X,Y ) = 2λg(X,Y ) ∀ X, Y ∈ K⊥ (4.5.1)

for some λ ∈ F(M), where

K⊥ = {X ∈ ΓTM : g(K,X) = 0} . (4.5.2)

This definition may be used regardless of whether K is null or non-null, however note
that if K is null then K is in K⊥. In that case, (4.3.3) shows that g(∇KK,Y ) = 0 for
all Y ∈ K⊥. But the only vector fields orthogonal to all of K⊥ are those proportional
to K itself, hence K is geodesic. In any case, we may choose a vector field W such that
g(K,W ) = 1. Then the space of vector fields may be decomposed as sp{W} ⊕K⊥. If
K is non-null then we may take W to be proportional to K.

If K satisfies (4.5.1), then there exists a real 1-form A such that

LKg − 2λg = −2
(
K[ ⊗A+A⊗K[

)
. (4.5.3)
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To see this, let T = LKg − 2λg. Then we define A by

A(X) = −1
2
T (W,X) ∀ X ∈ K⊥ (4.5.4)

A(W ) = −1
4
T (W,W ) . (4.5.5)

Since (4.5.3) is an equation for symmetric tensors, we need only show that it holds for
all pairs (X,X). By the decomposition, X may be written as X ′+fW where X ′ ∈ K⊥

and f ∈ F(M). Then

T (X,X) = T (X ′, X ′) + 2fT (X ′,W ) + f2T (W,W )
= 2fT (X ′,W ) + f2T (W,W ) by (4.5.1) (4.5.6)

while (
K[ ⊗A+A⊗K[

)
(X,X) = 2g(K,X)A(X)

= 2fg(K,W )
(
A(X ′) + fA(W )

)
= −fg(K,W )

(
T (W,X ′) +

1
2
fT (W,W )

)
= −1

2
T (X,X) . (4.5.7)

Then we can write (4.5.3) in terms of the symmetrised covariant derivative as

Sym(∇K[)− λg = −
(
K[ ⊗A+A⊗K[

)
. (4.5.8)

Taking the trace shows that nλ = −d∗K[ + 2A(K), hence

Sym(∇K[) +
1
n
d∗K[ g = −

(
K[ ⊗A+A⊗K[

)
+

2
n
A(K) g . (4.5.9)

Equation (4.5.9) can be written in a compact form using a gauged covariant deriva-
tive ∇̂, similar to that introduced in Theorem 4.4.21 for spinor fields. If we say that a
p-form ω has gauge term 2A then this means that the action of ∇̂ on ω is given by

∇̂Xω = ∇Xω + 2A(X)ω ∀ X ∈ ΓTM (4.5.10)

where A is a 1-form (the factor of 2 will be convenient later). This naturally induces a
gauged exterior derivative d̂ and co-derivative d̂∗,

d̂ω = ea ∧ ∇̂Xaω

= dω + 2A ∧ ω (4.5.11)
d̂∗ω = −Xa ∇̂Xaω

= d∗ω − 2A] ω . (4.5.12)
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Unlike their ungauged counterparts, these operators are not nilpotent, as

d̂2ω = 2 dA ∧ ω (4.5.13)
d̂∗2ω = −Xb Xa dAXb Xa ω . (4.5.14)

It should be emphasised that, in general, the ‘gauge term’ 2A is determined by the
object being differentiated, as it will often be convenient to associate different gauge
terms with different tensors or spinors. We can develop a useful ‘calculus’ of gauged
tensors and spinors by requiring that ∇̂ be compatible with the tensor and Clifford
products, so that the gauge term of any such product is simply the sum of the gauge
terms of its constituents. For example, if a spinor u has gauge term A then the gauge
term of the spinor ωu is 2A+A, since

∇̂X (ωu) = ∇̂Xω u+ ω∇̂Xu

= ∇X (ωu) + (2A+A)(X)ωu . (4.5.15)

We will also require that ∇̂ be compatible with the inner product on spinors and the
charge conjugate.

Associating the gauge term 2A with K, equation (4.5.9) is equivalent to

Sym(∇̂K[) +
1
n
d̂∗K[ g = 0 . (4.5.16)

Benn has shown that this equation is equivalent to the shear-free condition [Ben94].
Specifically, if n > 1 and K is a non-null vector field satisfying (4.5.16), then K is
proportional to a unit shear-free vector. For n > 2, a null vector satisfying (4.5.16) is
shear-free and geodesic.

Now we turn our attention to shear-free vectors on spacetime. Contracting (4.5.16)
on an arbitrary vector X, the shear-free condition with n = 4 is equivalent to

∇̂XK
[ − 1

2
X d̂K[ +

1
4
d̂∗K[X[ = 0 ∀ X ∈ ΓTM . (4.5.17)

Notice that this equation has the same form as the conformal Killing equation (4.3.4).
Exposing the gauge term A we have

∇XK
[ − 1

2
X dK[ +

1
4
d∗K[X[

= −2A(X)K[ +X (A ∧K[) +
1
2
A(K)X[ ∀ X ∈ ΓTM . (4.5.18)

Comparing this with the calculation following (4.3.4), it is clear that if x is the real
covector obtained from a Dirac spinor ψ then x] is shear-free if and only if

<e(zψc, X[LY ψ + Y [LXψ

+A(Y )X[ψ +A(X)Y [ψ − 1
2
g(X,Y )Aψ) = 0 (4.5.19)
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for all real vectors X and Y . If we define a gauged covariant derivative on spinors by

∇∇Xψ = ∇Xψ +A(X)ψ (4.5.20)

we obtain a gauged twistor operator,

LXψ = ∇∇Xψ −
1
4
X[Dψ ψ ∈ ΓS(M) . (4.5.21)

(We reserve the ‘hat’ symbol for later use). Then (4.5.19) is equivalent to

<e(zψc, X[LY ψ + Y [LXψ) = 0 (4.5.22)

for real vectors X and Y . Since (4.5.22) has precisely the same form as (4.3.10), we can
use the proof of Theorem 4.4.21 to show that the shear-free condition for a null geodesic
vector field is equivalent to a GL(1,C)-gauged twistor equation for a semi-spinor.

Theorem 4.5.23 Let u be a semi-spinor on a spacetime (M, g). If k = (iuc, eau)Xa

is shear-free then there exists a complex 1-form A such that

∇̂Xu−
1
4
X[D̂u = 0 ∀ X ∈ ΓTM (4.5.24)

where

∇̂Xu = ∇Xu+A(X)u (4.5.25)
D̂u = Du+Au . (4.5.26)

Conversely, if u satisfies (4.5.24) for some complex A, then k is shear-free.

Proof. If k is shear-free then there exists a real 1-form A such that (4.5.18) holds, hence
u satisfies (4.5.22). Since this equation has the same form as (4.4.7), the components
of LXu satisfy the equations (4.4.6) and (4.4.15)–(4.4.20). So we can find a real 1-form
A′ such that

LXu = −iA′u+
1
4
iX[A′u (4.5.27)

in exactly the same way as for Theorem 4.4.21. Expanding (4.5.27) in terms of the
ordinary covariant derivative ∇, it is clear that u is a solution of (4.5.24) with A =
A+ iA′, that is, <e[A] = A.

Conversely, if u satisfies (4.5.24) then

<e(iuc, X[LY u+ Y [LXu

+A(Y )X[u+A(X)Y [u− 1
2
g(X,Y )Au) = 0 (4.5.28)

for X, Y real. By (4.4.36), any pure imaginary 1-form acting on u in the above will
vanish. Since <e[A(Y )X[] = <e[A](Y )X[, we have

<e(iuc, X[LY u+ Y [LXu
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+ <e[A](Y )X[u+ <e[A](X)Y [u− 1
2
g(X,Y )<e[A]u) = 0 . (4.5.29)

Comparing this with (4.5.19), it is clear that k is a solution of (4.5.18) with A = <e[A],
hence it is shear-free. Note that this is consistent with our usage of ∇̂, since if k[ =
4Alt(u⊗ ūc) we would expect the gauge term of k[ to be A+ Ā = 2<e[A].

Equation (4.5.24) is equivalent to what is usually referred to as Sommers’ equation,
although it is normally written in 2-component form with the 1-form A exposed. From
now on, it will be understood that a shear-free spinor is a semi-spinor which satisfies
(4.5.24) for some complex 1-form A. We can show directly that the shear-free spinor
equation is equivalent to (4.1). Now

(u,∇Xau−
1
4
eaDu+Aau−

1
4
eaAu)eau

= (u,∇Xau)e
au−S 1(Du⊗ ū)u−S 1(Au⊗ ū)u . (4.5.30)

If u and v are semi-spinors with opposite parity, the intersection of their null spaces is
a 1-dimensional space spanned by S 1(v⊗ ū), hence S 1(v⊗ ū)u = 0. Since Du and Au
have opposite parity to u, the last two terms in (4.5.30) vanish. So if u is shear-free
then (4.1) holds. Conversely, if (4.1) holds then setting A = 0 in (4.5.30) shows that
(u, LXau)eau = 0. This implies that (u, LXau)ea is a null vector, so there exists a
semi-spinor v with opposite parity to u such that S 1(v ⊗ ū) = (u, LXau)ea. Writing
S 1(v ⊗ ū) in terms of the basis vectors we have

(u, LXau−
1
4
eav) = 0 . (4.5.31)

Since ( , ) is antisymmetric, and the space of semi-spinors is 2-dimensional, the only
possibility is that LXau− 1

4eav is proportional to u for each a. That is, there exists a
set of complex functions Aa such that

LXau−
1
4
eav = −Aau . (4.5.32)

Multiplying on the left by ea, we see that v = Aaeau = Au, so

LXau = −Aau+
1
4
eaAu (4.5.33)

which is clearly equivalent to (4.5.24).

4.6 Conformal properties of shear-free spinors

In this section we examine the behaviour of the the GL(1,C)-twistor equation under
rescalings of the metric. First we recall the properties of the covariant derivative induced
by conformal rescalings of the metric. If g is scaled according to g̃ = e2λg for λ ∈ F(M),
then the g̃-compatible torsion-free covariant derivative ∇̃ is related to ∇ by

∇̃XY = ∇XY +XλY + YλX − g(X,Y )dλ] ∀ X, Y ∈ ΓTM . (4.6.1)
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Let {ea} be a g-orthonormal co-frame with dual {Xa}, and let {ẽa} be a g̃-orthonormal
co-frame with dual {X̃a} where ẽa = eλea and X̃a = e−λXa. Since the structure of the
Clifford algebra depends only on the signature of g, at each point p ∈ M there is an
algebra isomorphism ρ : CC(T ∗pM, g̃) → CC(T ∗pM, g), defined on the basis covectors
by ρ(ẽa) = ea. Then for a 1-form A we have

ρ(A) = A(X̃a)ρ(ẽa)
= A(X̃a)ea

= e−λA . (4.6.2)

If the g̃-Clifford product of arbitrary forms φ and ω is denoted by ∨, then ρ(ω ∨ φ) =
ρ(ω)ρ(φ) and ρ(λ) = λ for λ ∈ C. It follows that ρ(ω) = e−pλω if ω is a p-form. This
isomorphism may be extended to a bundle isomorphism between the Clifford bundles
of (M, g̃) and (M, g).

Now suppose that (M, g) is a spin manifold. Unlike the tangent and cotangent
bundles, the spinor bundle depends specifically on the metric. In general, the spinor
bundle with respect to one metric is unrelated to the spinor bundle with respect to a
different metric. However, if the metrics are conformally related, the isomorphism ρ
induces a spinor representation of the fibres of CC(M, g̃) on the fibres of S(M). We
denote the action of a g̃-Clifford form ω on a spinor field ψ by ω◦ψ, where ω◦ψ = ρ(ω)ψ.
Under this action, the covariant derivative on spinor fields induced by ∇̃ is related to
the standard spinor covariant derivative by

∇̃Y ψ = ∇Y ψ +
1
2

(
Y [dλ− Y λ

)
ψ ∀ ψ ∈ ΓS(M) . (4.6.3)

Then the Dirac operator of ∇̃ is given by

D̃ψ = ẽa◦∇̃X̃a
ψ

= e−λea
{
∇Xaψ +

1
2

(eadλ−Xaλ)ψ
}

= e−λ
{

Dψ +
3
2
dλψ

}
∀ ψ ∈ ΓS(M) . (4.6.4)

We are now in a position to see how the GL(1,C)-gauged twistor equation changes
under conformal rescalings. The twistor operator of ∇̃ is

L̃Y ψ = ∇̃Y ψ −
1
4
Y [̃◦ D̃ψ ∀ ψ ∈ ΓS(M) (4.6.5)

where Y [̃ is the metric dual of Y with respect to g̃. This is simply a rescaling of Y [, as
Y [̃ = e2λY [. Then from (4.6.2) we have Y [̃◦ψ = eλY [ψ. If ψ̃ = eµψ for some complex
function µ, then

L̃Y ψ̃ = ∇Y ψ̃ +
1
2

(
Y [dλ− Y λ

)
ψ̃ − 1

4
Y [

(
Dψ̃ +

3
2
dλ ψ̃

)
= eµ∇Y ψ + eµYµψ +

1
2
eµ
(
Y [dλ− Yλ

)
ψ
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− 1
4
eµY [

(
Dψ + dµψ +

3
2
dλψ

)
= eµ

{
LY ψ +

(
Yµ− 1

2
Yλ

)
ψ − 1

4
Y [

(
dµ− 1

2
dλ

)
ψ

}
. (4.6.6)

Since Yµ = dµ(Y ), if ψ satisfies (4.5.24) then the equation above becomes

L̃Y ψ̃ =
{
−A(Y ) +

1
4
Y [A+

(
dµ− 1

2
dλ

)
(Y )− 1

4
Y [

(
dµ− 1

2
dλ

)}
ψ̃

=
(
−A+ dµ− 1

2
dλ

)
(Y )◦ψ̃ − 1

4
Y [̃ ∨

(
−A+ dµ− 1

2
dλ

)
◦ψ̃ . (4.6.7)

So if ψ satisfies (4.5.24) with gauge term A, then ψ̃ satisfies the GL(1,C)-twistor
equation of (M, g̃), with gauge term Ã = A − dµ + 1

2dλ. In particular, (4.5.24) is
conformally invariant if we take µ = λ/2. WhileA is not preserved for arbitrary scalings
of ψ and g, we observe that Ã and A only differ by an exact form, so that dÃ = dA.
As was noted by Sommers [Som76], the 2-form dA is thus invariant under rescalings of
ψ, and so is determined by the congruence rather than by ψ. If dA vanishes, then A is
(locally) exact, and so ψ is proportional to a twistor and the congruence corresponding
to ψ is a Robinson congruence.

4.7 Timelike conformal Killing vectors

In this section we generalise the previous results on semi-spinors to the Dirac spinor
corresponding to a timelike vector field. We will show that a spinor corresponding
to a timelike conformal Killing vector satisfies a gauged twistor equation. Unlike the
null case, we have a great deal of freedom in the choice of Dirac spinor for a given
timelike vector, thus the gauged covariant derivative has other terms in addition to a
U(1)-component. We show how these additional gauge terms arise from the group of
transformations which leave the timelike vector fixed.

Let ψ be a Dirac spinor, which we may write as ψ = u + vc where u and v are
linearly independent even semi-spinors. Then the covector x = 4S 1(zψ⊗ψ̄c) is real and
timelike, with g(x, x) = −4|(u, v)|2. Given u and v, the null basis vectors {k, l,m, m̄}
are given by (4.4.3). Then {k[,m[} spans the null space of u and {l[, m̄[} spans the
null space of v. Since x = k[ − l[ it is clear that g(k, l) = 2|(u, v)|2. Using the Fierz
rearrangement it can be shown that g(m, m̄) = 2|(u, v)|2 also, while all other pairs are
zero. Putting µ = 2|(u, v)|2, the Clifford products of the basis covectors are

k[l[ + l[k[ = 2µ
m[m̄[ + m̄[m[ = 2µ (4.7.1)

while all other basis elements anti-commute. We will take {u, v, uc, vc} as a basis for
Dirac spinors. Later we will need to know the action of a pair of basis covectors on
each element of the spinor basis. For example, m̄[u is a non-zero odd spinor. Since
m̄[m̄[u = 0 and k[m̄[u = −m̄[k[u = 0, the null space of m̄[u is spanned by {k[, m̄[}.
Thus m̄[u must be proportional to uc. Suppose that m̄[u = λuc for some complex
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function λ. Then

(ivc, m̄[u) = g(m, m̄)
= µ

= (ivc, λuc) (4.7.2)

therefore

m̄[u = − µ

(iuc, vc)
uc . (4.7.3)

Similarly,
l[uc = − µ

(iu, v)
v

hence

l[m̄[u = − µ

(iuc, vc)
l[uc

= − µ2

|(u, v)|2
v

= −2µv . (4.7.4)

From the Clifford relations and the properties of the charge conjugate, we obtain the
following table of multiples:

k[l[u = 2µu k[l[uc = 2µuc

m̄[l[u = 2µv m[l[uc = 2µvc

m[m̄[u = 2µu m̄[m[uc = 2µuc

k[m[v = 2µu k[m̄[vc = 2µuc .

(4.7.5)

In §4.4 we found that the spinorial conformal Killing equation for a semi-spinor
was equivalent to a U(1)-gauged twistor equation. In this section we hope to find a
gauged twistor equation (possibly with more general gauge terms) for the Dirac spinor
ψ which is equivalent to (4.3.10). The main problem is to determine the form of the
gauge terms. In the case of a null conformal Killing vector, the pure imaginary 1-form
iA was chosen because of the U(1)-scaling freedom in the choice of semi-spinor. For
a given timelike vector x, however, we have a much greater freedom in the choice of
Dirac spinor ψ. We would anticipate that any equation that ψ must satisfy in order
for x to be conformal Killing must also be covariant under transformations of ψ which
fix x. We begin by examining the Lie algebra of real 2-forms which annihilate x under
the Clifford commutator. At a fixed point p ∈M, let

gx =
{
σ ∈ Λ2(T ∗pM) : [σ, x] = 0

}
(4.7.6)

with the Clifford commutator as Lie bracket. Now exponentiation maps gx into the
group Gx ⊆ Spin(3, 1) which fixes x under the vector representation χ. It follows that
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any transformation

ψ 7−→ exp(σ)ψ , σ ∈ gx (4.7.7)

fixes x. Since x is timelike, we must have Gx ' Spin(3). In fact, we can show that
exp(gx) = Gx. By evaluating the commutator of x with each element of a basis for the
real 2-forms, we find that gx is generated by the 2-forms

σ1 =
1
4µ

(k + l)(m̄+m)

=
1
4µ

(k + l) ∧ (m̄+m) (4.7.8)

σ2 =
1
4µ
i(k + l)(m̄−m)

=
1
4µ
i(k + l) ∧ (m̄−m) (4.7.9)

σ3 =
1
2µ
i(µ−mm̄)

= − 1
2µ
im ∧ m̄ (4.7.10)

with commutation relations

[σ1, σ2] = σ3 [σ1, σ3] = −σ2 [σ2, σ3] = σ1 .

This can be recognised as the Lie algebra su(2). Exponentiation sends su(2) onto the
simply-connected group SU(2) ' Spin(3), hence the only elements of Spin(3, 1) which
fix x under χ are exponentials of elements of gx.

Now for any real 2-form σ at p ∈M we have

[σ, x] = (zψc, eaψ)[σ, ea]
= −(zψc, [σ, ea]ψ)ea

= (zψc, eaσψ)ea − (zψc, σeaψ)ea

= (zψc, eaσψ)ea + (zψ, σeaψc)ea

= 2<e(zψc, eaσψ)ea . (4.7.11)

Thus if σ ∈ gx then

<e(zψc, eaσψ) = 0 . (4.7.12)

Now since ψ = u + vc, using the action of the basis covectors on u and vc given in
(4.7.5) we see that

σ1ψ = −1
2
žψc σ2ψ = −1

2
ižψc σ3ψ = −1

2
iψ .

Expressing σ as the linear combination σ = αiσi for αi ∈ R, equation (4.7.11) is
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equivalent to

<e(zψc, iα3eaψ + (α1 + iα2)eažψc) = 0 ∀ αi ∈ R . (4.7.13)

While this analysis is at a fixed point p ∈ M, it is clear that we can replace the
constants αi by real functions, hence

<e(zψc, iλeaψ + µeažψ
c) = 0 (4.7.14)

for all real functions λ and complex functions µ. Returning to the spinorial conformal
Killing equation (4.3.10), the above equation shows that if we define a gauged covariant
derivative ∇̂ with gauge terms of the form

∇̂Xψ = ∇Xψ − 2Ai(X)σiψ (4.7.15)

for real 1-forms Ai, then (4.3.10) is equivalent to

<e(zψc, ea∇̂Xbψ + eb∇̂Xaψ −
1
2
gabD̂ψ) = 0 . (4.7.16)

Expanding the σi terms in (4.7.15) shows that

∇̂Xψ = ∇Xψ +
(
A1(X) + iA2(X)

)
žψc + iA3(X)ψ . (4.7.17)

So far, we have shown how the the covariant derivative may be modified by gauge
terms arising from the isotropy group of x. However, there is another transformation
of ψ which fixes x, the chiral transformation given by

ψ 7−→ exp(iλž)ψ , λ ∈ F(M). (4.7.18)

Noting that exp(iλž) = cosλ + i sinλ ž, it is straightforward to show that this trans-
formation preserves x. We could not have expected to find it from the isotropy group
of x because it does not lie in the Spin group, or even in the Clifford group, since
it does not preserve the space of 1-forms under the vector representation. The chiral
transformation gives rise to a ‘chiral’ U(1)-gauge term of the form iλžψ. It is easily
seen that

<e(zψc, iλeažψ) = 0 ∀ λ ∈ F(M) . (4.7.19)

Inserting a term of the form iB(X)žψ into (4.7.17) and replacing A3(X) by A(X) and
(A1(X)+iA2(X)) by C(X), it can be seen that the spinorial conformal Killing equation
(4.3.10) is equivalent to (4.7.16), where this time ∇̂Xψ is given by

∇̂Xψ = ∇Xψ + iA(X)ψ + iB(X)žψ + i C(X)žψc (4.7.20)

for real 1-forms A, B and complex 1-form C. We will suppose that ψ satisfies a ‘gauged’
twistor equation with gauge terms of this form.
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We will write LXψ in components as

LXψ = α(X)u+ β(X)v + γ(X)uc + δ(X)vc . (4.7.21)

Since eaLXaψ = 0, we must have αu + βv + γuc + δvc = 0. This gives a relationship
between certain components of LXψ. An arbitrary 1-form α may be written in terms
of the basis covectors as

α =
1
µ

(
α(l)k[ + α(k)l[ + α(m̄)m[ + α(m)m̄[

)
. (4.7.22)

Expressing αu+ βu+ γu+ δu = 0 in components, it can be shown that

α(k) + β(m̄) = 0 α(m)− β(l) = 0
γ(k) + δ(m) = 0 γ(m̄)− δ(l) = 0 .

(4.7.23)

Now the spinorial conformal Killing equation for ψ is (4.3.13). We may write this
equation using the components of ψ and LXψ, in order to express it as a tensor equation
for the real part of a complex tensor. First we define a symmetric (2, 0) tensor W by

W (X,Y ) = (iuc − iv, α(X)Y [u+ α(Y )X[u+ β(X)Y [v + β(Y )X[v

+ γ(X)Y [uc + γ(Y )X[uc + δ(X)Y [vc + δ(Y )X[vc) .

Then (4.3.13) is equivalent to

<e[W ](X,Y ) = 0 (4.7.24)

for all real vector fields X and Y . Now for an arbitrary vector field X we have

(iuc, X[u) = k[(X) (iuc, X[v) = m̄[(X)
(−iv,X[vc) = −l[(X) (−iv,X[uc) = m̄[(X) .

Noting that the inner product of an odd semi-spinor and an even semi-spinor is zero,
it is clear that W may be written as

W = 2Sym
(
α⊗ k[ − δ ⊗ l[ + β ⊗ m̄[ + γ ⊗ m̄[

)
. (4.7.25)

Then the real tensor T = 2<e[W ] is given by

T = 2Sym
(
(α+ ᾱ)⊗ k[ − (δ + δ̄)⊗ l[ + (β̄ + γ̄)⊗m[ + (β + γ)⊗ m̄[)

)
.

from which we can see that (4.3.10) is equivalent to the tensor equation T = 0. Evalu-
ating T (k, k), T (k, l), . . . ,T (m̄, m̄) we find that the equation T = 0 is equivalent to the
following equations for the components of LXψ:

<e[δ(k)] = 0 (4.7.26)
<e[α(k)]− <e[δ(l)] = 0 (4.7.27)

β(k) + γ(k)− δ(m)− δ̄(m) = 0 (4.7.28)
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<e[α(l)] = 0 (4.7.29)
α(m) + ᾱ(m) + β(l) + γ(l) = 0 (4.7.30)

β(m) + γ(m) = 0 (4.7.31)
<e[β(m̄)] + <e[γ(m̄)] = 0 . (4.7.32)

The last equation is actually the same as the first equation by (4.7.23). Given these
constraints and (4.7.23), we now try to solve for gauge terms such that ψ satisfies a
gauged twistor equation.

Theorem 4.7.33 Let ψ be a Dirac spinor on a spacetime (M, g). If x] = (zψc, eaψ)Xa

is conformal Killing then there exist real 1-forms A and B and a complex 1-form C such
that

∇̂Xψ −
1
4
X[D̂ψ = 0 ∀ X ∈ ΓTM (4.7.34)

where

∇̂Xψ = ∇Xψ + iA(X)ψ + iB(X)žψ + iC(X)žψc

D̂ψ = Dψ + iAψ + iBžψ + iCžψc .

Conversely, if ψ satisfies (4.7.34) for some real A, B and complex C then x] is a
conformal Killing vector.

Proof. If x] is conformal Killing then equations (4.7.26)–(4.7.32) hold. We will show
that it is possible to find A, B and C such that

LXψ = −iA(X)ψ +
1
4
iX[Aψ − iB(X)žψ +

1
4
iX[Bžψ

− i C(X)žψc +
1
4
iX[Cžψc (4.7.35)

where A and B are real and C is complex. Using the Clifford relations, this equation
can be written as

LXψ = −1
2
iA(X)ψ − 1

4
iAX[ψ − 1

2
iB(X)žψ − 1

4
iBX[žψ

− 1
2
i C(X)žψc − 1

4
i CX[žψc . (4.7.36)

For ψ = u + vc we have žψ = u − vc and žψc = −uc + v. Putting these components
into the above, we have

α(X)u+ β(X)v + γ(X)uc + δ(X)vc

= −1
2
i (A(X) + B(X))u− 1

4
i (A+ B)X[u

− 1
2
i C(X)v − 1

4
i CX[v +

1
2
i C(X)uc +

1
4
i CX[uc

− 1
2
i (A(X)− B(X)) vc − 1

4
i (A− B)X[vc . (4.7.37)



§4.7 Timelike conformal Killing vectors 68

Setting F = A+ B and G = A− B, this becomes

α(X)u+ β(X)v + γ(X)uc + δ(X)vc

= −1
2
iF(X)u− 1

4
iFX[u− 1

2
i C(X)v − 1

4
i CX[v

+
1
2
i C(X)uc +

1
4
i CX[uc − 1

2
iG(X)vc − 1

4
iGX[vc . (4.7.38)

The procedure used in solving for F , G and C is similar to that used in the null case.
We simply evaluate (4.7.38) on each basis vector in turn to solve for the components
of F , G and C, subject to the constraints given above.

To illustrate the calculation, we will compute (4.7.38) with X = k in detail. Since
k[u = k[uc = 0, we have

α(k)u+ β(k)v + γ(k)uc + δ(k)vc

= −1
2
iF(k)u− 1

2
i C(k)v − 1

4
i Ck[v

+
1
2
i C(k)uc − 1

2
iG(k)vc − 1

4
iGk[vc . (4.7.39)

Now

Ck[v =
1
µ

(
C(l)k[ + C(k)l[ + C(m̄)m[ + C(m)m̄[

)
k[v

=
1
µ
C(k)l[k[v +

1
µ
C(m̄)m[k[v since k[k[v = m̄[k[v = 0

=
1
µ
C(k)(2µ− k[l[)v − 1

µ
C(m̄)k[m[v

= 2 C(k)v − 2 C(m̄)u . (4.7.40)

Similarly,

Gk[vc = 2G(k)vc − 2G(m)uc . (4.7.41)

Substituting into (4.7.39) we have

α(k)u+ β(k)v + γ(k)uc + δ(k)vc

= −1
2
i (F(k)− C(m̄))u− i C(k)v +

1
2
i (G(m) + C(k))uc − iG(k)vc .

From this we obtain expressions for the components of the gauge terms in terms of the
components of Lkψ. In the same way, we can substitute each basis vector for X in
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turn, from which we obtain the following equations:

F(k)− C(m̄) = 2iα(k) F(l) = iα(l)
C(k) = iβ(k) F(m) + C(l) = 2iβ(l)

G(m) + C(k) = −2iγ(k) C(l) = −iγ(l)
G(k) = iδ(k) G(l)− C(m̄) = 2iδ(l)

F(m) + C(l) = 2iα(m) F(m̄) = iα(m̄)
C(m) = iβ(m) F(k)− C(m̄) = −2iβ(m̄)
C(m) = −iγ(m) G(l)− C(m̄) = 2iγ(m̄)

G(m) + C(k) = 2iδ(m) G(m̄) = iδ(m̄)

When (4.7.26)–(4.7.32) hold we can find a solution for this set of equations. Clearly
C(k) = iβ(k), C(l) = −iγ(l) and C(m) = iβ(m), which is consistent with C(m) =
−iγ(m) by (4.7.31). Now F(k) = 2iα(k) + C(m̄), so for F to be real we require that
=m[2iα(k) + C(m̄)] = 0. It follows that we must impose the condition =m[C(m̄)] =
−2<e[α(k)]. Continuing, F(l) = iα(l) is real since <e[α(l)] = 0, and

F(m) = 2iα(m)− C(l)
= 2iα(m) + iγ(l)
= 2iα(m)− iα(m)− iᾱ(m)− iβ(l) by (4.7.30)
= −iᾱ(m) by (4.7.23) . (4.7.42)

This is consistent with the reality of F since we also have F(m̄) = iα(m̄) = F(m). For
G we have G(k) = iδ(k), which is real since <e[δ(k)] = 0, and G(l) = 2iδ(l) + C(m̄), for
which

=m[G(l)] = 2<e[δ(l)] + =m[C(m̄)]
= 2<e[α(k)] + =m[C(m̄)] by (4.7.27)
= 0 . (4.7.43)

Finally,

G(m) = 2iδ(m)− C(k)
= 2iδ(m) + iγ(k)− iδ(m)− iδ̄(m) by (4.7.28)
= −iδ̄(m) (4.7.44)

while G(m̄) = iδ(m̄) = G(m), so G is real. Then the components of A, B and C are
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A(k) = −=m[α(k)] +
1
2
iδ(k) +

1
2
<e[C(m̄)]

A(l) =
1
2
iα(l)− =m[δ(l)] +

1
2
<e[C(m̄)]

B(k) = −=m[α(k)]− 1
2
iδ(k) +

1
2
<e[C(m̄)]

B(l) =
1
2
iα(l) + =m[δ(l)]− 1

2
<e[C(m̄)]

C(k) = iβ(k)
C(l) = −iγ(l)

A(m) = −1
2
i
(
ᾱ(m) + δ̄(m)

)
A(m̄) =

1
2
i (α(m̄) + δ(m̄))

B(m) = −1
2
i
(
ᾱ(m)− δ̄(m)

)
B(m̄) =

1
2
i (α(m̄)− δ(m̄))

C(m) = iβ(m)
=m[C(m̄)] = −2<e[α(k)] .

We are free to choose the real part of C(m̄).
Conversely, if (4.7.35) holds then

0 = <e(zψc, X[LY ψ + Y [LXψ

+ iA(Y )X[ψ + iA(X)Y [ψ − 1
2
ig(X,Y )Aψ

+ iB(Y )X[žψ + iB(X)Y [žψ − 1
2
ig(X,Y )Bžψ

+ iC(Y )X[žψc + iC(X)Y [žψc − 1
2
ig(X,Y )Cžψc) . (4.7.45)

From (4.7.14) and (4.7.19) it can then be seen that all the terms in (4.7.45) vanish
except for the twistor operator terms, thus ψ satisfies the spinorial conformal Killing
equation (4.3.13).

4.8 Timelike shear-free vector fields

As in Theorem 4.5.23, once the calculations for the conformal Killing vector field have
been done, the equation for the shear-free condition is obtained by simply adding
another gauge term to the covariant derivative.

Theorem 4.8.1 Let ψ be a Dirac spinor on a spacetime (M, g). If x] = (zψc, eaψ)Xa

is shear-free then there exists a real 1-form B and complex 1-forms A and C such that

∇̂Xψ −
1
4
X[D̂ψ = 0 ∀ X ∈ ΓTM (4.8.2)

where

∇̂Xψ = ∇Xψ +A(X)ψ + iB(X)žψ + iC(X)žψc

D̂ψ = Dψ +Aψ + iBžψ + iCžψc .

Conversely, if ψ satisfies (4.8.2) for some real B and complex A and C then x] is
shear-free.



§4.8 Timelike shear-free vector fields 71

Proof. If x] is shear-free then there exists a real 1-form A such that ψ satisfies (4.5.22),
where LX is the twistor operator of ∇∇, and ∇∇Xψ = ∇Xψ + A(X)ψ. Since (4.5.22)
has the same form as (4.3.10), the components of LXψ satisfy equations (4.7.23) and
(4.7.26)–(4.7.32). Then we can find real 1-forms A′, B and C such that ψ satisfies
(4.7.35), where LXψ is replaced by LXψ. Since LXψ = LXψ + A(X)ψ − 1

4X
[Aψ, it is

clear that ψ satisfies (4.8.2) with A = A+ iA′. Conversely, if ψ satisfies (4.8.2) then it
is clear from (4.7.14) and (4.7.19) that x satisfies (4.5.18) where A = <e[A].



Chapter 5

Conformal Killing-Yano Tensors
and Shear-free Spinors

In this chapter we consider generalisations of the conformal Killing equation and the
shear-free equation to tensors of higher degree. Killing tensors were first introduced as
solutions of a generalisation of the Killing vector equation. One possibility is to replace
the vector field by a totally symmetric tensor, whilst Yano extended Killing’s equation
to a totally antisymmetric tensor, or differential p-form [Yan52]. We refer to these as
Killing-Yano tensors. The Killing-Yano (KY) equation is not invariant under conformal
rescalings of the metric. The conformal generalisation of the KY equation has been
given by Tachibana for the case of a 2-form [Tac69], and by Kashiwada and Tachibana
for forms of higher degree [Kas68, TK69]. It then emerges that a Killing-Yano tensor
is a co-closed conformal Killing-Yano (CKY) tensor. The original presentation of CKY
tensors used tensor components. Since it is an equation for a p-form, we are able
to write the CKY equation very compactly using exterior calculus. This chapter is
primarily a review of certain properties of CKY tensors, which will be used extensively
in Chapter 6 to construct symmetry operators for the Maxwell and Dirac equations.

On spacetime, the only non-trivial CKY forms are 2-forms. In this case, there is
a useful relationship between self-dual CKY 2-forms and shear-free spinors. Equation
(4.1.4) shows how any self-dual 2-form ω may be related to a pair of even semi-spinors
u and v. It can be shown that if ω is a CKY 2-form then u and v each satisfy the
shear-free spinor equation (4.5.24). If the gauge term associated with u is A then v
satisfies (4.5.24) with gauge term −A, that is, the gauge terms of u and v sum to zero.
More generally, Dietz and Rüdiger have shown that for ω non-null (that is, ω · ω 6= 0),
u and v are shear-free spinors with independent gauge terms if and only if ω satisfies a
certain generalisation of the CKY equation [DR80]. Although they did not interpret it
as such, this equation can be obtained from the CKY equation by replacing the ordinary
covariant derivative with a GL(1,C)-covariant derivative. This is analogous to the way
we obtained the shear-free vector equation from the conformal Killing equation in §4.5.
For this reason we refer to it as the gauged CKY equation. When written in this form,
we may also consider null 2-forms which are solutions of the gauged CKY equation, a
case which was not examined by Dietz and Rüdiger. We then have a single equation
which characterises the semi-spinors determined by a 2-form as shear-free in both the
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null and non-null cases. In four dimensions we refer to 2-forms satisfying the gauged
CKY equation as ‘shear-free’ also.

5.1 The conformal Killing-Yano equation

In §4.3 we made the observation that the numerical coefficients in the conformal Killing
equation (4.3.4) are just such that we cannot conclude that K[ is closed or co-closed.
This suggests how the equation may be generalised to arbitrary forms in higher dimen-
sions. ReplacingK[ in (4.3.4) by a complex p-form ω and inserting the appropriate coef-
ficients, the conformal Killing-Yano equation on an n-dimensional pseudo-Riemannian
manifold (M, g) is

∇Xω =
1

p+ 1
X dω − 1

n− p+ 1
X[ ∧ d∗ω ∀ X ∈ ΓTM . (5.1.1)

With X = Xa, equation (5.1.1) implies that

ea ∧∇Xaω =
1

p+ 1
ea ∧Xa dω − 1

n− p+ 1
ea ∧ ea ∧ d∗ω

= dω

and

−Xa ∇Xaω = − 1
p+ 1

Xa Xa dω +
1

n− p+ 1
Xa (ea ∧ d∗ω)

=
1

n− p+ 1
(nd∗ω − ea ∧Xa d∗ω)

= d∗ω

as required. Taking the derivative of (5.1.1) we have

∇Y∇Xω =
1

p+ 1
(∇YX) dω +

1
p+ 1

X ∇Y dω

− 1
n− p+ 1

∇YX
[ ∧ d∗ω − 1

n− p+ 1
X[ ∧∇Y d

∗ω

= ∇∇YXω +
1

p+ 1
X ∇Y dω −

1
n− p+ 1

X[ ∧∇Y d
∗ω .

Contracting the above with X = Xa and Y = Xa gives the integrability condition

∇2ω = − 1
p+ 1

d∗dω − 1
n− p+ 1

dd∗ω (5.1.2)

which we will use later. From the definition of the co-derivative, it is clear that

∗(X[ ∧ d∗ω) = (−1)p−1 ∗(d∗ω ∧X[)
= (−1)p−1X ∗∗−1d∗ηω
= −X d∗ω . (5.1.3)
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Equivalently,

∗(X dω) = −X[ ∧ d∗∗ω . (5.1.4)

Since the Hodge dual commutes with ∇, it follows that the dual of a CKY p-form is a
CKY (n − p)-form. Thus in even dimensions, say n = 2r, a CKY r-form decomposes
into self-dual and anti self-dual r-forms which are also CKY tensors.

If M is 4-dimensional, it can be seen that the only non-trivial CKY tensors are
2-forms. A CKY 0-form or 4-form is constant (parallel), while comparing (5.1.1) with
(4.3.4) we see that a CKY 1-form is simply the metric dual of a conformal Killing
vector. Since the CKY equation is invariant under Hodge duality, a CKY 3-form is
simply the Hodge dual of a CKY 1-form. For a 2-form in four dimensions, it has been
shown in [BCK97] that (5.1.1) is equivalent to Tachibana’s conformal generalisation of
the Killing-Yano equation in the following way. If ω is a 2-form then

ω(X,Y ) =
1
2
Y X ω ∀ X, Y ∈ ΓTM . (5.1.5)

When p = 2 and n = 4, equation (5.1.1) implies that

∇Y ω(X,Z) +∇Zω(X,Y ) =
1
3
d∗ω(X)g(Y, Z)− 1

6
d∗ω(Y )g(Z,X)

− 1
6
d∗ω(Z)g(X,Y ) . (5.1.6)

This is Tachibana’s original equation [Tac69]. Putting X = Xa and Y = Xb and
multiplying both sides of (5.1.6) by eab, we recover equation (5.1.1). Yano’s equation
is obtained by setting the left-hand side of (5.1.6) to zero, thus a Killing-Yano tensor
is simply a co-closed conformal Killing-Yano tensor.

5.2 The gauged CKY equation

In §4.5 we showed that the shear-free vector equation may be considered a generalisation
of the conformal Killing equation for a vector field, where the ordinary covariant is
replaced by a gauged covariant derivative. Modifying (5.1.1) in the same way, we say
that a complex p-form ω is a gauged CKY tensor if there exists a complex 1-form A
such that

∇̂Xω =
1

p+ 1
X d̂ω − 1

n− p+ 1
X[ ∧ d̂∗ω ∀ X ∈ ΓTM (5.2.1)

where ∇̂Xω is given by (4.5.10). It can easily be shown that d̂∗ω = ∗−1d̂∗ηω, hence
(5.2.1) is also invariant under Hodge duality. We emphasize again that the gauge term
2A is determined by ω. In general, the gauge terms of different gauged CKY tensors
will be unrelated.

When ω is a 1-form, (5.2.1) is simply the shear-free vector equation (4.5.16) on
(M, g). Now suppose that (M, g) is a spacetime. When ω is a 2-form, we can regard it
as a linear mapping on vector fields. The gauged CKY equation can then be interpreted
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in terms of the real eigenvectors of ω. An eigenvector of ω is any (complex) vector field
X such that

X ω = λX[ (5.2.2)

for some complex function λ. Since 2-forms are ‘middle forms’ in spacetime, we may
restrict our attention to self-dual gauged CKY 2-forms without loss of generality. From
the definition of the inner product on forms (2.1.29), if ∗ω = iω then

ω2 ∗1 = i ω ∧ ω where ω2 = ω · ω . (5.2.3)

Then for any vector field X,

ω2 ∗X[ = iX (ω ∧ ω)
= 2iX ω ∧ ω . (5.2.4)

For this dimension and signature, the Hodge dual has the property that

∗∗ φ =

{
−φ if φ is even
φ if φ is odd.

(5.2.5)

Taking the Hodge dual of (5.2.4), we see that

ω2X[ = 2i ∗(X ω ∧ ω)
= 2i (X ω)] ∗ω
= −2 (X ω)] ω . (5.2.6)

It follows from (5.2.2) that if X is an eigenvector of ω then its eigenvalue λ satisfies

λ2 = −1
2
ω2 . (5.2.7)

Furthermore, the eigenspaces of ω are isotropic. Suppose that X and Y are eigenvectors
with non-zero eigenvalue λ. Contracting (5.2.2) on the left with Y shows that

Y X ω = λg(X,Y ) . (5.2.8)

Since the left-hand side is antisymmetric and λ 6= 0 we must have g(X,Y ) = 0. Now
suppose that λ = 0. By duality, (5.2.2) is equivalent to

X[ ∧ ω = 0 . (5.2.9)

Contracting the above with Y shows that g(X,Y )ω = 0.
If ω is null then it has a unique eigenvalue 0, and the eigenspace is a 2-dimensional

(and hence maximal) isotropic space. Since the Lorentzian signature is (3, 1), a MTIS
contains precisely one real null direction. If ω is non-null then it has two 2-dimensional
eigenspaces, corresponding to the two distinct eigenvalues. Each of these is also a MTIS
containing a real null direction. With n = 4 and p = 2, exposing the gauge terms in
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(5.2.1) yields Dietz and Rüdiger’s generalisation of the CKY equation [DR80],

∇Xω −
1
3
X dω +

1
3
X[ ∧ d∗ω

= −2A(X)ω +
2
3
X (A ∧ ω) +

2
3
X[ ∧A] ω ∀ X ∈ ΓTM . (5.2.10)

Taking the exterior product of (5.2.10) with ∗ω gives the equation

2ω2A =
3
4
dω2 − (d∗ω)] ω . (5.2.11)

If ω is non-null we may solve for A in terms of ω. On the other hand, if ω is null
then this shows that (d∗ω)] is an eigenvector of ω. In that case we can solve for the
components of A using a null tetrad adapted to the eigenvectors of ω. In either case,
there is only one A such that ω satisfies (5.2.10).

Writing (5.2.10) in spinorial form, Dietz and Rüdiger have shown that a non-null
2-form ω satisfies (5.2.10) if and only if its real eigenvectors are shear-free [DR80]. For
this reason we refer to self-dual solutions of (5.2.10) as shear-free 2-forms. As we shall
show, Dietz and Rüdiger’s result also holds if ω is null. In the notation of §4.1, we may
relate ω to a pair of even spinors u1 and u2 by

ω =
1
2

(u1 ⊗ ū2 + u2 ⊗ ū1) , (5.2.12)

where u1 and u2 are determined up to complex factors eλ and e−λ, respectively. The
real eigenvectors of ω are the real null directions determined by u1 and u2 via (4.1.9),
thus ω is null if and only if u1 and u2 are linearly independent. Then the spinorial form
of (5.2.10) is

4∇Xu1 ⊗ ū2 −X[Du1 ⊗ ū2 + 4u1 ⊗∇Xu2 − u1 ⊗X[Du2

+∇Xau1 ⊗ eaX[u2 + eaX[u1 ⊗∇Xau2 + (u1 ↔ u2)

= −12A(X)u1 ⊗ ū2 + 2X[Au1 ⊗ ū2 + 2u1 ⊗X[Au2 + (u1 ↔ u2) . (5.2.13)

We can write this more compactly using the twistor operator, however we also need
terms such as eaX[u1 ⊗ eaDu2. The identity (2.2.6) shows that eaφea = 0 when φ is a
middle form. Since the symmetric product of two odd (or even) spinors is a 2-form, we
have

eaX[ui ⊗ eaDuj + eaDuj ⊗ eaX
[ui = ea

(
X[ui ⊗Duj + Duj ⊗X[ui

)
ea

= 0 . (5.2.14)

Adding the appropriate terms, equation (5.2.13) is equivalent to

6LXu1 ⊗ ū2 + 6u1 ⊗ LXu2

− LXau1 ⊗X[eau2 −X[eau1 ⊗ LXau2 + (u1 ↔ u2)

= −12A(X)u1 ⊗ ū2 + 2X[Au1 ⊗ ū2 + 2u1 ⊗X[Au2 + (u1 ↔ u2) . (5.2.15)
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We can use this form of (5.2.10) to prove the theorem of Dietz and Rüdiger.

Theorem 5.2.16 On spacetime, ω = Sym (u1 ⊗ ū2) is a shear-free 2-form if and only
if u1 and u2 are shear-free spinors. The gauge terms satisfy

A1 +A2 = 2A ,

where A1, A2 and A are the gauge terms of u1, u2 and ω, respectively.

Proof. It is straightforward to show that if u1 and u2 satisfy

LXui = −Ai(X)ui +
1
4
X[Aiui (no sum)

then ω satisfies (5.2.15) with 2A = A1 +A2 with the use of the relation

eaX[ui ⊗ eaAuj + eaAuj ⊗ eaX
[ui = 0 . (5.2.17)

Now suppose that ω satisfies (5.2.15) for some A. As an abbreviation, we will write
(5.2.15) as

6LXu1 ⊗ ū2 + 6u1 ⊗ LXu2

− LXau1 ⊗X[eau2 −X[eau1 ⊗ LXau2 + (u1 ↔ u2) = 0 , (5.2.18)

where LX is the twistor operator of the gauged covariant derivative given by

∇∇Xu = ∇Xu+A(X)u . (5.2.19)

Contracting (5.2.18) on, say, u1 yields

6(LXu2, u1)u1 − 6(u1, u2)LXu1 + 6(LXu1, u1)u2

− (X[eau2, u1)LXau1 − (X[eau1, u1)LXau2

− (LXau2, u1)X[eau1 − (LXau1, u1)X[eau2 = 0 . (5.2.20)

Using (4.1.2), we can rearrange the inner products above so that

2(LXu2, u1)u1 − 4(LXu1, u2)u1 + 6(LXu1, u1)u2

− (X[eau2, u1)LXau1 − (X[eau1, u1)LXau2 = 0 (5.2.21)

where we have also used the relation

(LXaui, X[eauj) = (eaX[LXaui, uj)
= 2(LXui, uj)− (X[eaLXaui, uj)
= 2(LXui, uj) since eaLXa = 0 .

We will consider the null and non-null cases separately. If ω is non-null, then u1

and u2 are linearly independent. Writing LXu1 and LXu2 as

LXu1 = α(X)u1 + β(X)u2
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LXu2 = γ(X)u1 + δ(X)u2

where α, β, γ and δ are complex 1-forms, we must have

αu1 + βu2 = 0
γu1 + δu2 = 0

since eaLXa = 0. The coefficient of u2 in (5.2.21) must vanish, hence

(6LXu1 −X[βu2 −X[δu1, u1) = (6LXu1 +X[(α− δ)u1, u1)
= 0 . (5.2.22)

Since the only even semi-spinors orthogonal to u1 are proportional to u1, there exists
a complex 1-form A′1 such that

6LXu1 +X[(α− δ)u1 = −6A′1(X)u1 . (5.2.23)

Putting X = Xa and multiplying on the left by ea shows that

4(α− δ)u1 = −6A′1u1 (5.2.24)

and so

LXu1 = −A′1(X)u1 +
1
4
X[A′1u1 . (5.2.25)

Writing LX in terms of A and the ordinary twistor operator, it is clear that u1 is a
shear-free spinor with gauge term A1 = A + A′1. Contracting (5.2.18) on u2 instead
shows that u2 is also a shear-free spinor with gauge term, say, A2. In the first part
of the proof it was shown that if this is the case then the gauge term of ω is given by
2A = A1 +A2.

If ω is null then u1 and u2 are linearly dependent, and they may be scaled so that
ω = u⊗ ū for some even semi-spinor u. Equation (5.2.21) shows that u must satisfy

2(LXu, u)u− (X[eau, u)LXau = 0 . (5.2.26)

Given another spinor v independent from u, we have a basis {u, v} for the spinor space.
Writing LXu = α(X)u + β(X)v for complex 1-forms α and β, the coefficient of u in
(5.2.26) satisfies

(2LXu−X[αu, u) = 0 ∀ X ∈ ΓTM , (5.2.27)

hence there exists a complex 1-form A′ such that

2LXu−X[αu = −2A′(X)u ∀ X ∈ ΓTM . (5.2.28)

Contracting on ea and Xa, we have

αu =
1
2
A′u (5.2.29)



§5.2 The gauged CKY equation 79

and so

LXu = −A′(X)u+
1
4
X[A′u . (5.2.30)

That is, u is a shear-free spinor with gauge term A = A+A′. However, since we must
also have 2A+ 2A′ = 2A, A′ must be zero and the gauge term of u is simply A.

If the gauge term of ω vanishes then (5.2.15) is the spinorial form of the CKY
equation. This is usually known as the 2-index Killing spinor equation [WP70], which
is a generalisation of the twistor equation to spin-1 fields. In that case the gauge terms
of u1 and u2 must have opposite sign, say A and −A. If in addition ω is null, the gauge
term of u must vanish, hence u satisfies the twistor equation.

It is immediate from the theorem that if ω is shear-free then the null 2-forms

φ1 = u1 ⊗ ū1 , φ2 = u2 ⊗ ū2

are also shear-free. By Robinson’s theorem, a null shear-free 2-form is proportional
to an exact form. A self-dual exact form is also co-exact, thus if ω is null it can be
scaled to a solution of the vacuum Maxwell equations (this is not the case if ω is non-
null). In higher (even) dimensions, Hughston and Mason have found a generalisation
of Robinson’s theorem [HM88]. On a 2r-dimensional pseudo-Riemannian manifold
(M, g), a self-dual decomposable r-form ω determines a collection of null 1-forms Tω
where

Tω(M) =
{
x ∈ ΓT ∗MC : x ∧ ω = 0

}
. (5.2.31)

We will denote the collection of vector fields dual to Tω(M) by T ∗ω(M). Since ω is
self-dual we have

T ∗ω(M) =
{
X ∈ ΓTMC : X ω = 0

}
. (5.2.32)

At any point p ∈ M, T ∗ω(M) determines a MTIS of TpMC, and so T ∗ω(M) determines
a distribution of null r-planes on M. The distribution is said to be integrable if

[T ∗ω(M), T ∗ω(M)] ⊆ T ∗ω(M) (5.2.33)

where [ , ] is the usual commutator on vector fields. If this is the case then T ∗ω(M)
defines a foliation of M. Now any decomposable self-dual r-form can be written in
terms of a pure spinor (see §2.3). Recall that the collection of null spaces determined
by a spinor field u is denoted by Tu(M). Identifying ω with u ⊗ ū where u is a pure
spinor field, it is clear that Tu(M) and Tω(M) are identical. Hughston and Mason
gave a spinorial proof that the integrability condition (5.2.33) is equivalent to each of
the following:

(1) There exists a complex 1-form α such that

dω + α ∧ ω = 0 . (5.2.34)



§5.3 Integrability conditions for shear-free spinors 80

(2) For each X[ ∈ Tu(M),

u⊗∇Xu−∇Xu⊗ ū = 0 . (5.2.35)

Furthermore, they showed that there exists a scaling ω̂ of ω such that dω̂ = 0. (In fact,
Hughston and Mason gave a much more general result for spinor fields of arbitrary
valence. The form in which we have presented these results is due to Trautman [Tra93]).

Returning to the 4-dimensional Lorentzian case where ω is a null self-dual 2-form, it
is well-known that (5.2.34) is the condition that the real null eigenvector of ω is shear-
free. It follows that (5.2.35) is equivalent to Sommers’ equation for this dimension and
signature. We can see this directly as follows. From (4.1.6) it is clear that (5.2.35) can
be written equivalently as

(u,∇Xu) = 0 ∀ X[ ∈ Tu(M) . (5.2.36)

In terms of the null basis given in §4.4, the shear-free spinor equation (4.1) is

(u,∇ku)l[u+ (u,∇mu)m̄[u = 0 (5.2.37)

since k[u = m[u = 0. Clearly, if (5.2.36) holds then u is shear-free. Conversely, if u is
shear-free then (u,∇ku) = (u,∇mu) = 0 since l[u and m̄[u are linearly independent,
thus (5.2.36) holds. From this argument it can also be seen that ω must also be a
solution of the gauged CKY equation. That is, if ω satisfies (5.2.34) for some α, it
also satisfies (5.2.10) for some A. The relationship between α and A can be found
in terms of the null basis, although it should be noted that α is not unique since the
transformation

α 7−→ α+ λ k[ + µm[ (5.2.38)

for complex functions λ, µ leaves (5.2.34) invariant. Given that (5.2.34) and (5.2.35) are
equivalent to the foliating condition (5.2.33) in all even dimensions, it seems worthwhile
to investigate the connection between these equations and the gauged CKY equation
(5.2.1) in higher dimensions. We hope to do this in future work.

5.3 Integrability conditions for shear-free spinors

Until now, we have not assumed any explicit restrictions on the form of the metric.
However, the CKY 2-form equation imposes strict integrability conditions on the con-
formal tensor. The Petrov classification scheme characterises the Jordan canonical form
of the conformal tensor regarded as a linear mapping on the space of self-dual 2-forms.
In the following we briefly summarise the Petrov types in a form that will be useful in
the study of CKY tensors. On spacetime, the Hodge dual squares to −1 when acting
on 2-forms. With the Hodge dual as complex structure, the 6-dimensional space of real
2-forms may be regarded as a 3-dimensional complex space. The conformal tensor C
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Type Eigenvalues of C PND’s

I Distinct µ1, µ2, µ3 with Σµi = 0, dimCµi = 1 Four 1-PND’s

D µ, −2µ with dimCµ = 2, dimC−2µ = 1 Two 2-PND’s

II µ, −2µ with dimCµ = 1, dimC−2µ = 1 One 2-PND, two 1-PND’s

N µ = 0 with dimCµ = 2 One 4-PND

III µ = 0 with dimCµ = 1 One 3-PND, one 1-PND

Table 5.1: Petrov types

may be regarded as a trace-free complex linear operator on 2-forms by defining

Cφ =
1
2
Xb Xa φCab φ ∈ ΓΛC

2M . (5.3.1)

In an Einstein space, this operator is self-adjoint with respect to the dot product on 2-
forms. The Petrov type of a spacetime is determined by the number of eigenforms and
eigenvalues of the conformal tensor when acting in this way on the space of self-dual
2-forms. An algebraically general spacetime has three independent eigenforms with
distinct eigenvalues. Since C is trace-free, the eigenvalues sum to zero. All other cases
are algebraically special. Details may be found in Thorpe [Tho69], or the more recent
book by O’Neill [O’N95].

Any null self-dual 2-form has one real eigenvector, in the sense of (5.2.2), with
eigenvalue zero. The principal null directions (PND’s) of the conformal tensor are the
real directions determined by null self-dual 2-forms satisfying

φ · Cφ = 0 . (5.3.2)

An algebraically general spacetime admits four independent PND’s, while the Petrov
type of an algebraically special spacetime is determined by the way the PND’s coincide
as repeated principal null directions (RPND’s). From (5.3.2) it is clear that a null
eigenform of C determines a PND. In fact, any null eigenform of C determines a
repeated principal null direction, and vice-versa. The multiplicity of a PND is 1 if φ is
not an eigenform of C, 2 if Cφ = µφ with µ 6= 0, 3 if Cφ = 0 and dim kerC = 1, or 4
if Cφ = 0 with dim kerC = 2. A PND with multiplicity m is called m-principal, while
1-principal null directions are said to be simple. Table 5.1 lists the properties of the
eigenvalues and PND’s of C for each Petrov type, where Cµ is the eigenspace of C with
eigenvalue µ. If the conformal tensor vanishes, the spacetime is said to be conformally
flat or Petrov type O.

The admissible Petrov types of a spacetime admitting a CKY 2-form may be de-
termined using the integrability conditions of the shear-free spinor equation. Suppose
that u is a shear-free spinor with gauge term qA (the constant q is inserted for later
convenience). Differentiating (4.5.26) introduces the curvature operator R̂(X,Y ) of ∇̂.
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This is related to the R(X,Y ) by

R̂(X,Y )u = R(X,Y )u+ qY X Fu , (5.3.3)

where

F = dA (5.3.4)

is the GL(1,C)-curvature. Differentiating the shear-free spinor equation (4.5.24) gives
the integrability condition

Rabu =
1
2
eb∇̂aD̂u−

1
2
ea∇̂bD̂u− 2qXb Xa Fu , (5.3.5)

noting that the action of the curvature operator on spinors is given by (2.4.25). For
vanishing torsion, the Bianchi identity (2.4.6) shows that eaRab = Pb. Then multiplying
(5.3.5) on the left by ea produces

Pbu = −∇̂bD̂u−
1
2
ebD̂

2
u+ 2qXb Fu . (5.3.6)

A further multiplication by eb gives

R u = 4qFu− 3D̂
2
u (5.3.7)

since ebPb = R by (2.4.9). Combining (5.3.5)–(5.3.7) with the definition of the
conformal 2-forms (2.4.11) we have

Cabu = q

(
1
6
eabF +

1
2
Feab

)
u . (5.3.8)

Now u determines a null self-dual 2-form φ = u⊗ ū. In components, (4.1.4) shows
that φ is given by

φ = −1
8
(u, eabu)eab . (5.3.9)

From (5.3.1), the action of the conformal tensor on φ is

Cφ = −1
8
(u, eabu)Cab

= −1
8
(u,Cabu)eab (5.3.10)

by the ‘pairwise symmetry’ of the conformal tensor. Substituting the integrability
condition (5.3.8) yields

Cφ = − 1
48
q(u, eabFu)−

1
16
q(u,Feabu)

= − 1
48
q(u, eabFu)eab +

1
16
q(u, eabFu)eab
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=
1
24
q(u, eabFu)eab

= − 1
48
q(u, [F , eab]u)eab (5.3.11)

where we have used the Clifford commutator. It is easily verified that

Xq Xp [F , eab] = −Xa Xb [F , eqp] (5.3.12)

so we may write

Cφ =
1
48
q(u, eabu)[F , eab]

= −1
6
q[F , φ] . (5.3.13)

This is sufficient to show that the eigenvector of φ is a principal null direction, since

φ · Cφ =
1
6
qS 0(φ[F , φ])

=
1
6
q (S 0(φFφ)−S 0(φφF))

= 0 by (2.2.9) . (5.3.14)

In vacuum spacetime, the Goldberg-Sachs theorem states that a NSFG must be a
repeated principal null direction [GS62]. In more general spacetimes, necessary and
sufficient conditions for a NSFG to be a RPND are given by the generalised Goldberg-
Sachs theorem [KT62, RS63]. The following lemma shows that the eigenvector of φ is
a repeated principal null direction precisely when u is an eigenspinor of qF .

Lemma 5.3.15 Let u be a shear-free spinor with gauge term qA, and let φ = u ⊗ ū.
Then Cφ = µφ if and only if qFu = −3µu, where F = dA.

Proof. If Cφ = µφ then (5.3.13) is equivalent to

u⊗ qFu+ qFu⊗ ū = −6µu⊗ ū . (5.3.16)

Contracting with u we have

(qFu, u)u = 0 (5.3.17)

and so qFu = λu for some complex function λ. Substituting this back into equation
(5.3.16) shows that λ = −3µ.

We are now in a position to determine the Petrov type of a spacetime admitting
a CKY 2-form. First we consider the null case. Recall that a CKY 2-form is simply
a shear-free 2-form with gauge term zero. From Theorem 5.2.16, it is clear that the
spinor u determined by a null CKY 2-form φ is a shear-free spinor with vanishing gauge
term — that is, a twistor. Since the gauge term is zero, we have Cabu = 0 and Cφ = 0.
Given a second spinor v independent from u, we may construct a basis {φ, φ′, ω} for
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the space of self-dual 2-forms, where

φ′ = −1
8
(v, eabv)eab and ω = −1

8
(v, eabu)eab .

Then we must also have Cω = 0. If the spacetime is not conformally flat, then the
kernel of C is 2-dimensional. Thus the eigenvector of φ is a 4-principal null direction,
and the spacetime must be Petrov type N.

From a non-null CKY 2-form ω we obtain a pair of independent shear-free spinors
u1 and u2 with gauge terms A and −A. With F = dA and q = 1, the integrability
condition (5.3.8) for u1 shows that

Cω = −1
8
(u2, Cabu1)eab

= −1
8
(u2,

1
6
eabFu1 +

1
2
Feabu1)eab (5.3.18)

while that for u2 with q = −1 gives

Cω =
1
8
(Cabu2, u1)eab

= −1
8
(
1
6
eabFu2 +

1
2
Feabu2, u1)eab . (5.3.19)

Taking the difference of these two equations shows that

[F , ω] = 0 . (5.3.20)

The spinorial equivalent of this expression is

Fu1 ⊗ ū2 + Fu2 ⊗ ū1 + u1 ⊗Fu2 + u2 ⊗Fu1 = 0 . (5.3.21)

Contracting on u1, we have

(u2, u1)Fu1 + (Fu2, u1)u1 + (Fu1, u1)u2 = 0 . (5.3.22)

Now by (4.1.2), the first term can be rearranged as

(u2, u1)Fu1 = (Fu1, u1)u2 + (u2,Fu1)u1 . (5.3.23)

Substituting into (5.3.22) shows that (Fu1, u1) = 0, hence Fu1 = −3µu1 for some
complex function µ (the factor of −3 is for convenience). Similarly, contracting (5.3.21)
on u2 shows that u2 is also an eigenspinor of F with eigenvalue −3µ′, say. However,
we must also have

(Fu2, u1) = (u2,Fξu1)
= −(u2,Fu1) (5.3.24)

thus µ′ = −µ. Substituting this back into (5.3.18) shows that Cω = −2µω. If φ1 and
φ2 are the 2-forms corresponding to u1 and u2, then the set {φ1, φ2, ω} is an eigenbasis
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for the space of self-dual 2-forms, with eigenvalues µ, µ and −2µ respectively, hence
the spacetime must be Petrov type D or else conformally flat.



Chapter 6

Debye Potentials and Symmetry
Operators for Massless Fields

On spacetime, the exterior form of the vacuum Maxwell equations for a 2-form F are

dF = 0
d∗F = 0 . (6.1)

They may be written more concisely using the Hodge-de Rham operator (2.4.18) as

d/F = 0 . (6.2)

In flat space, the vacuum Maxwell equation may be solved by means of a Hertz poten-
tial. The Hertz potential scheme, expressed in exterior form, has been generalised to
arbitrary spacetimes by Cohen and Kegeles [CK74]. To summarise their treatment, a
Hertz potential H is a 2-form chosen so that

4H = dP + d∗Q (6.3)

where P is an arbitrary 1-form and Q is an arbitrary 3-form. Since 4 = −(dd∗ + d∗d)
we may write (6.3) as

d (d∗H + P ) = −d∗(dH +Q) . (6.4)

Then the 2-form F given by

F = d (d∗H + dP )
= −d∗(dH + d∗Q) (6.5)

is closed and co-closed, thus it is a solution of the vacuum Maxwell equation. Unfor-
tunately, the utility of the Hertz potential in arbitrary spacetimes is somewhat limited
since (6.3) is no easier to solve than (6.2). As discussed by Nisbet [Nis55], in flat space
the Hertz potential scheme reduces to the problem of finding a solution of Laplace’s
equation. Given a null shear-free 2-form ω and a complex function f satisfying 4f = 0,
it can be shown that the 2-form fω is a Hertz potential. The function f is referred to as

86
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a Debye potential. Cohen and Kegeles found that the Debye potential scheme may be
extended to the generalised Goldberg-Sachs class of spacetimes [KT62, RS63], that is,
all algebraically special spacetimes with a repeated principal null direction tangent to a
congruence of null shear-free geodesics. For an appropriate choice of P and Q, a Hertz
potential can be constructed by scaling the null 2-form corresponding to the shear-free
RPND by a complex function f satisfying a generalisation of Laplace’s equation.

The vacuum Maxwell equation (6.2) formally resembles the massless Dirac equation.
In fact, it is the massless equation of a spin-1 field. In conformally flat spacetime, a
complex function satisfying the conformally covariant wave equation may be used to
generate a massless field of arbitrary spin by sufficient applications of Penrose’s spin
raising operator [Pen75, PR86b]. The spin-raising operator is an operator constructed
from a twistor which maps a solution of the spin-s massless field equation to a solution
of the spin-(s+ 1

2) massless field equation. The spin-0 massless equation for a complex
function f is

4f − 1
6
R f = 0 . (6.6)

Functions satisfying this equation may be used to construct Hertz-like potentials in
conformally flat spacetime.

The operation ‘dual’ to spin raising is spin lowering. The spin lowering operator
maps a solution of the spin-s massless field equation to a solution of the spin-(s − 1

2)
massless field equation by contraction with a twistor. In conformally flat spacetime,
repeated applications of spin lowering may be used to generate a solution of (6.6) from
any massless field [PR86b].

Spin raising and lowering is of limited use in non-conformally flat spacetime, as the
integrability conditions for the twistor equation are highly restrictive. In this chapter
we show that in the generalised Goldberg-Sachs class of spacetimes, a generalisation
of spin raising and lowering is possible using shear-free spinors, of which twistors are a
special case. Since shear-free spinors satisfy the twistor equation of a gauged covariant
derivative, when raising or lowering with a shear-free spinor we obtain solutions of a
‘gauged’ massless field equation, where the gauge term is dependent on the gauge terms
of the original spinor field and the shear-free spinor. The solutions are generated from
a function satisfying a generalisation of (6.6) using a ‘gauged’ Laplacian. We will refer
to such functions as ‘Debye potentials’ also.

We will only consider the massless Dirac and vacuum Maxwell fields, since there
are strong algebraic consistency conditions relating massless fields of higher spin to
the conformal curvature [Buc58, Buc62]. In some particular spacetimes, however, it
is possible to find consistent solutions to higher-spin equations. Torres del Castillo
has considered Debye potentials for the spin-3

2 Rarita-Schwinger field in algebraically
special vacuum spacetimes [TdC89b] and in spacetimes which are either algebraically
special solutions of the vacuum Einstein equations or solutions of the Einstein-Maxwell
equations where a principal null direction of the Maxwell field is NSFG [TdC89a].
Cohen and Kegeles have examined Debye potentials for the spin-2 field corresponding
to linearized gravity in algebraically special vacuum spacetimes [CK75, KC79]. It is
hoped that our generalisation of spin raising and lowering will be applicable to higher-
spin fields in more general spacetimes, particularly when the spacetime is not Ricci-flat.
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An important application of spin raising and lowering is the construction of sym-
metry operators which map one solution of the massless field equation to another.
A solution of the spin-s massless field equation is ‘lowered’ with r shear-free spinors
(1 ≤ r ≤ 2s) and then ‘raised’ with r shear-free spinors to obtain a new solution for
the spin-s equation. In this fashion we are able to construct a first-order symmetry
operator for the massless Dirac equation and a second-order symmetry operator for the
vacuum Maxwell equation, by using two shear-free spinors whose gauge terms sum to
zero. If the spinors are both even, they correspond to a self-dual conformal Killing-
Yano 2-form. If the spinors have opposite parity then they can be used to construct a
(complex) conformal Killing vector. In that case, the symmetry operator is related to
the Lie derivative.

We show that the symmetry operator for the massless Dirac operator isR-commuting,
that is, its commutator with the Dirac operator is of the form RD, where R is another
operator. Kamran and McLenaghan have shown that the most general first-order op-
erator which R-commutes with D can be constructed from CKY tensors of all possible
degrees [KM84b]. There is no dependency between the various tensors, so the operator
can be split up into components depending only on one CKY tensor, each of which is
R-commuting on its own. The 0- and 4-form operators are trivial, while the 1- and
3-form operators are related to the Lie derivatives with respect to the corresponding
conformal Killing vectors. Thus the only non-trivial operator is constructed from a
CKY 2-form. This is same as the operator we construct from a pair of even shear-free
spinors.

For the most part, the authors previously mentioned have used the Newman-Penrose
formalism and adapted null bases to facilitate their calculations. While these methods
are very efficient, they are only suitable for the 4-dimensional Lorentzian case. We have
endeavoured to make our calculations basis-independent, which results in an especially
compact notation with minimal use of indices. The main result of this chapter is the
presentation of a symmetry operator for the massless Dirac equation on a manifold
of arbitrary dimension and signature, constructed from a CKY p-form. While the
relationship between CKY 2-forms and Killing spinors in spacetime is well understood,
it is difficult to envision what the spinor equation corresponding to a CKY p-form would
be in higher dimensions.

6.1 Debye potentials for the massless Dirac equation

In this section we show how Debye potentials may be constructed on spacetime for
solutions of the massless Dirac equation of the gauged covariant derivative,

D̂ψ = 0 (6.1.1)

where ψ is a Dirac spinor with an associated gauge term. If the gauge term of ψ is, say,
qA, then (6.1.1) may be written equivalently as Dψ = −qAψ. In this chapter, we will
most often use functions, tensors and spinors whose gauge terms are constant multiples
of the same 1-form A. This constant will be referred to as the charge. Solutions of
(6.1.1) are constructed by raising a charged function f with a shear-free spinor u. The
charge of ψ must be the sum of the charges of f and u, hence to obtain an uncharged
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solution we require that these charges cancel. When differentiating uncharged spinors,
we will drop the ‘hat’ symbol.

Consider a semi-spinor u with gauge term qA and a function f with gauge term q′A′.
The corresponding GL(1,C)-curvatures are qF and q′F ′, respectively, where F = dA
and F ′ = dA′. The spinor ψ constructed by ‘raising’ f with u is given by

ψ = d̂f u+
1
2
fD̂u . (6.1.2)

It has gauge term qA+ q′A′ and GL(1,C)-curvature qF + q′F ′. When the gauge terms
of u and f vanish, (6.1.2) is the Penrose spin-raising operator which generates a spin-1

2
field from a spin-0 field. Acting on ψ with the Dirac operator we have

D̂ψ = ea
(

(∇̂Xa d̂f)u+ d̂f∇̂Xau+
1
2
(∇̂Xaf)D̂u+

1
2
f∇̂XaD̂u

)
= d̂2f u− d̂∗d̂f u+ ead̂f∇̂Xau+

1
2
d̂fD̂u+

1
2
fD̂

2
u . (6.1.3)

Now the Laplace-Beltrami operator for ∇̂ is 4̂ = −(d̂∗d̂ + d̂d̂∗), so we see that 4̂f =
−d̂∗d̂f , while d̂2f = fq′F ′ by (4.5.14). As ead̂f = 2Xa d̂f − d̂fea, equation (6.1.3)
becomes

D̂ψ = 4̂fu+ fq′F ′u+
1
2
fD̂

2
u+ 2

(
∇̂
d̂f
]u−

1
4
d̂fD̂u

)
. (6.1.4)

Now suppose that u is shear-free. Then the bracketed term vanishes, and we may use
the integrability condition (5.3.7) to rewrite D̂

2
u so that

D̂ψ = 4̂fu+ fq′F ′u+
1
2
f

(
−1

3
R u+

4
3
qFu

)
=

(
4̂f − 1

6
R f

)
u+ f

(
2
3
qF + q′F ′

)
u . (6.1.5)

If D̂ψ is to be proportional to u, we require that u be an eigenspinor of 2
3qF + q′F ′.

Let φ = u⊗ ū be the null 2-form corresponding to u. By Lemma 5.3.15, qFu = −3µu
if and only if Cφ = µφ, which is equivalent to the condition that the NSFG vector field
k = (iu, eauc)Xa is a repeated principal null direction. However, we cannot conclude
that u is also an eigenspinor of q′F ′ unless the gauge terms of u and f are related. We
will suppose that q′A′ = εqA, from which it follows that q′F ′ = εqF . The constant
factor ε is inserted so that the gauge term of f vanishes when the gauge term of u
does, since if we have q = 0 but q′ 6= 0 we would know that qFu = 0 but we could not
conclude that q′F ′u = 0.

Theorem 6.1.6 Given a shear-free spinor u with charge q, corresponding to a repeated
principal null direction, and a complex function f with charge εq, the spinor

ψ = d̂f u+
1
2
fD̂u (6.1.7)
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satisfies

D̂ψ =
(
4̂f − 1

6
R f − (3ε+ 2)µf

)
u (6.1.8)

where µ is the eigenvalue of the 2-form corresponding to u.

Proof. With q′F ′ = εqF , equation (6.1.5) becomes

D̂ψ =
(
4̂f − 1

6
R f

)
u+

(
ε+

2
3

)
fqFu . (6.1.9)

Since the null shear-free geodesic k = (iu, eauc)Xa is aligned with a repeated principal
null direction, the null 2-form φ = u ⊗ ū is an eigenvector of the conformal tensor. If
the eigenvalue of φ is µ, by Lemma 5.3.15 we have qFu = −3µu, so

D̂ψ =
(
4̂f − 1

6
R f − (3ε+ 2)µf

)
u . (6.1.10)

A spacetime is in the generalised Goldberg-Sachs class if it admits a congruence
of null shear-free geodesics aligned with a repeated principal null direction. Theorem
6.1.6 shows that we can solve the massless Dirac equation (with charge q(ε+1)) in such
a spacetime by finding a solution of the complex scalar equation

4̂f − 1
6
R f = (3ε+ 2)µf . (6.1.11)

We will refer to a function satisfying (6.1.11) as a generalised Debye potential. Although
the Laplacian 4̂ contains additional gauge terms, they can be expressed using a suitably
adapted basis, while µ is simply the eigenvalue of the null 2-form corresponding to
the shear-free RPND. If we wish to find an uncharged solution of the massless Dirac
equation (as would normally be the case) then we require that u and f have opposite
charges, that is, ε = −1. Finally, if q = 0, u is simply a twistor. In that case f also has
zero charge, and the eigenvalue µ of φ is zero so (6.1.11) reduces to (6.6).

6.2 Spin lowering with a shear-free spinor

In this section we show how to construct a solution of (6.1.11) by contracting a solution
of the massless Dirac equation with a shear-free spinor. Let u and ψ be spinors with
gauge terms qA and q′A′, respectively. Since we require that ∇̂ be compatible with the
inner product, we have

∇̂X(u, ψ) = (∇̂Xu, ψ) + (u, ∇̂Xψ)
= (∇Xu, ψ) + (u,∇Xψ) + (qA+ q′A′)(X)(u, ψ) (6.2.1)
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so the function f = (u, ψ) has gauge term qA+q′A′. The action of the gauged Laplace-
Beltrami operator on f is

4̂f = ∇̂Xa∇̂Xaf − ∇̂∇aXaf (6.2.2)

hence

4̂f = (∇̂Xa∇̂Xau− ∇̂∇aXau, ψ) + 2(∇̂Xau, ∇̂Xaψ)
+ (u, ∇̂Xa∇̂Xaψ − ∇̂∇aXaψ)

= (∇̂2u, ψ) + 2(∇̂Xau, ∇̂Xaψ) + (u, ∇̂2ψ) (6.2.3)

where ∇̂2 is the trace of the Hessian of ∇̂. The square of the Dirac operator on a spinor
with charge q is related to ∇̂2 by

D̂
2
ψ = ∇̂2ψ − 1

4
R ψ + qFψ (6.2.4)

thus

4̂f = (D̂
2
u+

1
4
R u− qFu, ψ) + 2(∇̂Xau, ∇̂Xaψ)

+ (u, D̂
2
ψ +

1
4
R ψ − q′F ′ψ) . (6.2.5)

Finally, since (u,F ′ψ) = −(F ′u, ψ) we have

4̂f =
1
2
R (u, ψ) + (D̂

2
u, ψ)− ((qF − q′F ′)u, ψ)

+ 2(∇̂Xau, ∇̂Xaψ) + (u, D̂
2
ψ) . (6.2.6)

To go further we must suppose that u is shear-free. Note that in that case u is a
semi-spinor, so only the component of ψ with the same parity as u contributes to f .

If u is shear-free then

(∇̂Xau, ∇̂Xaψ) =
1
4
(eaD̂u, ∇̂Xaψ)

=
1
4
(D̂u, D̂ψ). (6.2.7)

Using (6.2.7), and replacing D̂
2
u via (5.3.7), equation (6.2.6) becomes

4̂f =
1
2
R (u, ψ) + ((4

3qF − 1
3R )u, ψ)− ((qF − q′F ′)u, ψ)

+
1
2
(D̂u, D̂ψ) + (u, D̂

2
ψ)

=
1
6
R f + ((1

3qF + q′F ′)u, ψ) +
1
2
(D̂u, D̂ψ) + (u, D̂

2
ψ). (6.2.8)

For f to be a generalised Debye potential, we require that u be an eigenspinor of
1
3qF + q′F ′. As in §6.1, we will suppose that the gauge terms of ψ and u are related
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by q′A′ = εqA, and that u corresponds to a repeated principal null direction.

Theorem 6.2.9 Given a shear-free spinor u with charge q, corresponding to a repeated
principal null direction, and a spinor ψ with charge εq, the function

f = (u, ψ) (6.2.10)

satisfies

4̂f − 1
6
R f = − (3ε+ 1)µf +

1
2
(D̂u, D̂ψ) + (u, D̂

2
ψ) (6.2.11)

where µ is the eigenvector of the 2-form corresponding to u.

Proof. Equation (6.2.8) with q′F ′ = εqF becomes

4̂f =
1
6
R f + (ε+ 1

3)(qFu, ψ)

+
1
2
(D̂u, D̂ψ) + (u, D̂

2
ψ). (6.2.12)

Since u corresponds to a repeated principal null direction, the 2-form φ = u ⊗ ū is
an eigenvector of the conformal tensor. If Cφ = µφ then by Lemma 5.3.15 we have
qFu = −3µu. Substituting this into (6.2.12) shows that

4̂f − 1
6
R f = −(3ε+ 1)µf +

1
2
(D̂u, D̂ψ) + (u, D̂

2
ψ). (6.2.13)

So if ψ satisfies the massless Dirac equation we can construct a function satisfying
an equation of the same form as (6.1.11). In order for f to satisfy (6.1.11) precisely,
it must have the same gauge term, and the eigenvalue µ appearing in (6.2.11) must be
the same as that in (6.1.8). For this we require a second shear-free spinor with gauge
term −qA, that is, opposite charge to u.

6.3 Symmetry operators for the massless Dirac equation

In this section we show how a symmetry operator for the massless Dirac equation
(without charge) can be constructed from a pair of shear-free spinors with opposite
charges, corresponding to a CKY 2-form. We also show how the symmetry operator
can be written in terms of the CKY 2-form, and hence generalised to an operator
constructed from a CKY p-form which R-commutes with the Dirac operator in all
dimensions and signatures. Part of this work has appeared in [Cha96] and [BC97].

Consider a pair of even shear-free spinors u1 and u2 with charges +1 and −1 re-
spectively (that is, gauge terms A and −A). In Chapter 5 we showed that this is the
case if and only if the 2-form ω given by

ω =
1
2

(u1 ⊗ ū2 + u2 ⊗ ū1) (6.3.1)
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is a self-dual CKY 2-form. It follows that the null 2-forms φ1 = u1⊗ū1 and φ2 = u2⊗ū2

are eigenvectors of the conformal tensor with the same eigenvalue. Thus u1 and u2 each
correspond to a repeated principal null direction. At this point, we need not assume
that u1 and u2 are linearly independent, and so ω may be null or non-null. Recall that
if u1 and u2 are dependent, then A vanishes and Cφi = Cω = 0. Now let ψ be an
uncharged spinor. If the eigenvalue of φ1 (and φ2) is µ, then by Theorem 6.2.9 with
q = 1 and ε = 0, the function f = (u1, ψ) has charge +1 and satisfies

4̂f − 1
6
R f = −µf +

1
2
(D̂u1,Dψ) + (u1,D2ψ). (6.3.2)

Naturally, if u1 and u2 are dependent then µ = 0. Let ψ′ be the spinor obtained by
raising f with u2, that is

ψ′ = d̂fu2 +
1
2
fD̂u2 (6.3.3)

by (6.1.2). Since f and u2 have opposite charge, ψ′ is uncharged. Then by Theorem
6.1.6 with q = −1 and ε = −1,

Dψ′ =
(
4̂f − 1

6
R f + µf

)
u2

=
(

1
2
(D̂u1,Dψ) + (u1,D2ψ)

)
u2 (6.3.4)

by (6.3.2). Clearly if ψ is a solution of the massless Dirac equation then so is ψ′, thus the
existence of a self-dual CKY 2-form allows us to construct new solutions of the massless
Dirac equation from old ones. We can express this construction as an operator on the
space of spinors which may be written using the CKY tensor corresponding to u1 and
u2. The covariant derivative ∇̂ is compatible with the spinor inner product, so

d̂f =
(
(∇̂Xau1, ψ) + (u1,∇Xaψ)

)
ea

=
(

1
4
(eaD̂u1, ψ) + (u1,∇Xaψ)

)
ea . (6.3.5)

Thus ψ′ may be written using u1 and u2 as

ψ′ = (u1,∇Xaψ)eau2 +
1
4
(eaD̂u1, ψ)eau2 +

1
2
(u1, ψ)D̂u2 . (6.3.6)

Writing (6.3.6) using tensor notation, we have

ψ′ =
(
eau2 ⊗ ū1∇Xa +

1
4
eau2 ⊗ eaD̂u1 +

1
2
D̂u2 ⊗ ū1

)
ψ . (6.3.7)

As u2 is even and D̂u1 is odd, eau2 ⊗ eaD̂u1 = 2D̂u1 ⊗ ū2 and so finally

ψ′ =
(
eau2 ⊗ ū1∇Xa +

1
2
D̂u1 ⊗ ū2 +

1
2
D̂u2 ⊗ ū1

)
ψ . (6.3.8)



§6.3 Symmetry operators for the massless Dirac equation 94

Now we will write ψ′ in terms of ω only.
The tensor product u2 ⊗ ū1 is an even form which can be expressed as

u2 ⊗ ū1 =
1
4
(u1, u2) + ω +

1
4
(u1, u2)ž . (6.3.9)

The derivative terms in (6.3.8) can be recognised by acting on ω with the Hodge-de
Rham operator,

d/ω = dω − d∗ω

=
1
2
ea
(
∇̂Xau1 ⊗ ū2 + u1 ⊗ ∇̂Xau2 + ∇̂Xau2 ⊗ ū1 + u2 ⊗ ∇̂Xau1

)
=

1
2

(
D̂u1 ⊗ ū2 +

1
4
eau1 ⊗ eaD̂u2 + D̂u2 ⊗ ū1 +

1
4
eau2 ⊗ eaD̂u1

)
=

1
2

(
D̂u1 ⊗ ū2 +

1
2
D̂u2 ⊗ ū1 + D̂u2 ⊗ ū1 +

1
2
D̂u1 ⊗ ū2

)
=

3
4

(
D̂u1 ⊗ ū2 + D̂u2 ⊗ ū1

)
. (6.3.10)

Equations (6.3.9) and (6.3.10) allow us to write (6.3.8) as

ψ′ =
(
eaω∇Xa +

2
3
dω − 2

3
d∗ω +

1
4
(u1, u2)D− 1

4
(u1, u2)žD

)
ψ .

Now equation (6.3.4) shows that if Dψ = 0 then Dψ′ = 0. Since in that case the last
two terms in the above expression vanish we must have

D
((

eaω∇Xa +
2
3
dω − 2

3
d∗ω

)
ψ

)
= 0 (6.3.11)

whenever Dψ = 0. So the operator Kω on spinors defined by

Kω = eaω∇Xa +
2
3
dω − 2

3
d∗ω (6.3.12)

is a symmetry operator for the massless Dirac equation whenever ω is a self-dual CKY
2-form. Because of the self-duality of ω, Kω annihilates odd spinors. However, we
could just have easily used the charge conjugates of u1 and u2 to construct the complex
conjugate ω̄ of ω, which is an anti self-dual CKY 2-form. Then Kω̄ is a symmetry
operator which annihilates even spinors.

While ω in (6.3.12) is specifically a self-dual CKY 2-form, it is possible to generalise
Kω to a symmetry operator for the massless Dirac equation in all dimensions and sig-
natures provided only that ω is a p-form satisfying the conformal Killing-Yano equation
(5.1.1).

Theorem 6.3.13 Let ω be a conformal Killing-Yano p-form on an n-dimensional
pseudo-Riemannian manifold. Then the operator Kω on spinors defined by

Kω = eaω∇Xa +
p

p+ 1
dω − n− p

n− p+ 1
d∗ω (6.3.14)
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is a symmetry operator for the equation Dψ = 0, with

DKω =
(
ωD +

(−1)p

p+ 1
dω +

(−1)p

n− p+ 1
d∗ω

)
D . (6.3.15)

Proof. Consider an arbitrary spinor ψ. The only non-trivial calculation to be carried
out in DKωψ is the derivative of the first term in (6.3.14). Now

D
(
ebω∇Xbψ

)
= ea

(
∇Xae

bω∇Xbψ + eb∇Xaω∇Xbψ + ebω∇Xa∇Xbψ
)
.

By (4.3.6), the metric-compatibility of ∇ implies that

∇Xae
bω∇Xbψ = −ebω∇∇aXbψ . (6.3.16)

Thus

D
(
ebω∇Xbψ

)
= eaebω (∇Xa∇Xb −∇∇aXb)ψ

+ eaeb∇Xaω∇Xbψ . (6.3.17)

As eaeb = eab+gab, the first term in (6.3.17) can be written using the curvature 2-forms
and the trace of the Hessian, as

eaebω (∇Xa∇Xb −∇∇aXb)ψ = eabω (∇Xa∇Xb −∇∇aXb)ψ + ω∇2ψ

=
1
2
eabωR(Xa, Xb)ψ + ω∇2ψ

=
1
4
eabωRabψ + ω∇2ψ . (6.3.18)

By the ‘pairwise symmetry’ (2.4.7) of the curvature forms and using (6.2.4) and (2.4.20)
this expression becomes

eaebω (∇Xa∇Xb −∇∇aXb)ψ =
1
4
Rabωe

abψ + ω

(
D2ψ +

1
4
R ψ

)
=

(
∇2ω −4ω

)
ψ + ωD2ψ . (6.3.19)

As ω is a CKY tensor, we can use the integrability condition (5.1.2) to write (6.3.19)
using d∗dω and dd∗ω.

eaebω (∇Xa∇Xb −∇∇aXb)ψ

=
(
d∗dω + dd∗ω − 1

p+ 1
d∗dω − 1

n− p+ 1
dd∗ω

)
ψ + ωD2ψ

=
(

p

p+ 1
d∗dω +

n− p

n− p+ 1
dd∗ω

)
ψ + ωD2ψ . (6.3.20)

With the Clifford relation eaeb = 2gab − ebea, the second term in (6.3.17) becomes

eaeb∇Xaω∇Xbψ = 2∇Xbω∇Xbψ − ebd/ω∇Xbψ

= 2∇Xbω∇Xbψ − ebdω∇Xbψ + ebd∗ω∇Xbψ . (6.3.21)
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Now we apply the Clifford form of the CKY equation (5.1.1) to obtain

eaeb∇Xaω∇Xbψ =
{

1
p+ 1

(
ebdω + (−1)pdωeb

)
− 1
n− p+ 1

(
ebd∗ω − (−1)pd∗ωeb

)}
∇Xbψ

− ebdω∇Xbψ + ebd∗ω∇Xbψ

= − p

p+ 1
ebdω∇Xbψ +

n− p

n− p+ 1
ebd∗ω∇Xbψ

+
(−1)p

p+ 1
dωDψ +

(−1)p

n− p+ 1
d∗ωDψ . (6.3.22)

Combining (6.3.20) and (6.3.22) we have

D
(
ebω∇Xbψ

)
= ωD2ψ +

(−1)p

p+ 1
dωDψ +

(−1)p

n− p+ 1
d∗ωDψ

+
p

p+ 1
d∗dωψ − p

p+ 1
ebdω∇Xbψ

+
n− p

n− p+ 1
dd∗ωψ +

n− p

n− p+ 1
ebd∗ω∇Xbψ . (6.3.23)

The derivatives of the remaining terms of Kω are

D (dωψ) = (d/dω)ψ + ebdω∇Xbψ

= −d∗dωψ + ebdω∇Xbψ (6.3.24)
D (d∗ωψ) = (d/d∗ω)ψ + ebd∗ω∇Xbψ

= dd∗ωψ + ebd∗ω∇Xbψ (6.3.25)

from which it is clear that (6.3.15) follows.

Clearly Kω is a symmetry operator for the massless Dirac operator. As the dual of
a CKY tensor is a CKY tensor, the operator K∗ω must also be a symmetry operator.
Since ∗ω has degree (n− p),

K∗ω = ea∗ω∇Xa +
n− p

n− p+ 1
d∗ω − p

p+ 1
d∗∗ω . (6.3.26)

By (2.2.7), the Hodge dual of a p-form can be expressed in Clifford form as

∗ω = (−1)bp/2cωz . (6.3.27)

It follows that the derivative and co-derivative of ∗ω are

d∗ω = −(−1)bp/2cd∗ωz (6.3.28)
d∗∗ω = −(−1)bp/2cdωz . (6.3.29)
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Since ∇ is metric-compatible, it commutes with z so K∗ω is related to Kω by

K∗ω = (−1)bp/2cKωz . (6.3.30)

In even dimensions the volume form z anti-commutes with odd forms, thus

ωz = (−1)pzω (n even). (6.3.31)

Then

K∗ω = −(−1)bp/2c(−1)pzKω (n even). (6.3.32)

In odd dimensions the volume form commutes with everything, so

K∗ω = (−1)bp/2czKω (n odd). (6.3.33)

We can easily show that Kω is an R-commuting operator for D, since by (6.3.15),

[D,Kω] =
(
ωD− eaω∇Xa +

(−1)p − p

p+ 1
dω +

(−1)p + n− p

n− p+ 1
d∗ω

)
D . (6.3.34)

With some additional constraints on ω, it is possible to construct operators similar to
Kω which commute or anti-commute with D, and so are symmetry operators for the
massive Dirac equation. Now

[D, ωD] = (d/ω + eaω∇Xa − ωD)D
= (dω − d∗ω + eaω∇Xa − ωD)D (6.3.35)

so we can write (6.3.34) as

[D,Kω] =
(

1 + (−1)p

p+ 1
dω − 1− (−1)p

n− p+ 1
d∗ω

)
D− [D, ωD] . (6.3.36)

Thus if we define a new operator L+
ω by

L+
ω =

1
2

(Kω + ωD) (6.3.37)

we have

[D, L+
ω ] =


1

p+ 1
dωD if ω even

−1
n− p+ 1

d∗ωD if ω odd.

(6.3.38)

From (6.3.38) it is clear that L+
ω commutes with D when either

(1) ω is an odd co-closed CKY tensor (an odd KY tensor); or

(2) ω is an even closed CKY tensor (the Hodge dual of a KY tensor).
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An operator which commutes with D is a symmetry operator for the massive Dirac
equation. Recall that if d∗ω = 0 then ω is a Killing-Yano (KY) tensor. In even
dimensions, we can always construct an operator commuting with D from a Killing-
Yano tensor ω, either L+

ω if ω is odd, or L+
∗ω if ω is even, since the degree of ∗ω is

(n − p). In odd dimensions we cannot construct a commuting operator from an even
Killing-Yano tensor in this way since the dual of an even KY tensor is an odd closed
CKY tensor. However, we will show that we can construct an anti-commuting operator
from an even KY tensor.

We make the observation that for a 1-form ω the operator L+
ω is related to the Lie

derivative with respect to the (metric) dual of ω and an appropriate conformal weight.
The Lie derivative of a spinor with respect to a conformal Killing vector K is defined
by

LKψ = ∇Kψ +
1
4
dK[ψ . (6.3.39)

Putting ω = K[ and p = 1 into (6.3.37),

L+
K[ψ =

1
2
eaK[∇Xaψ +

1
4
dK[ψ − n− 1

2n
d∗K[ψ +

1
2
K[Dψ

= ∇Kψ −
1
2
K[Dψ +

1
4
dK[ψ − n− 1

2n
d∗K[ψ +

1
2
K[Dψ

= LKψ −
n− 1
2n

d∗K[ψ . (6.3.40)

Similarly, if ω = ∗K[ for a vector K then in odd dimensions (6.3.33) shows that

L+
∗K[ = z

(
LK − n− 1

2n
d∗K[

)
(n odd) (6.3.41)

whereas in even dimensions (6.3.32) shows that

L+
∗K[ = z

(
LK − n− 1

2n
d∗K[ −K[D

)
(n even). (6.3.42)

When K is a conformal Killing vector (that is, K[ is a CKY 1-form), by (6.3.38)
we have the well-known result (see, for example, [BT87])

[D, L+
K[ ] = [D,LK − (n− 1)/(2n)d∗K[]

= − 1
n
d∗K[D . (6.3.43)

A conformal Killing vector is usually defined as satisfyingLKg = 2λg for some function
λ. It can then be shown that d∗K[ = −nλ and so (6.3.43) may be written as

[D,LK + 1
2(n− 1)λ] = λD . (6.3.44)

If λ = 0 (and hence d∗K = 0) then K is a Killing vector, in which case L+
K[ commutes

with D and L+
K[ = LK . Note that L+

∗K[ only commutes with D in odd dimensions.
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Let L−ω be an operator on spinors define d by

L−ω =
1
2

(Kω − ωD) . (6.3.45)

A similar calculation to that carried out in equations (6.3.34) to (6.3.38) shows that
the anti-commutator {D, L−ω } is

{D, L−ω } =


1

n− p+ 1
d∗ωD if ω even

−1
p+ 1

dωD if ω odd.

(6.3.46)

Then L−ω anti-commutes with D when either

(1) ω is an even co-closed CKY tensor (an even KY tensor); or

(2) ω is an odd closed CKY tensor (the Hodge dual of a KY tensor).

In odd dimensions we cannot construct an anti-commuting operator from an odd KY
tensor ω since ∗ω is an even closed CKY tensor. However, we have shown that L+

∗ω
commutes with D in that case.

In even dimensions we can always construct an anti-commuting operator from a
KY tensor ω, since either ω is even or ∗ω is an odd closed CKY tensor. As the volume
form z anti-commutes with D, the anti-commutator in (6.3.46) can be changed into a
commutator if L−ω is multiplied by z, since

[D, zL−ω ] = −z{D, Lω}. (6.3.47)

Then

[D, zL−ω ] =


1

n− p+ 1
d∗ω zD if ω even

1
p+ 1

dω zD if ω odd.

(6.3.48)

The operators L−∗ω and L+
ω are related by

L−∗ω = −(−1)bp/2c(−1)pzKω − (−1)bp/2cωzD
= −(−1)bp/2c(−1)pzKω − (−1)bp/2c(−1)pzωD
= −(−1)bp/2c(−1)pzL+

ω . (6.3.49)

Thus for a vector K,

L−∗K[ = zL+
K[

= z

(
LK − n− 1

2n
d∗K[

)
. (6.3.50)
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As ∗K[ is an odd form of degree (n− 1), the anti-commutator (6.3.46) becomes

{D, L−∗K[} = − 1
n
d∗K[D

=
1
n
d∗K[zD (6.3.51)

when K is conformal Killing. The commutator (6.3.48) becomes

[D, zL−∗K[ ] = − 1
n
d∗K[z2D (6.3.52)

where z2 is given by (2.3.5).
In 4-dimensional Lorentzian space-time, Kamran and McLenaghan [KM84b] have

found that the most general first-order operator L (up to a trivial symmetry operator of
the form RD) which R-commutes with D can be constructed from a conformal Killing
vector, a CKY 2-form and a CKY 3-form. As a CKY 3-form is the Hodge dual of a
CKY 1-form, L may be written using a pair of conformal Killing vectors K1 and K2

and a CKY 2-form ω as

L = c1 + L+
K[

1

+ zL−ω + L+
∗K[

2

+ c2z

= c1 +
(
LK1 −

3
8
d∗K[

1

)
+ zL−ω

+ z

(
LK2 −

3
8
d∗K[

2 −K[
2D
)

+ c2z (6.3.53)

where c1 and c2 are constants. Then

[D,L] =
(
−1

4
d∗K[

1 +
1
3
d∗ω z +

1
2
dK[

2 z

)
D . (6.3.54)

It would be interesting to know if the most general first-order symmetry operators for
other dimensions and signatures are obtained in this way from CKY tensors.

We have chosen to write L in such a way that it commutes with D when K1 is a
Killing vector, ω is a KY 2-form, and ∗K[

2 is a KY 3-form (note that K2 is not a Killing
vector). If these conditions hold then McLenaghan and Spindel [MS79] have shown
that L is the most general first-order operator commuting with D. For a KY 2-form ω,
the operator zL−ω commutes with the Dirac operator, and so is a symmetry operator
for the massive Dirac equation. This was first observed by Carter and McLenaghan,
who interpreted zL−ω as a generalised total angular momentum operator [CM79]. The
existence of a KY 2-form accounts for the separability of the Dirac equation in Kerr
spacetime. The separated solutions appear as eigenvectors of the symmetry operator,
with separation constants given by the eigenvalues [KM84a]. A comprehensive review of
separation of variables in general relativity may be found in [KMW92b]. The existence
of a KY 2-form in the Kerr solution also gives rise to the conserved quantity known
as Carter’s constant, which has been called the ‘total angular momentum’ of a test
particle in a geodesic orbit [Car68]. The spinorial equivalent of a KY 2-form is a
Killing spinor satisfying an additional skew-Hermiticity condition [CM79]. Using a
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Killing spinor, Torres del Castillo [TdC85] independently found the symmetry operator
of Kamran and McLenaghan [KM84b], and also a second-order symmetry operator for
the vacuum Maxwell equation. We will examine symmetry operators for the vacuum
Maxwell equation in §6.6.

6.4 Debye potentials for vacuum Maxwell fields

In this section we show how solutions of the vacuum Maxwell equation (6.2) are obtained
from solutions of the massless Dirac equation (6.1.1) and the generalised Debye scalar
equation (6.1.11) by spin-raising with shear-free spinors.

Theorem 6.4.1 For an even shear-free spinor u with charge q and an odd spinor ψ
with charge −q, the form F given by

F = eau⊗ ∇̂Xaψ +
1
2
D̂u⊗ ψ̄ +

1
2
ψ ⊗ D̂u (6.4.2)

satisfies

d/F =
1
2
D̂ψ ⊗ D̂u+ u⊗ D̂

2
ψ . (6.4.3)

Proof. As the charges of u and ψ sum to zero, F is uncharged. Acting on F with the
Hodge-de Rham operator we obtain

d/F = ea
(
∇Xae

bu⊗ ∇̂Xbψ + eb∇̂Xau⊗ ∇̂Xbψ + ebu⊗ ∇̂Xa∇̂Xbψ +
1
2
∇̂XaD̂u⊗ ψ̄

+
1
2
D̂u⊗ ∇̂Xaψ +

1
2
∇̂Xaψ ⊗ D̂u+

1
2
ψ ⊗ ∇̂XaD̂u

)
. (6.4.4)

Now by (4.3.6), the first term becomes

ea∇Xae
bu⊗ ∇̂Xbψ = −eaebu⊗ ∇̂∇aXbψ . (6.4.5)

For the second term,

eaeb∇̂Xau⊗ ∇̂Xbψ =
(
2gab − ebea

)
∇̂Xau⊗ ∇̂Xbψ

= 2∇̂Xau⊗ ∇̂Xaψ − eaD̂u⊗ ∇̂Xaψ . (6.4.6)

Thus

d/F = eaebu⊗
(
∇̂Xa∇̂Xbψ − ∇̂∇aXbψ

)
+ 2

(
∇̂Xau− 1

4
eaD̂u

)
⊗ ∇̂Xaψ

+
1
2
D̂

2
u⊗ ψ̄ +

1
2
eaψ ⊗ ∇̂XaD̂u+

1
2
D̂ψ ⊗ D̂u

= eaebu⊗
(
∇̂Xa∇̂Xbψ − ∇̂∇aXbψ

)
+

1
2
D̂

2
u⊗ ψ̄ +

1
2
eaψ ⊗ ∇̂XaD̂u+

1
2
D̂ψ ⊗ D̂u (6.4.7)
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since u is shear-free. As eaeb = eab + gab, the first term in (6.4.7) can be written using
the curvature operator of ∇̂ and the trace of the Hessian.

eaebu⊗
(
∇̂Xa∇̂Xbψ − ∇̂∇aXbψ

)
= eabu⊗

(
∇̂Xa∇̂Xbψ − ∇̂∇aXbψ

)
+ u⊗

(
∇̂Xa∇̂Xaψ − ∇̂∇aXaψ

)
=

1
2
eabu⊗ R̂(Xa, Xb)ψ + u⊗ ∇̂2ψ . (6.4.8)

The curvature of ∇̂ is related to the curvature forms of ∇ by (5.3.3), while ∇̂2 is related
to the square of the Dirac operator by (6.2.4). The ‘pairwise symmetry’ of Rab then
allows us to take Rab through the tensor product in order to act on u. So we have

eaebu⊗
(
∇̂Xa∇̂Xbψ − ∇̂∇aXbψ

)
=

1
4
eabu⊗Rabψ −

1
2
qeabu⊗Xb Xa Fψ + u⊗ D̂

2
ψ

+
1
4
R u⊗ ψ̄ + qu⊗Fψ

=
1
4
Rabu⊗ eabψ − qFu⊗ ψ̄ + u⊗ D̂

2
ψ +

1
4
R u⊗ ψ̄ + qu⊗Fψ . (6.4.9)

Applying the integrability condition (5.3.5) for u eliminates the curvature forms,

eaebu⊗
(
∇̂Xa∇̂Xbψ − ∇̂∇aXbψ

)
=

1
8
eb∇̂XaD̂u⊗ eabψ − 1

8
ea∇̂XbD̂u⊗ eabψ − 1

2
qXb Xa Fu⊗ eabψ

− qFu⊗ ψ̄ + u⊗ D̂
2
ψ +

1
4
R u⊗ ψ̄ + qu⊗Fψ

= −1
4
ea∇̂XbD̂u⊗ eabψ − qFu⊗ ψ̄ + u⊗ D̂

2
ψ +

1
4
R u⊗ ψ̄ . (6.4.10)

Replacing eab in the first term with eaeb − gab produces

eaebu⊗
(
∇̂Xa∇̂Xbψ − ∇̂∇aXbψ

)
=

1
4
D̂

2
u⊗ ψ̄ − 1

4
ea∇̂XbD̂u⊗ eaebψ

− qFu⊗ ψ̄ + u⊗ D̂
2
ψ +

1
4
R u⊗ ψ̄ . (6.4.11)

As ∇̂XbD̂u is odd and ebψ is even,

ea∇̂XbD̂u⊗ eaebψ = 2ebψ ⊗ ∇̂XbD̂u (6.4.12)

so finally

eaebu⊗
(
∇̂Xa∇̂Xbψ − ∇̂∇aXbψ

)
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=
1
4
D̂

2
u⊗ ψ̄ − 1

2
eaψ ⊗ ∇̂XaD̂u− qFu⊗ ψ̄

+ u⊗ D̂
2
ψ +

1
4
R u⊗ ψ̄ . (6.4.13)

Then (6.4.7) and (6.4.13) give

d/F =
3
4
D̂

2
u⊗ ψ̄ − qFu⊗ ψ̄ +

1
4
R u⊗ ψ̄

+
1
2
D̂ψ ⊗ D̂u+ u⊗ D̂

2
ψ . (6.4.14)

The first three terms vanish by the integrability condition (5.3.7), hence

d/F =
1
2
D̂ψ ⊗ D̂u+ u⊗ D̂

2
ψ . (6.4.15)

When q = 0, u is a twistor and (6.4.2) is the Penrose spin-raising operator which
generates a spin-1 field from a spin-1

2 field. Clearly F satisfies (6.1) if D̂ψ = 0, but
in general F is a mixture of 0-, 2- and 4-form components since it is not a symmetric
combination of spinors. We can show that the 0- and 4-form components vanish when
D̂ψ = 0.

Corollary 6.4.16 When D̂ψ = 0, F is an anti self-dual solution of the vacuum
Maxwell equation.

Proof. We need only verify that F is a 2-form when D̂ψ = 0, that is, that F is
symmetric as a tensor product. The only non-symmetric term in F is eau ⊗ ∇̂Xaψ.
This may be expressed in exterior form as

eau⊗ ∇̂Xaψ = −1
4
(eau, ∇̂Xaψ)− 1

8
(eau, ebc∇̂Xaψ)ebc +

1
4
(eau, ∇̂Xaψ)ž

= −1
4
(u, D̂ψ)− 1

8
(eau, ebc∇̂Xaψ)ebc +

1
4
(u, D̂ψ)ž (6.4.17)

so F is a 2-form when D̂ψ = 0. Then F ξ = −F , hence

∗F = −Fz

= i

(
eau⊗ ž∇̂Xaψ +

1
2
D̂u⊗ žψ +

1
2
ψ ⊗ žD̂u

)
= −iF (6.4.18)

since ψ and D̂u are odd. It follows that F is anti self-dual. Finally, Theorem 6.4.1
shows that F is a solution of the vacuum Maxwell equation.

In §6.1 we showed how a solution of the massless Dirac equation (6.1.1) can be
constructed from a generalised Debye potential and a shear-free spinor. Given a second
shear-free spinor (with appropriate gauge term), Theorem 6.4.1 tells us how to construct
a solution of the vacuum Maxwell equation. Thus using a pair of shear-free spinors it
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is possible to construct a solution of the vacuum Maxwell equation from a generalised
Debye potential. Such a pair of spinors corresponds to a shear-free 2-form.

Let u1 and u2 be a pair of even shear-free spinors with gauge terms q1A1 and q2A2,
respectively, and let f be a function with gauge term − (q1A1 + q2A2), so that the sum
of the gauge terms of f , u1 and u2 vanishes. Let the corresponding GL(1,C)-curvatures
be q1F1 and q2F2, where qiF i = dAi. The spinor ψ constructed from f and u1 via
(6.1.2) is

ψ = d̂f u1 +
1
2
fD̂u1 . (6.4.19)

It is an odd spinor with gauge term −q2A2, that is, opposite charge to u2. Let F be
the exterior form constructed from ψ and u2 as in (6.4.2). Then by (6.4.19),

F = eau2 ⊗ ∇̂Xa d̂fu1 +
1
2
feau2 ⊗ ∇̂XaD̂u1

+
1
2
d̂fu1 ⊗ D̂u2 +

1
2
d̂fu2 ⊗ D̂u1 +

1
2
D̂u1 ⊗ d̂fu2 +

1
2
D̂u2 ⊗ d̂fu1

+
1
4
f
(
D̂u1 ⊗ D̂u2 + D̂u2 ⊗ D̂u1

)
. (6.4.20)

Since ψ and u2 have opposite charge, Theorem 6.4.1 shows that

d/F =
1
2
D̂ψ ⊗ D̂u2 + u2 ⊗ D̂

2
ψ . (6.4.21)

This can be written more compactly as

d/F = ∇Xa

(
u2 ⊗ D̂ψ

)
ea . (6.4.22)

By (6.1.5) with q′F ′ = − (q1F1 + q2F2), the action of the Dirac operator on ψ is

D̂ψ =
(
4̂f − 1

6
R f

)
u1 − f

(
1
3
q1F1 + q2F2

)
u1 . (6.4.23)

We require that u1 be an eigenspinor of 1
3q1F1 + q2F2. Suppose that u1 and u2 both

correspond to RPND’s. If u1 and u2 are proportional then they correspond to the same
RPND, and hence to the same null 2-form. If they are independent then the spacetime
must be type D, and the independent null 2-forms corresponding to u1 and u2 must
have the same eigenvalue. In either case, Lemma 5.3.15 shows that if

φi = ui ⊗ ūi (no sum) (6.4.24)

and

Cφi = µφi (no sum) (6.4.25)

then

qiF iui = −3µui (no sum). (6.4.26)
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It can also be shown that u1 is an an eigenspinor of q2F2, however the eigenvalue
depends on whether or not u1 and u2 are proportional.

The self-dual shear-free 2-form ω corresponding to u1 and u2 is given by (6.3.1).
This can be written in exterior form as

ω = −1
8
(u1, eabu2)eab . (6.4.27)

If u1 and u2 are proportional, ω is null and has one real eigenvector. If they are in-
dependent, ω is non-null and has two independent real eigenvectors. We will consider
these possibilities as separate cases.

Case 1: u2 = eκu1. If u2 = eκu1 where κ is a complex function then q1A1 and
q2A2 only differ by an exact form:

q1A1 − q2A2 = dκ , (6.4.28)

so q1F1 = q2F2. Then we have

q2F2u1 = −3µu1 (6.4.29)
q1F1u2 = −3µu2 . (6.4.30)

Also, ω = eκφ1 so ω is an eigenvector of the conformal tensor with eigenvalue µ. Let
λω denote the eigenvalue of ω. Then from (6.4.23) and (6.4.29) we have

D̂ψ =
(
4̂f − 1

6
R f + 4λωf

)
u1 . (6.4.31)

Case 2: u2 6= eκu1. If u1 and u2 are independent then the spacetime must be type
D. Then {φ1, φ2, ω} is an eigenbasis for the space of self-dual 2-forms. Since φ1 and φ2

both have eigenvalue µ, the eigenvalue λω of ω must be −2µ since the conformal tensor
is trace-free. Now

Cω = −1
8
(u1, Cabu2)eab . (6.4.32)

Using (5.3.13) we may write this in terms of q2F2.

Cω = −1
8

(
1
6
(u1, eabq2F2u2) +

1
2
(u1, q2F2eabu2)

)
eab

= −1
8

(
−1

2
µ(u1, eabu2)−

1
2
(q2F2u1, eabu2)

)
eab . (6.4.33)

Then since Cω = −2µω we must have

q2F2u1 ⊗ ū2 + u2 ⊗ q2F2u1 = 3µ (u1 ⊗ ū2 + u2 ⊗ ū1) . (6.4.34)
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Since u1 and u2 are independent, their inner product is non-zero. Contracting with u1

we have

(u1, u2)q2F2u1 − (q2F2u1, u1)u2 = 3µ(u1, u2)u1 . (6.4.35)

Contracting again with u1 shows that

(u1, u2)(q2F2u1, u1) = 0 (6.4.36)

hence q2F2u1 = λu1 for some complex function λ. Now

(q2F2u1, u2) = −(u1, q2F2u2) (6.4.37)

therefore λ = 3µ, that is,

q2F2u1 = 3µu1 . (6.4.38)

Now Cω can also be written as

Cω =
1
8
(Cabu1, u2)eab , (6.4.39)

so we can also relate Cω to q1F1. A similar calculation to the above shows that

q1F1u2 = 3µu2 . (6.4.40)

With λω = −2µ, from (6.4.23) and (6.4.38) we have

D̂ψ =
(
4̂f − 1

6
R f + λωf

)
u1 . (6.4.41)

Although the numerical factors in (6.4.31) and (6.4.41) are different, they are related
to the number mω of independent real eigenvectors of ω. If u1 and u2 are proportional
then mω = 1, otherwise mω = 2. Inserting a factor of 1/m2

ω into (6.4.31) and (6.4.41),
we are able to summarise the result of applying (6.4.31) or (6.4.41) to (6.4.22) as

d/F = ∇Xa

((
4̂f − 1

6
R f +

4λω
m2
ω

f

)
u2 ⊗ ū1

)
ea . (6.4.42)

So if f satisfies

4̂f − 1
6
R f = −4λω

m2
ω

f (6.4.43)

then d/F = 0 and D̂ψ = 0, and Corollary 6.4.16 shows that F is a solution of the vacuum
Maxwell equation.

In [BCK97], the authors show that a Hertz potential may be found by scaling a self-
dual shear-free 2-form by a generalised Debye potential having the opposite charge. It
is also necessary that the eigenvectors of the shear-free 2-form be RPND’s. By writing
F in terms of ω we can see that the same objective is achieved by spin-raising with
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shear-free spinors. A lengthy calculation shows that F can be expressed in terms of ω
as

F = d

(
d∗(fω)− 2

3
fd̂∗ω

)
+ d∗

(
2
3
fd̂ω − d(fω)

)
+

1
4
(u1, u2) (1− ž)

(
4̂f − 1

6
R f − 2µf

)
. (6.4.44)

Now in [BCK97] it is demonstrated that if f satisfies (6.4.43) then

d

(
d∗(fω)− 2

3
fd̂∗ω

)
= d∗

(
2
3
fd̂ω − d(fω)

)
. (6.4.45)

Comparing this with (6.4), it is clear that fω is a Hertz potential. Furthermore, the
last term in (6.4.44) must vanish. To see this, first suppose that ω has only one real
eigenvector. Then u2 is proportional to u1, in which case (u1, u2) = 0. On the other
hand, if ω has two real eigenvectors then −2µ = 4λω/m2

ω so the last term vanishes by
(6.4.43). Then

F = 2d
(
d∗(fω)− 2

3
fd̂∗ω

)
= 2d∗

(
2
3
fd̂ω − d(fω)

)
. (6.4.46)

Since F is closed and co-closed, it is a solution of the vacuum Maxwell equation.

6.5 Debye potentials from vacuum Maxwell fields via spin-
lowering

In §6.2 we showed that a Debye potential for the massless Dirac equation may be
generated by lowering a solution of (6.1.1) with a shear-free spinor corresponding to a
RPND. In a similar fashion, a solution of the vacuum Maxwell equation can be lowered
to produce a solution of (6.1.1). Given another shear-free spinor, we can lower again
to produce a generalised Debye potential satisfying (6.4.43).

Theorem 6.5.1 Given a shear-free spinor u and a 2-form F , the spinor ψ = Fu
satisfies

D̂ψ = d/Fu . (6.5.2)

Proof. Acting on ψ with the Dirac operator gives

D̂ψ = ea∇XaFu+ eaF ∇̂Xau

= d/Fu+
1
4
eaFeaD̂u . (6.5.3)

Since F is a 2-form, eaFea = 0 and the result follows.

Theorem 6.5.1 shows that if F is a solution of the vacuum Maxwell equation then
ψ is a solution of (6.1.1). Furthermore, ψ is uncharged if u is a twistor. In that case,
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the action of u on F corresponds to the Penrose spin-lowering operator which takes a
spin-1 field to a spin-1

2 field.
Since u is a semi-spinor only the self-dual or anti self-dual part of F is relevant. To

see this, let žu = εu where ε = ±1. If F+ and F− are the self-dual and anti self-dual
parts of F , then we observe that

∗Fu = i(F+ − F−)u (6.5.4)

but also

∗Fu = −iF ξ žu
= iεFu

= iε(F+ + F−)u. (6.5.5)

So if ε = 1 then F−u = 0, or if ε = −1 then F+u = 0.
Now suppose that we have a pair of even shear-free spinors u1 and u2 as in §6.4,

both corresponding to RPND’s. Let ψ = Fu1. Now ψ has gauge term q1A1, and by
Theorem 6.5.1, D̂ψ = d/Fu1. If we use u2 to lower ψ, we obtain the function

f = (u2, ψ)
= (u2, Fu1) (6.5.6)

which has gauge term q1A1 + q2A2. Then by (6.2.8) with qF = q2F2 and q′F ′ = q1F1,

4̂f − 1
6
R f = ((1

3q2F2 + q1F1)u2, ψ) +
1
2
(D̂u2, D̂ψ) + (u2, D̂

2
ψ). (6.5.7)

Let ω be the shear-free 2-form corresponding to u1 and u2 as in (6.4.27). From equations
(6.4.26), (6.4.30) and (6.4.40) it can be seen that(

1
3
q2F2 + q1F1

)
u2 = −4λω

m2
ω

u2 (6.5.8)

where Cω = λωω and mω is the number of independent real eigenvectors of ω. Since
D̂ψ = d/Fu1,

D̂
2
ψ = d/2

Fu1 + ead/F ∇̂Xau1

= 4Fu1 +
1
4
ead/FeaD̂u1

= 4Fu1 +
1
2
dF D̂u1 +

1
2
d∗F D̂u1 . (6.5.9)

Hence

4̂f − 1
6
R f = −4λω

m2
ω

f + (u2,4Fu1)

+
1
2
(D̂u2, dFu1) +

1
2
(D̂u1, dFu2)
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− 1
2
(D̂u2, d

∗Fu1)−
1
2
(D̂u1, d

∗Fu2). (6.5.10)

Clearly f satisfies (6.4.43) when F is a vacuum Maxwell field. Note also that the
function obtained by lowering first with u2 and then with u1 is the same as f since

(u2, Fu1) = −(Fu1, u2)
= (u1, Fu2). (6.5.11)

Since f is symmetric in u1 and u2, it may be written entirely in terms of ω. Now

S 0(ωF ) =
1
2
S 0 (u1 ⊗ ū2F + u2 ⊗ ū1F )

= −1
2
S 0

(
u1 ⊗ Fu2 + u2 ⊗ Fu1

)
= −1

8
(Fu2, u1)−

1
8
(Fu1, u2)

=
1
4
f (6.5.12)

and so

f = 4S 0(ωF )
= −4ω · F . (6.5.13)

Similarly, (u2,4Fu1) = −4ω · 4F . By (6.3.10),

(D̂u2, d
∗Fu1) + (D̂u1, d

∗Fu2) = −4S 0

(
D̂u1 ⊗ d∗Fu2 + D̂u2 ⊗ d∗Fu1

)
= −16

3
S 0

(
d̂ωd∗F − d̂∗ωd∗F

)
=

16
3
g(d̂∗ω, d∗F ) (6.5.14)

and

(D̂u2, dFu1) + (D̂u1, dFu2) = −4S 0

(
D̂u1 ⊗ dFu2 + D̂u2 ⊗ dFu1

)
=

16
3
S 0

(
d̂ωdF − d̂∗ωdF

)
=

16
3
g(∗d̂ω, ∗dF ). (6.5.15)

Then (6.5.10) becomes

4̂f − 1
6
R f = −4λω

m2
ω

f − 4
(
ω · 4F − 2

3
g(∗d̂ω, ∗dF ) +

2
3
g(d̂∗ω, d∗F )

)
. (6.5.16)

This can be verified directly by acting with the Laplace-Beltrami operator on f and
using the shear-free 2-form (5.2.10) equation and its integrability conditions.
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6.6 Symmetry operators for the vacuum Maxwell equa-
tion

In this section we show how to construct first- and second-order symmetry opera-
tors for the vacuum Maxwell equation by raising and lowering with various combina-
tions of shear-free spinors. In a 4-dimensional spacetime with Lorentzian signature,
Kalnins et al [KMW92a] have given the most general second-order symmetry operator
for Maxwell’s equation. This incidentally shows that the only non-trivial first-order op-
erator for Maxwell’s equation is the Lie derivative with respect to a conformal Killing
vector, thus we expect any first-order symmetry operator constructed by raising and
lowering to be related to the Lie derivative in some way.

A first-order symmetry operator can be constructed as follows. Let u1 be an odd
shear-free spinor, and let u2 be an even shear-free spinor with opposite charge to u1.
For a 2-form F , the spinor ψ = Fu1 satisfies D̂ψ = d/Fu1 by Theorem 6.5.1. Note
that since u1 is odd, ψ = F−u1. Let F ′ be the 2-form constructed from ψ and u2 as
in (6.4.2). Then by Theorem 6.4.1 and Corollary 6.4.16 it is clear that F ′ is an anti
self-dual vacuum Maxwell field whenever F is. Thus we have a first-order symmetry
operator S which may be written in terms of u1 and u2 as

Su1u2F = −eau2 ⊗ ū1∇XaF −
1
4
eau2 ⊗ eaD̂u1F

− 1
2
D̂u2 ⊗ ū1F +

1
2
Fu1 ⊗ D̂u2 . (6.6.1)

Since u1 and u2 have opposite parity, u2⊗ D̂u1 must be an even form. The 2-form part
of eau2 ⊗ eaD̂u1 vanishes, and we have the identity

eau2 ⊗ eaD̂u1 + eaD̂u1 ⊗ eau2 = 0 . (6.6.2)

Then

Su1u2F = −eau2 ⊗ ū1∇XaF

− 1
2

(
D̂u2 ⊗ ū1 +

1
4
eau2 ⊗ eaD̂u1

)
F

+
1
2
F

(
u1 ⊗ D̂u2 +

1
4
eaD̂u1 ⊗ eau2

)
= −eau2 ⊗ ū1∇XaF −

1
2
ea∇Xa (u2 ⊗ ū1)F

+
1
2
F∇Xa (u1 ⊗ ū2) ea . (6.6.3)

Now the tensors u2 ⊗ ū1 and u1 ⊗ ū2 are odd forms. Let K be the (complex) vector
whose dual is the 1-form part of u2 ⊗ ū1, that is,

K[ = S 1 (u2 ⊗ ū1)

=
1
2

(u2 ⊗ ū1 − u1 ⊗ ū2) . (6.6.4)



§6.6 Symmetry operators for the vacuum Maxwell equation 111

In components, K[ = 1
4(u1, eau2)ea. In this form, it is easy to verify that K[ satisfies

the CKY 1-form equation (5.1.1), thus K is a conformal Killing vector.
The 3-form component of u2 ⊗ ū1 is related to K[ by duality, since

S 3 (u2 ⊗ ū1) =
1
2

(u2 ⊗ ū1 + u1 ⊗ ū2)

=
1
2
(
−u2 ⊗ žu1 + u1 ⊗ žu2

)
= −K[ž

= −i ∗K[ . (6.6.5)

Then

u2 ⊗ ū1 = K[ − i ∗K[

= K[(1− ž) . (6.6.6)

Since u1 ⊗ ū2 = − (u2 ⊗ ū1)
ξ,

u1 ⊗ ū2 = −K[ − i ∗K[

= −K[(1 + ž) . (6.6.7)

Using (6.3.28) and (6.3.29),

ea∇Xa (u2 ⊗ ū1) = (d− d∗)
(
K[ − i ∗K[

)
=

(
dK[ − d∗K[

)
(1− ž) (6.6.8)

and

∇Xa (u1 ⊗ ū2) ea = (d+ d∗)
(
K[ + i ∗K[

)
=

(
dK[ + d∗K[

)
(1− ž) . (6.6.9)

Now ž commutes with even forms, and

F (1− ž) = F + i ∗F
= 2F− . (6.6.10)

So we can write S in terms of K as

SKF = −2eaK[∇XaF
− − [dK[, F−] + 2d∗K[F−

= −4
(
∇KF

− +
1
4
[dK[, F−]− 1

2
d∗K[F−

)
+ 2K[d/F− . (6.6.11)

Now the Lie derivative of a form Φ can be expressed as follows (see [BT87]).

LXΦ = ∇XΦ +
1
4
[dX[,Φ] +

1
4
LXg(Xa, X

a)Φ
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− 1
8
LXg(Xa, Xb)

(
ebηΦea + eaηΦeb

)
. (6.6.12)

Then since K is conformal Killing and F− is a 2-form it is clear that

SKF = −4LKF
− + 2K[d/F− . (6.6.13)

As anticipated, we cannot construct a first-order operator distinct from the Lie deriva-
tive by lowering and raising. This may not be the case in higher dimensions, since there
may exist CKY tensors of degrees other than 1, 2 or 3. Work in this area is continuing.
Notice also that we do not require that the shear-free spinors correspond to RPND’s,
as we do when raising from, or lowering to, a generalised Debye potential.

In a spacetime admitting a CKY 2-form, it is possible to construct a second-order
symmetry operator. Suppose that φ12 is a self-dual CKY 2-form related to a pair of
shear-free spinors u1 and u2 by

φ12 =
1
2

(u1 ⊗ ū2 + u2 ⊗ ū1) . (6.6.14)

We have previously shown that the 2-forms given by (6.4.24) satisfy (6.4.25), and that
the spinors satisfy (6.4.26) with q1 = 1, q2 = −1 and F i = F .

Given a 2-form F , we may construct a function with charge +2 (that is, gauge term
2A) by lowering twice with u1. Let f = (u1, Fu1). This is an example of spin-lowering
with a pair of proportional spinors. Substituting u1 for u2 in equation (6.4.27) we see
that in this case ω = φ1, and so ω has only one real independent eigenvector. Then f
satisfies (6.5.10), with u2 replaced by u1, ω by φ1 and mφ1 = 1. So when F is a vacuum
Maxwell field, f satisfies satisfies

4̂f − 1
6
R f = −4λφ1f . (6.6.15)

Now f has charge +2, and u2 has charge −1, so the anti self-dual 2-form F ′ constructed
by raising f twice with u2 has zero charge. Replacing u1 by u2 in (6.4.20) we have

F ′ = eau2 ⊗ ∇̂Xa d̂fu2 +
1
2
feau2 ⊗ ∇̂XaD̂u2

+ d̂fu2 ⊗ D̂u2 + D̂u2 ⊗ d̂fu2 +
1
2
fD̂u2 ⊗ D̂u2 . (6.6.16)

Substituting u2 for u1 in (6.4.27) we see that in this case ω = φ2. Then by (6.4.42) we
have

d/F ′ = ∇Xa

((
4̂f − 1

6
R f + 4λφ2f

)
u2 ⊗ ū2

)
ea . (6.6.17)

By (6.4.25), the eigenvalues of φ1 and φ2 are equal, so d/F ′ = 0 since f satisfies (6.6.15).
Thus we have an operation which maps a vacuum Maxwell field to an anti self-dual
vacuum Maxwell field. In [BCK97], Benn and Kress show how a symmetry operator
Lφ1φ2 may be constructed from φ1 and φ2. Their operator is identical (up to a trivial
factor) to the operator derived from lowering and raising. From (6.5.13), f = −4φ1 ·F ,
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F
Charge: 0
d/F = 0

A
A
A
AU

u1

ψ = Fu1

Charge: +1
D̂ψ = 0

A
A
A
AU

ui

f = (u2, ψ)
Charge: 1 + qi

4̂f − 1
6R f = −4λω

m2
ω
f

�
�
�
��
uj

ψ′ = d̂fuj + 1
2fD̂uj

Charge: +1
D̂ψ′ = 0

�
�
�
��
u2

F ′ = eau2 ⊗ ∇̂aψ′ + 1
2D̂u2 ⊗ ψ̄′ + 1

2ψ
′ ⊗ D̂u2

Charge: 0
d/F ′ = 0

Figure 6.1: Raising and lowering with shear-free spinors, where either i = 1, j = 2 or
i = 2, j = 1.

while from (6.4.46) we see that

F ′ = 2d
(
d∗(fφ2)−

2
3
fd̂∗φ2

)
. (6.6.18)

So the above operation can be expressed as an operator Lφ1φ2 acting on 2-forms, where

Lφ1φ2F = −8d
(
d∗((φ1 · F )φ2)−

2
3

(φ1 · F ) d̂∗φ2

)
. (6.6.19)

We could also have lowered twice with u2 first, and then raised twice with u1. This
would result in another symmetry operator Lφ2φ1 obtained by interchanging φ1 and
φ2 in (6.6.19). However, a tedious calculation using the integrability conditions for u1

and u2 shows that Lφ1φ2 and Lφ2φ1 only differ by terms which vanish when they act on
vacuum Maxwell fields. This was also pointed out by Torres del Castillo [TdC85], who
presented these operators in terms of 2-index Killing spinors.

Another way to generate a symmetry operator is by lowering first with u1 and then
with u2. The function f = (u2, Fu1) has zero charge and satisfies (6.4.43) with ω = φ12

when F is a vacuum Maxwell field. Note that the value of mφ12 depends on whether or
not u1 and u2 are independent. Also, since f = −4φ12 ·F it clearly makes no difference
if we lower with u2 first and then with u1. Now let F ′ be the anti self-dual 2-form
constructed from f by raising first with u1 and then with u2 via (6.4.20). By (6.4.42)
and (6.4.43) we have d/F ′ = 0 once again. Although the 2-form constructed by raising
first with u2 and then with u1 will in general be different from F ′, equation (6.4.44)
shows that they only differ by a term which vanishes when f satisfies (6.4.43), that
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is, when F is a vacuum Maxwell field. Thus we have another operation which maps a
vacuum Maxwell field to an anti self-dual vacuum Maxwell field. Once again, this may
be related to the operator constructed from φ12 as discussed in [BCK97]. By (6.5.13)
and (6.4.46), this may be written as Lφ12φ12 where

Lφ12φ12F = −8d
(
d∗((φ12 · F )φ12)−

2
3

(φ12 · F ) d∗φ12

)
. (6.6.20)

Unfortunately, nothing new is gained from this operator. Writing (6.6.20) entirely in
terms of u1 and u2, and using the integrability conditions (5.3.6) and (5.3.7), it can be
shown that Lφ12φ12 only differs from Lφ1φ2 and Lφ2φ1 by terms which vanish when they
act on vacuum Maxwell fields.

Given that the operatorKω given by (6.3.14) is a symmetry operator for the massless
Dirac equation in all dimensions, it is reasonable to hope that a symmetry operator
may exist for some generalisation of the vacuum Maxwell equation in all dimensions.
Preliminary work suggests that in 2r-dimensions it may be possible to construct an
operator from a CKY r-form which maps exact r-forms to exact r-forms.
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