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We investigate the spectral features of the emission from a superluminal polarization current whose distribu-
tion pattern rotates (with an angular frequency v) and oscillates (with a frequency V . v differing from an
integral multiple of v) at the same time. This type of polarization current is found in recent practical ma-
chines designed to investigate superluminal emission. Although all of the processes involved are linear, we
find that the broadband emission contains frequencies that are higher than V by a factor of the order of
(V/v)2. This generation of frequencies not required for the creation of the source stems from mathematically
rigorous consequences of the familiar classical expression for the retarded potential. The results suggest
practical applications for superluminal polarization currents as broadband radio-frequency and infrared
sources. © 2003 Optical Society of America

OCIS codes: 0230.6080, 030.1670, 040.3060, 250.5530, 260.2110.
1. INTRODUCTION
Considerable recent interest has been generated by the
design,1–3 the construction,4 and the testing5 of novel
light sources that employ extended distributions of polar-
ization currents moving faster than c, the speed of light in
vacuo. Although special relativity does not allow a
charged particle with finite inertial mass to move faster
than c, there is no such restriction on macroscopic polar-
ization currents, because their superluminally moving
distribution patterns may be created by the coordinated
motion of aggregates of subluminally moving
particles.6–12 Moreover, the distinction between massive
and massless charges is not in any way reflected in Max-
well’s equations, so that the propagating distribution pat-
terns of such polarization currents radiate, as would any
other moving sources of the electromagnetic field.6,10–12

In view of this interest, the present paper explores the
frequency spectrum produced by such superluminal
sources. We base our analysis on the practical imple-
mentation of a superluminal source (Appendix A1,4) and
consider the electromagnetic waves emitted from a polar-
ization current whose distribution pattern both rotates
and oscillates, rotating with a constant angular frequency
v and oscillating with a frequency V . v that is different
from an integral multiple of v (Table 1 below). It is found
1084-7529/2003/112137-19$15.00 ©
that the broadband signals carried by such waves contain
frequencies that are by a factor of the order of (V/v)2

higher than the frequency V; i.e., the radiation contains
frequencies that are not required for the creation or the
practical implementation of the source. This results
from the cooperation of two effects, both of which are
mathematically rigorous consequences of the familiar
classical expression for the retarded potential:

1. The retarded time is a multivalued function of the
observation time in the superluminal regime, so that the
interval of retarded time during which a particular set of
wave fronts is emitted by a source point can be signifi-
cantly longer than the interval of observation time during
which the same set of wave fronts is received at the ob-
servation point.

2. The centripetal acceleration enriches the spectral
content of a rotating volume source, for which V/v is dif-
ferent from an integer, by effectively endowing the distri-
bution of its density with space–time discontinuities.

These two effects make it possible, for instance, to gen-
erate a broadband pulse of radiation whose spectrum has
a peak in the terahertz band by means of a device whose
construction and operation entails oscillations at only two
2003 Optical Society of America
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radio frequencies: at V/(2p) 5 302.5 MHz and at a mul-
tiple mv (with, e.g., m 5 72) of v/(2p) 5 5 MHz (see
Table 1 below and Appendix A).

The results of the present analysis are not without pre-
cedents. There are known solutions to the homogeneous
wave equation describing focused broadband pulses or
beams of radiation that propagate through free space
with unexpectedly slow rates of distortion, spreading, or
decay (see, e.g., Refs. 13 and 14). Not only is it estab-
lished that any two-dimensional approximations to the
missing sources of such wave fields would have to consist
of independently addressable array elements, but also it
is widely suspected that the excitation of the apertures in
question would have to be dynamic, involving moving dis-
tribution patterns with speeds that are superlumi-
nal.15–17

This paper is organized as follows. Subsection 2.A out-
lines the novel features of the radiation from oscillating,
accelerated superluminal polarization currents, contrast-
ing this type of emission with those of fast traveling-wave
antennas and with Čerenkov and synchrotron radiation.
Although considerable mathematical rigor is required to
derive the frequency spectrum of such superluminal
sources (this stems from the necessary three dimension-
ality of superluminal sources; superluminal sources can-
not be pointlike6,10–12), some of the essential features can
be demonstrated in the case of a localized source, a source
whose dimensions are appreciably smaller than the radia-
tion wavelength; this is carried out in Subsection 2.B as
an aid to understanding the more complex analysis that
follows. Subsection 2.C introduces those properties of a
rotating volume source that contribute to the distinctive
spectral features of the emitted radiation. The algebraic
description of the polarization current (its time depen-
dence and orientation) used in the subsequent analysis is
given in Subsection 2.D; all of the later results are pre-
sented in terms of the parameters defined here. Finally,
Subsection 2.E emphasizes the important contribution
that the centripetal acceleration makes to the broadband
nature of the emission. The detailed mathematical for-
mulation of the problem of an extended superluminal
source is set out in Section 3. The special case of those
volume elements that contribute coherently to the field at
the observer is discussed in Section 4, highlighting the
importance of focal regions in the space of observation
points (Subsection 4.A) and the inadequacies of conven-
tional far-field approximations in evaluating the electro-
magnetic fields (Subsection 4.B). The radiation field in
the plane of the source’s orbit is treated in Section 5,
which contains graphical representations of the spectral
distribution of the emitted power (Figs. 8 and 9 below);
the predicted frequency spectra show broadband, high-
frequency emission from a source whose implementation
entails only two basic frequencies. A similar treatment
for the radiation field outside the plane of the source’s or-
bit is given in Section 6, which also describes the polar-
ization of the emitted radiation (see Table 2 below). In
Section 7 an analogous mathematical description is used
to provide a detailed comparison with synchrotron and di-
pole radiation, and the efficiency of the radiative process
is estimated in Section 8. Conclusions and a summary
are given in Section 9.
2. DISTINCTIVE FEATURES OF THE
EMISSION FROM AN EXTENDED,
ROTATING, OSCILLATING SUPERLUMINAL
POLARIZATION CURRENT
A. Comparison with Fast Traveling-Wave Antennas
and with Čerenkov and Synchrotron Radiation
Superluminally moving surface charges are already en-
countered in fast traveling-wave antennas18 and certain
types of leaky waveguides.19 The wave fronts emanating
from such uniformly moving superluminal sources pos-
sess an envelope on which the vacuum version of the
Čerenkov effect can be observed. However, the source
considered in the present paper has the time dependence
of a traveling wave with both an accelerated superlumi-
nal motion and an oscillating amplitude; neither of these
features is present in extant antennas.

The superluminal sources considered in the present pa-
per have distinctive features of the sources of Čerenkov
and synchrotron radiation: Not only do they move with a
speed that exceeds the propagation speed of the waves
that they generate (like sources of Čerenkov radiation),
but also their motion is centripetally accelerated (like
that of sources of synchrotron radiation). However, in
contrast to sources of these familiar types of emission,
they are extended (rather than pointlike) and fluctuate in
their strength (rather than being time independent in
their own rest frames).

Acceleration leads to the formation of a cusp in the en-
velope of the wave fronts that emanate from each volume
element of the superluminal source,20 a curve along which
two sheets of the envelope meet tangentially (Fig. 1). (By
contrast, the conical envelope of wave fronts in the Čer-
enkov emission has no cusp.21) At any given observation
time, the radiated field entails a set of such envelopes
(each associated with the wave fronts emanating from a
specific member of a corresponding set of source ele-
ments) whose cusps pass through the observation point.
These caustics arise from those volume elements of the
source that approach the observer, along the radiation
direction, with the speed of light and zero acceleration
at the retarded time (Fig. 2). The contribution from
the filamentary locus of such source elements toward
the value of the field at the observation point has certain
unexpected properties. Its intensity, for instance,
does not diminish with the distance RP from the source
like RP

22, as in the case of a spherically spreading
wave, but more slowly: like RP

2k with 0 , k , 2 (see
Ref. 6).

In the current paper, we shall restrict our analysis
to the frequency content of the spherically decaying
emission; the spectrum of the non-spherically-decaying
component of the emission is treated in a separate work.22

As has been mentioned above, a rigorous analysis of
this problem is of considerable complexity (Sections 3–8)
owing to the extended nature of superluminal sources;
we therefore first briefly discuss the case of a local-
ized source, a source whose dimensions are apprecia-
bly smaller than the radiation wavelength. This
simplified case defines the Green’s function for the
more complex problem and illustrates some properties
of the emission that are also valid in the more general
case.
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Fig. 1. (a) Envelope of the spherical wave fronts emanating from a source point S that moves with a constant angular velocity v on a
circle of radius r 5 2.5c/v ( r̂ [ rv/c 5 2.5). The dashed circles designate the orbit of S and the light cylinder rP 5 c/v ( r̂P 5 1). The
curves to which the emitted wave fronts are tangential are the cross sections of the two sheets f6 of the envelope with the plane of the
source’s orbit. (b) Three-dimensional view of the light cylinder and the envelope of wave fronts for the same source point S. The tube-
like surface constituting the envelope is symmetric with respect to the plane of the orbit. The cusp along which the two sheets of this
envelope meet touches, and is tangential to, the light cylinder at a point on the plane of the source’s orbit and spirals around the rotation
axis out into the radiation zone (based on Ref. 6).
B. Properties of the Emission from a Localized,
Rotating, and Oscillating Superluminal Source
Consider a localized source (a source whose dimensions
are appreciably smaller than the radiation wavelength,

Fig. 2. Bifurcation surface (i.e., the locus of source points that
approach the observer along the radiation direction with the
speed of light at the retarded time) associated with the observa-
tion point P for a clockwise source motion. The cusp Cb , along
which the two sheets of the bifurcation surface meet tangentially,
touches the light cylinder ( r̂ 5 1) at point O. This cusp curve is
the locus of source points that approach the observer not only
with the speed of light but also with zero acceleration along the
radiation direction. For an observation point in the radiation
zone, the spiraling surface that issues from P undergoes a large
number of turns, in which its two sheets intersect each other, be-
fore reaching the light cylinder. Note that the bifurcation sur-
face issues from the observation point P and resides in the space
(r, ŵ, z) of source points, while the envelope of wave fronts is-
sues from a source point and resides in the space (rP , ŵP , zP) of
observation points; the similarity between these two surfaces re-
flects the reciprocity properties of the Green’s function for the
problem (based on Ref. 6).
i.e., essentially a point source) that moves on a circle of
radius r with the constant angular velocity vêz , i.e.,
whose path x(t) is given, in terms of the cylindrical polar
coordinates (r, w, z), by

r 5 const., z 5 const., w 5 ŵ 1 vt, (1)

where êz is the basis vector associated with z and ŵ is the
initial value of w.

The wave fronts that are emitted by this point source in
an empty and unbounded space are described by

uxP 2 x~t !u 5 c~tP 2 t !, (2)

where the coordinates (xP , tP) 5 (rP , wP , zP , tP) mark
the space–time of observation points. The distance
uxP 2 xu [ R between the observation point xP and the
point source x is given by

R 5 @~zP 2 z !2 1 rP
2 1 r2 2 2rPr cos~ wP 2 w!#1/2,

(3)

so that the insertion of Eqs. (1) in Eq. (2) yields

tP 5 t 1 @~zP 2 z !2 1 rP
2 1 r2 2 2rPr

3 cos~ wP 2 ŵ 2 vt !#1/2/c. (4)

For a given source point (r, ŵ, z) and various positions
(rP , wP , zP) of the observation point, this dependence of
the reception time tP on the emission time t can have one
of the generic forms shown in Fig. 3.

When rv . c, there is a one-dimensional set of obser-
vation points for which dR/dt 5 2c and d2R/dt2 5 0 at
the emission times tc of the waves, i.e., whose members
are approached by the superluminally moving source
point with the speed of light and zero acceleration at the
retarded time. These observation points are located on
the cusp of the envelope of the emitted wave fronts (Fig.
1), where curve (b) of Fig. 3 passes through an inflection
point. In their vicinity, Eq. (4) reduces to
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tP 5 tPc 1
1
6 v2~t 2 tc!

3 1 ¯, (5)

where tPc is the value of tP at which the waves emitted at
t 5 tc arrive, and constructively interfere, at the cusp
curve of the envelope (see Appendix C Ref. 6). Note that
the coefficient of the third-order term in the above Taylor
expansion happens to be independent of the coordinates r
and z of the source, a feature that enhances the coopera-
tive (coherent) nature of the process to be described below
(Section 4).

Now suppose that, in addition to moving faster than its
own waves, the point source in question has a strength
that fluctuates with a frequency higher than that of its ro-
tation, such as cos(Vt) with V . v (Table 1). The ampli-
tude of the field that it would generate will then be pro-
portional to the retarded value of this fluctuating factor,
i.e., to a function of tP that, according to Eq. (5), has the
form cos$V@tc 1 61/3v22/3(tP 2 tPc)

1/3#% at points close to
the caustics of the wave fronts. The period of oscillations
of the observed field is given by the time interval in which
the argument of this function changes from Vtc to Vtc

Fig. 3. Relationship between the observation time tP and the
emission time t for an observation point that lies (a) inside or on,
(b) on the cusp of, and (c) outside the envelope of the wave fronts
or the bifurcation surface shown in Figs. 1 and 2. This relation-
ship is given by g(r, w, z; rP , wP , zP) 5 ŵ 2 ŵP , an equation
that applies to the envelope when the position (r, ŵ, z) of the
source point is fixed and to the bifurcation surface when the lo-
cation (rP , ŵP , zP) of the observer is fixed. (Note that, by vir-
tue of the linear relation w 5 ŵ 1 vt, the motion of the source
may be parameterized either by t or by w.) The maxima and the
minima of curve (a), at which dR/dt 5 2c, occur on the sheets
f1 and f2 of the envelope (or the bifurcation surface), respec-
tively (see Figs. 1 and 2). The inflection points of curve (b), at
which d2R/dt2 5 0, occur on the cusp curve of the envelope (or
the bifurcation surface).
1 2p. It will have a value, therefore, that is by the fac-
tor 2

3 (pv/V)2 shorter than the period 2p/V of the fluctua-
tions of the source strength. Stated differently, the time
interval t 2 tc 5 2p/V in which a set of wave fronts is
emitted is by the factor 3

2 (pv/V)22 longer than the time
interval tP 2 tPc during which the same set of wave
fronts is received.

C. Extension to Superluminal Volume Sources
The field of a uniformly rotating point source constitutes
only the Green’s function for the present emission
process.23 For a corresponding extended source to emit
waves of a certain frequency, it is necessary in addition
that the spectrum of temporal fluctuations of its density
contain that frequency. In this respect, the frequency-
enhancing effect associated with a rotating superluminal
source differs radically from that which is familiar from
synchrotron radiation. The space–time distribution of
density for the charged particle that acts as the source of
synchrotron radiation entails the Dirac delta function and
so has a spectral decomposition that is independent of fre-
quency. That the maximal intensity in the spectrum of
synchrotron radiation corresponds to a frequency that is
much higher than the rotation frequency of its source
merely reflects a spectral property of the Green’s function
for that emission process (Section 7). Superluminal
sources, on the other hand, are necessarily
extended6,10–12; the spectra of their densities do not, in
general, contain all frequencies.

We now come to a vital distinction between stationary
and rotating volume sources, which leads to a radical dif-
ference in the spectral content of the associated emission.
This is connected with the differing constraints on the
ranges of values of w and ŵ, constraints that in turn dic-
tate the form assumed by the Fourier decomposition of
the source density with respect to time.

The space–time distribution of the rotating point
source described in Eqs. (1), whose path may be written
as r 5 r0 , w 5 ŵ 1 vt, z 5 0, has the density

r~r, w, z, t ! 5 qd ~r 2 r0!d ~w 2 vt 2 ŵ !d ~z !/r, (6)

where d is the Dirac delta function, q is the volume inte-
gral of r, and r0 is a constant. It is known from the
analysis of synchrotron radiation that the azimuthal
angle w that appears in Eqs. (1) and (6) is not limited to
an interval of length 2p, as in the description of a station-
Table 1. Definition of the Various Frequencies and Numbers Used To Describe the Source
and the Emitted Radiation

Symbol Definition

v Angular rotation frequency of the distribution pattern of the source
V Angular frequency with which the source oscillates (in addition to moving)
f Frequency of the radiation generated by the source
n 5 2pf/v Harmonic number associated with the radiation frequency
m Number of cycles of the sinusoidal wave train representing the azimuthal dependence of the rotating

source distribution [see Eq. (7)] around the circumference of a circle centered on, and normal to, the
rotation axis

uV 6 mvu Two frequencies to which the spectrum of the spherically decaying component of the radiation is
limited when V/v is an integer. (The non-spherically-decaying component of the radiation is
emitted at only these two frequencies, irrespective of whether V/v is an integer or not.)
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ary source distribution, but (by virtue of having the value
ŵ 1 vt) can range over the same interval as the time t,
i.e., over (2`, `). Since w 5 2p represents the same
point in space as w 5 0 at any given (r, z), the source
density (6) is periodic, both in w and in t. However, the
azimuthal coordinate w does not discontinuously change
back to zero each time a rotation is completed. If the
time interval over which the source density is described
by Eq. (6) exceeds a rotation period, then the angle w
5 ŵ 1 vt that is traversed by the source during this
time interval would also exceed 2p.

Now consider a localized volume source that rotates
about the z axis with a constant angular frequency v
(Table 1). The density distribution r(r, w, z, t) for a
source of this kind depends on the azimuthal coordinate w
only through the combination ŵ 5 w 2 vt, i.e., is a func-
tion of (r, ŵ, z, t). If we label each volume element of
this source by the value ŵ of its azimuthal coordinate w at
t 5 0, the equations describing the trajectories of these
elements would each have the same form as Eq. (1). It
can be seen from the collection of space–time trajectories
of the constitutent volume elements of this source, there-
fore, that the ranges of values of both w and t are infinite,
as in the case of a rotating point source, but values of the
Lagrangian coordinate ŵ are limited to an interval of
length 2p, e.g., to 2p , ŵ < p (Fig. 4). The coordinate
ŵ cannot range over a wider interval because no volume
element of an extended source may be labeled by more
than one value of a Lagrangian coordinate. Phrased dif-
ferently, the aggregate of volume elements that constitute
a rotating source in its entirety can at most occupy an azi-
muthal interval of length 2p at any given time (e.g.,
t 5 0).

D. Algebraic Representation of Polarization Currents
with Superluminally Rotating Distribution
Patterns
For an extended source of radiation whose distribution
pattern rotates uniformly, the cylindrical components of
the electric current density j similarly depend on w only
through the Lagrangian coordinate ŵ [ w 2 vt: They
have the space–time dependence jr,w,z(r, w, z, t)
5 jr,w,z(r, ŵ, z), where jr,w,z stand for the components of
j along the cylindrical base vectors (êr , êw , êz). In this
paper, we consider sources that oscillate as well as move,
i.e., sources for which jr,w,z are given by jr,w,z(r, ŵ, z)f(t)
with an additional dependence f(t) on time. To be spe-
cific, we base the analysis on a representative polariza-
tion current j 5 ]P/]t for which

Pr,w,z~r, w, z, t ! 5 sr,w,z~r, z !cos~mŵ !cos~Vt !,

2 p , ŵ < p, (7)

where Pr,w,z are the cylindrical components of the polar-
ization (the electric dipole moment per unit volume),
s(r, z) is an arbitrary vector that vanishes outside a fi-
nite region of the (r, z) space, and m is a positive integer
(Table 1).

For a fixed value of t, the azimuthal dependence of the
above density along each circle of radius r within the
source is the same as that of a sinusoidal wave train, with
the wavelength 2pr/m, whose m cycles fit around the cir-
cumference of the circle smoothly. As time elapses, this
wave train both propagates around each circle with the
velocity rv and oscillates in its amplitude with the fre-
quency V (Table 1). The vector s is here left arbitrary in
order that we may later investigate the polarization of the
resulting radiation for all possible directions of the emit-
ting current (this will be summarized in Table 2). Note
that one can construct any distribution with a uniformly
rotating pattern, Pr,w,z(r, ŵ, z), by the superposition over
m of terms of the form sr,w,z(r, z, m)cos(mŵ).

An experimentally viable device capable of generating
a polarization with the distribution (7) is described in Ap-
pendix A.1,4 Even though the practical implementation
of the polarization (7) by means of this specific device en-
tails only the two frequencies mv and V, the spectral de-
composition of this polarization consists of an infinite set
of frequencies if V/v is different from an integer. One
can directly demonstrate this by Fourier-analyzing the
right-hand side of Eq. (7).

Because the domain of definition of the source density
(7) extends only over the interval 2p , ŵ < p, or equiva-
lently ( w 2 p)/v < t , ( w 1 p)/v, Fourier decomposi-
tion of the time dependence of this function at a given
(r, w, z) should be performed by means of a series rather
than an integral. Representation of Eq. (7) by a Fourier
integral would entail assumptions about the dependence
of jr,w,z on ŵ in intervals (2` , ŵ , 2p and p , ŵ
, `) that lie outside the domain of definition of this den-
sity. The following Fourier series faithfully represents
the right-hand side of Eq. (7) within its domain of defini-
tion and replaces it by a periodic function outside the
physically relevant domain 2p , ŵ < p:

Fig. 4. Projection of the trajectories (world lines) of the volume
elements of a uniformly rotating extended source onto the (w, t)
space. The Lagrangian coordinate ŵ [ w 2 vt designating the
initial (t 5 0) position of each source element lies in (2p, p),
while both w and t range over (2`, `). The space–time trajec-
tory (world tube) of the extended source itself in (w, t) space con-
sists of the array of trajectories of its constituent volume ele-
ments (dashed lines) encompassed by the lines ŵ 5 2p and
ŵ 5 p.

Table 2. State of Polarization of the Radiation In
and Out of the Plane of Rotation for Different

Orientations of the Emitting Polarization Current

Source uP 5 p/2 uP Þ p/2

sr Þ 0, sw 5 sz 5 0 linear, êi , phase 5 0 elliptic
sw Þ 0, sr 5 sz 5 0 linear, êi , phase 5 p/2 elliptic
sz Þ 0, sr 5 sw 5 0 linear, ê' , phase 5 p linear, ê'
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Pr,w,z~r, w, z, t ! 5 sr,w,z~r, z ! (
n52`

`

Cn exp~invt !, (8)

where

Cn 5 ~2p/v!21E
~w2p!/v

~w1p!/v

dt cos@m~w 2 vt !#

3 cos~Vt !exp~2invt !

5 ~21 !m1n11~2p!21~n 2 V/v!@~n 2 V/v!2 2 m2#21

3 sin~pV/v!exp@2i~n 2 V/v!w#

1 $V → 2V%. (9)

The symbol $V → 2V% designates a term like the one
preceding it but in which V is everywhere replaced by
2V.

Note that the Fourier components Cn of the function
describing the time dependence of Pr,w,z would vanish for
all n Þ (V/v) 6 m only if V/v is an integer (Table 1).
When V is not an integral multiple of v, the factor
sin(pV/v) in Eq. (9) is different from zero and the spec-
trum of Pr,w,z contains all frequencies. It is not difficult
to see the reason for this: The Fourier-series representa-
tion of Pr,w,z equals a periodic function in 2` , ŵ , `
whose values at the beginning and at the end of a period
are different when V/v is different from an integer (see
Fig. 5). The higher frequencies stem from these steplike
discontinuities of the global function represented by the
series, discontinuities that lie outside the physically rel-
evant domain 2p , ŵ < p but that nevertheless math-
ematically influence the Fourier expansion of the limited
part of this function that describes the source density.

E. Role of Centripetal Acceleration in Providing
Broadband Emission
Physically, the agent responsible for this implicit discon-
tinuity, and thus the broadening of the spectrum of the
source density, is centripetal acceleration. That the spec-
tral content of a rectilinearly moving source is broadened
by acceleration can be directly seen from the transforma-
tion x8 5 x 1 ut 1

1
2 at2 between an accelerated frame S

(with the initial velocity u and acceleration a) and an in-
ertial frame S8. A source that is spatially monochro-
matic in its own rest frame, e.g., exp(ikx) with the wave
number k, is transformed into one, exp@ik(x8 2 ut
2

1
2at2)#, whose spectrum does not even decay at high fre-

quencies. The corresponding effect of centripetal accel-
eration on the spectrum of a source is more subtle and is
manifested in a kinematic constraint set by the geometry
of rotation.

Because there is only one parameter (v) for describing
both the speed (rv) and the acceleration (rv2) of a uni-
formly rotating source element, the centripetal accelera-
tion of a rotating extended source shows up in the con-
straint 2p , ŵ < p on the range of values of the
Lagrangian coordinate ŵ: an aspect of the geometry of
rotation that acts as an additional parameter. Had the
range of ŵ been infinite, the time dependence of the dis-
tribution in Eq. (7) would have been indistinguishable
from that of a rectilinearly moving source with a constant
velocity and its Fourier transform would have contained
only the frequencies uV 6 mvu, irrespective of whether V
is an integral multiple of v or not. It is the fact that ŵ is
an angle marking the elements of a rotating source that
gives rise to the constraint 2p , ŵ < p, to effective
space–time discontinuities in the source density, and to
the higher frequencies.

Given that both a representative source density and
the Green’s function for the present emission process
have spectra that contain infinite sets of frequencies, it is
not unexpected that the analysis in Sections 5 and 6
should predict a resulting radiation that is correspond-
ingly broadband. This prediction is not incompatible
with the fact that oscillations at no more than two fre-
quencies (mv and V) are required for creating the repre-
sentative source distribution [Eq. (7)] in the laboratory
(Appendix A; Table 1). As in the case of any other linear
system, the present emission process generates an output
at only those frequencies that are carried by both its in-
put (the source) and its response (Green’s) function.
What entails only two frequencies is the practical imple-
mentation of the source that we are considering and not
its spectral content. The density distribution of the
present source includes implicit space–time discontinui-
ties (Fig. 5) whose Fourier decompositions contain all fre-
quencies [Eq. (9)]. These steplike discontinuities do not
require (for their practical implementation) the creation
of any rapid changes either in space or in time; they have
to do with the geometry of rotation and automatically
stem from centripetal acceleration.

The radiation field that arises from the superluminal
portion (r . c/v) of the volume source described in Eq.
(7) consists of (as shown in Ref. 6) two components: a
spherically decaying component whose intensity dimin-
ishes like RP

22 with the distance RP from the source and a
non-spherically-spreading component whose intensity di-
minishes more slowly with the distance. The analysis in
this paper is concerned only with the spectral properties
of the spherically decaying component of the radiation.
The component of the radiation whose intensity decays
like RP

21 instead of RP
22 is emitted at only the two fre-

quencies uV 6 mvu.22

Fig. 5. ŵ dependence cos(mŵ)cos@V(ŵ 2 w)/v# of the source den-
sity described by Eq. (7) at a fixed (r, w, z) for m 5 1, V/v
5 3.5, and w 5 p/5. This ŵ dependence is, by virtue of the re-
lationship t 5 (ŵ 2 w)/v, equivalent to a time dependence:
The space–time of source elements may be marked either by the
coordinates (r, w, z, t), as in Eq. (7), or by the coordinates
(r, w, z, ŵ), as in relation (19). The plotted function is physi-
cally meaningful only within the interval 2p , ŵ , p. How-
ever, once this function is expanded into a Fourier series over the
interval (2p, p), a new periodic function results, represented by
the series, which is coincident with the original function within
(2p, p) and periodically reproduces the original function outside
this interval. The periodic function represented by the series
outside (2p, p) is designated by the dashed curves.
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3. DETAILED FORMULATION OF THE
PROBLEM
A. Electromagnetic Fields in the Far-Field Limit
In the absence of boundaries, the retarded potential Am

arising from any localized distribution of charges and cur-
rents with a density jm is given by

Am~xP , tP! 5 c21E d3xdt jm~x, t !d ~tP 2 t 2 R/c !/R,

m 5 0,...,3, (10)

where R stands for the magnitude of R [ xP 2 x and
m 5 1, 2, 3 designate the spatial components A and j of
Am and jm in a Cartesian coordinate system. The expres-
sions that follow for the electromagnetic fields

E 5 2¹P A0 2 ]A/]~ctP!, B 5 ¹P 3 A (11)

when we simply differentiate Eq. (10) under the integral
sign, and evaluate the resulting integrals by parts, are

E 5 2
1

c
E d3xdt

d ~tP 2 t 2 R/c !

R

3 F1

c

]j

]t
2 S 1

c

]j0

]t
1

j0

R D R

R G , (12)

B 5 2
1

c
E d3xdt

d ~tP 2 t 2 R/c !

R

R

R

3 S 1

c

]j

]t
1

j

R D , (13)

since jm vanishes outside a finite volume.
Terms of the order of R22 in the above integrands,

which do not contribute toward the flux of energy at in-
finity, may be discarded if we are concerned only with the
radiation field. Since the problem that we will be consid-
ering entails the formation of caustics, however, we need
to treat the phases of the above integrands, i.e., the argu-
ments of the delta functions in Eqs. (12) and (13), more
accurately. If we replace ]j0/](ct) in Eq. (12) by 2¹ • j
from continuity, integrate this term by parts, and retain
only those terms in the integrands of Eqs. (12) and (13)
that are of the order of R21, we obtain

E .
1

c2
E d3xdt

d ~tP 2 t 2 R/c !

R
n̂ 3 S n̂ 3

]j

]t D (14)

and B . n̂ 3 E. Here we have set the origin of the co-
ordinate system within the source distribution so that
uxu ! uxPu for an observation point in the far field and R/R
can be approximated by the constant vector n̂
[ xP /uxPu; the symbol . indicates that the expression is
valid in the far-field limit. These differ from the stan-
dard expressions for radiation fields21 only in that the ar-
gument of the delta function in their integrands is left ex-
act.

For the purposes of evaluating the integrals in relation
(14) for the current density that is given by Eq. (7), the
space–time of source points may be marked either with
(x, t) 5 (r, w, z, t) or with the coordinates (r, ŵ, z, t)
that naturally appear in the description of that rotating
source. In fact, once ŵ is adopted as the coordinate that
ranges over (2p, p), the retarded position w of the rotat-
ing source point (r, ŵ, z) as well as the retarded time t
could be used as the coordinate whose range is unlimited
(see Fig. 4).

The electric current density j 5 ]P/]t that arises from
the polarization distribution (7) is given, in terms of w and
ŵ, by

j 5
1

4
iv (

m5m6

m exp@2i~mŵ 2 Vw/v!#

3 ~srêr 1 swêw 1 szêz!

1 $m → 2m, V → 2V%, 2p , ŵ < p,

(15)

where m6 [ (V/v) 6 m and the symbol $m → 2m, V
→ 2V% designates a term exactly like the one preceding
it but in which m and V are everywhere replaced by 2m
and 2V, respectively. To put this source density into a
form suitable for inserting in relation (14), we need to ex-
press the w-dependent base vectors (êr , êw , êz) associ-
ated with the source point (r, w, z) in terms of the con-
stant base vectors (êrP

, êwP
, êzP

) at the observation point
(rP , wP , zP):

S êr

êw

êz

D 5 F cos~w 2 wP! sin~w 2 wP! 0

2sin~w 2 wP! cos~w 2 wP! 0

0 0 1
G S êrP

êwP

êzP

D .

(16)

Equations (15) and (16) together with the far-field value
of n̂,

lim
R→`

n̂ 5 ~sin uP!êrP
1 ~cos uP!êzP

,

uP [ arctan~rP /zP!, (17)

yield the following expression for the source term in rela-
tion (14):

n̂ 3 ~n̂ 3 ]j/]t ! 5
1

4
v2 (

m5m6

m2 exp@2i~mŵ 2 Vw/v!#

3 $@sw cos uP sin~w 2 wP!

2 sr cos uP cos~w 2 wP!

1 sz sin uP#ê' 1 @sr sin~w 2 wP!

1 sw cos~w 2 wP!#êi%

1 $m → 2m, V → 2V%, (18)

where êi [ êwP
(which is parallel to the plane of rotation)

and ê' [ n̂ 3 êi constitute a pair of unit vectors normal
to the radiation direction n̂.

B. Green’s Functions
Inserting Eq. (18) in relation (14) and changing the vari-
ables of integration (x, t) from (r, w, z, t) to
(r, w, z, ŵ), we obtain
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E .
1

4
~v/c !2 (

m5m6

E
0

`

rdrE
2`

1`

dzE
2p

1p

dŵ m2

3 exp~2imŵ!$~srG2 1 swG1!êi

1 @~cos uP!~swG2 2 srG1! 1 ~sin uP!szG3#ê'%

1 $m → 2m, V → 2V%, (19)

where . again indicates that the expression is accurate in
the far-field limit and Gi (i 5 1, 2, 3) are the functions re-
sulting from the remaining integration with respect to w:

S G1

G2

G3

D 5 E
Dw

dw
d ~g 2 f !

R
exp~iVw/v!S cos~w 2 wP!

sin~w 2 wP!

1
D .

(20)
Here R is as in Eq. (3), f stands for ŵ 2 ŵP with ŵ [ w
2 vt and ŵP [ wP 2 vtP , the function g is defined by

g [ w 2 wP 1 R̂ (21)

with R̂ [ Rv/c, and Dw is the interval of azimuthal angle
traversed by the source. The r and z integrations in re-
lation (19), though extending over the entire (r, z) space,
of course receive contributions only from those regions of
this space in which the source densities sr,w,z are nonzero.

Note that it would make no difference to the outcome of
the calculation whether one uses the expression for E that
is given in relation (19) and Eq. (20) and integrates over
the coordinates (ŵ, w), as we have done, or one uses re-
lation (14) with (x, t) 5 (r, w, z, t) and integrates over
(t, w), as is conventionally done. If one follows the con-
ventional procedure and first integrates with respect to t,
then the constraint 2p , ŵ < p would show up as the
restriction (w 2 p)/v < t , (w 1 p)/v on the range of t
integration (see Fig. 4).

The functions Gi(r, ŵ, z; rP , ŵP , zP , wP) here act as
Green’s functions: They describe the fields of uniformly
rotating point sources with fixed (Lagrangian) coordi-
nates (r, ŵ, z) whose strengths sinusoidally vary with
time. The field (19) is given by the superposition of the
fields of the assembly of such uniformly rotating volume
elements from which the extended source (15) is built up.
In the special case in which V 5 0, i.e., the strength of
the source is constant, G3 reduces to the Green’s function
called G0 in Ref. 6. The singularity structures of Gi are
determined by the stationary points of the phase function
g and so are identical to the singularity structure already
outlined in connection with G0 (see Ref. 6).

C. Spectral Decomposition of the Radiated Field
Spectral decomposition of the radiated field E may be
achieved, as in any other time-dependent problem, simply
by replacing the delta function in Eq. (20) by its Fourier
representation. Because the integration with respect to
ŵ extends only over the interval (2p, p) (Subsection 2.C),
Fourier decomposition of the ŵ dependence of this delta
function should be performed by means of a series.

The integrand in the expression for E [which is given
by relation (19) and Eq. (20) jointly] needs to be faithfully
represented only within the range of integration. Repre-
sentation of this integrand by a Fourier integral would
entail assumptions about the dependence of the source
density (15) on ŵ in intervals that lie outside its domain of
definition: assumptions about the dependence of jr,w,z on
ŵ in 2` , ŵ , 2p and p , ŵ , ` (see Section 2).

Once the delta function d (g 2 f ) that appears in the
integral representation of Gi in Eq. (20) is expanded into
a Fourier series over the interval 2p , ŵ , p, i.e., is
written as

d ~g 2 f ! 5 ~2p!21 (
n52`

`

exp@2in~ g 2 f !#, (22)

relation (19) becomes

E 5 ReH Ẽ0 1 2(
n51

`

Ẽn exp~2inŵP!J , (23)

in which

Ẽn .
1

4
~v/c !2 (

m5m6
E

0

`

rdrE
2`

1`

dzE
2p

1p

dŵ m2 exp~2imŵ!

3$~srG̃2 1 swG̃1!êi 1 @~cos uP!~swG̃2 2 srG̃1!

1 ~sin uP!szG̃3#ê'% 1 $m → 2m, V → 2V% (24)

and Re$Z% stands for the real part of Z. The functions G̃i
in this expression are given by

G̃i 5 ~2p!21 exp~inŵ !E
Dw

dw fi exp@2i~ng 2 Vw/v!#,

(25)

with

S f1

f2

f3

D [ R21S cos~w 2 wP!

sin~w 2 wP!

1
D , (26)

and constitute the Fourier components of the Green’s
functions Gi .

Because the values of ŵ are limited to an interval of
length 2p, the radiation is emitted in harmonics nv of the
rotation frequency (Table 1). The periodic nature of the
motion of the source imposes this constraint despite the
fact that the source distribution [Eq. (7)] lacks periodicity.
[Recall that the ratio V/v that appears in the expression
for the source density, Eq. (7), is different from an inte-
ger.] In the regime V/v @ 1, however, the peak of the
spectrum happens to occur at such a high value of the
harmonic number n that this spectrum is essentially con-
tinuous.

4. LOCI OF COHERENTLY CONTRIBUTING
SOURCE ELEMENTS
A. Importance of Focal Regions in the Space of
Observation Points
The filamentary cusps of the envelopes of the wave fronts
that emanate from various volume elements of an ex-
tended superluminal source (Fig. 1) collectively occupy a
tubular volume of the xP space, a volume that we shall re-
fer to as the focal region of the space of observation
points. At any given observation point P within this fo-
cal region, there are certain volume elements of the
source whose contributions toward the value of the field
at the observation time tP interfere constructively, i.e., ar-
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rive at xP with the same phase. These consist of those
elements of the superluminally moving source that ap-
proach the observer along the radiation direction with the
speed of light and zero acceleration at the retarded time
(Subsection 2.B). Or stated mathematically, for large
values of the harmonic number n, the main contributions
toward the value of the multiple integral (24) represent-
ing the radiation field Ẽn come from the stationary points
of the optical distance tP 2 t 2 R/c, given by the function
g(r, w, z) of Eq. (21), that appears in the phase of the
rapidly oscillating exponential exp(2ing) in the integrand
of this integral.24–26 As a first step toward the
asymptotic evaluation of the multiple integral in relation
(24), therefore, we need to identify the loci of points at
which the derivatives ]g/]r, ]g/]w, and ]g/]z vanish and
to expand g into a Taylor series about each of its station-
ary points.

There is in the present case a point at which all three of
the above derivatives are zero. The coordinates of this
point, which we shall designate as O, are given by

O: r̂ 5 1, w 5 wP 1 2p 2 arccos~1/r̂P! [ wO ,

z 5 zP , (27)

where r̂ [ rv/c and r̂P [ rPv/c stand for the values of r
and rP in units of the light-cylinder radius c/v. The sec-
ond derivative ]2g/]w2 of g also vanishes at O. Since the
derivative of g with respect to w at fixed (r, ŵ, z) is pro-
portional to the derivative of t 2 tP 1 R/c with respect to
t at fixed (r, w, z), the conditions ]g/]w 5 0 and
]2g/]w2 5 0 respectively correspond to the conditions
dR/dt 5 2c and d2R/dt2 5 0 that we encountered in
Subsection 2.B (see Fig. 3). Not only does the point O be-
long to the locus of source points that approach the ob-
server with the speed of light and zero acceleration at the
retarded time [i.e., lies on the cusp curve of the observer’s
bifurcation surface (Figs. 1 and 2) (Ref. 6)], but also it is in
fact the point at which this locus touches, and is tangen-
tial to, the light cylinder r 5 c/v (see Fig. 2).

Whether the above stationary point falls within the do-
main of integration depends on the position of the obser-
vation point. For a localized source distribution whose
dimensions are much smaller than the distance of the ob-
server from the source, O would fall within the domain of
integration only if the observer lies in the plane of rota-
tion, i.e., if the plane that passes through the observation
point and is normal to the rotation axis intersects the
source distribution; otherwise, there would be no source
points for which z equals zP .

For an observer who is located outside the plane of ro-
tation, i.e., whose coordinate zP does not match the coor-
dinate z of any source element, only ]g/]r and ]g/]w can
vanish simultaneously. This occurs along the curve

C: r̂ 5 r̂C~ ẑ ! [ $ 1
2 ~ r̂P

2 1 1 ! 2 @
1
4 ~ r̂P

2 2 1 !2

2 ~ ẑ 2 ẑP!2#1/2%1/2,

w 5 wC~ ẑ ! [ wP 1 2p 2 arccos~ r̂C / r̂P!. (28)

In the far-field limit, where the terms ( ẑ 2 ẑP)2/( r̂P
2

2 1)2 and r̂C / r̂P in Eqs. (28) are much smaller than
unity, this curve coincides with the locus
Cb : r̂ 5 @1 1 ~ ẑ 2 ẑP!2/~ r̂P
2 2 1 !#1/2,

w 5 wP 1 2p 2 arccos@1/~ r̂ r̂P!# (29)

of source points that approach the observer along the ra-
diation direction with the wave speed and zero accelera-
tion at the retarded time; i.e., it coincides with the cusp
curve of the bifurcation surface (Fig. 2).

B. Inadequacy of Conventional Far-Field
Approximations
The above calculation makes it clear how essential it is
that one should start with the exact form of the optical
distance uxP 2 x(t)u 2 c(tP 2 t) for identifying the loci of
its stationary points. The far-field approximation uxP
2 x(t)u . uxPu 2 (x – xP)/uxPu that is normally intro-
duced at the outset of a calculation in radiation theory21

here would obliterate not only significant geometrical fea-
tures of the loci of these stationary points but also such
determining characteristics as the degree of their degen-
eracy. The far-field approximation would replace the
function g by

g . R̂P 2 ẑ cos uP 1 w 2 wP 2 r̂ sin uP cos~w 2 wP!,

R̂P @ 1, (30)

where R̂P [ ( r̂P
2 1 ẑP

2 )1/2. It is hardly possible to discern
the geometrical details of O and C from this expression,
let alone their nature.

To preserve the essential features of g about its critical
point O, we need to express this function in terms of the
variables

j [ w 2 wO , h [ r̂ 2 1, z [ ẑ 2 ẑP (31)

before proceeding to the far-field limit. The resulting ex-
act expression for g(j, h, z) reduces, when expanded in
powers of r̂P

21, to

g 5 fO 1 j 2 ~1 1 h!sin j 1 @4~1 1 h!sin2~j/2!

2 ~1 1 h!2 sin2 j 1 h2 1 z2#/~2 r̂P! 1 ¯, (32)

where fO [ r̂P 1 wO 2 wP . The term of the order of r̂P
21

in this expansion clearly plays a crucial role in determin-
ing the nature of the stationary point j 5 h 5 z 5 0 and
so cannot be discarded, as in conventional radiation
theory. For the purposes of calculating the asymptotic
values of the radiation integrals by the method of station-
ary phase,24–26 however, it is mathematically permissible
to approximate the coefficient of this term by means of a
Taylor expansion about O. To within the third order in j
and h, the result is (h2 1 z2)/2, so that

g 5 fO 1 j 2 ~1 1 h!sin j 1 ~h2 1 z2!/~2 r̂P! 1 ¯ .
(33)

This is a more accurate version of the far-field approxima-
tion, which, in contrast to that appearing in Eq. (30), ex-
hibits the nondegenerate nature of the stationary point O
explicitly: Neither the coefficient of h2 nor that of z2 is
zero in the Taylor expansion of g about O.

The corresponding expansion of g about a point
( r̂C , wC , ẑ) on curve C (with an arbitrary coordinate
ẑ Þ ẑP) can likewise be found by first rewriting this func-
tion in terms of the variables
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r [ r̂ 2 r̂C , m [ w 2 wC . (34)

The result is

g 5 wC 2 wP 1 m 1 @R̂C
2 2 2~1 1 r/ r̂C!R̂C sin m

1 4 r̂C~ r̂C 1 r!sin2~m/2! 1 r2#1/2, (35)

in which we have denoted the value of R̂ on C by

R̂C [ @~ ẑP 2 ẑ !2 1 r̂P
2 2 r̂C

2 #1/2 (36)

and have made use of the fact that, according to Eqs. (28)
and (36), r̂C( r̂P

2 2 r̂C
2 )1/2 equals R̂C .

If we now expand the right-hand side of Eq. (35) in
powers of R̂C

21 (which tends to R̂P
21 in the far zone) and

approximate the coefficient of R̂C
21 in the resulting expan-

sion by its value in the vicinity of r 5 m 5 0, we arrive at

g 5 fC 1 m 2 ~1 1 r/ r̂C!sin m

1 @r2 1 ~ r̂C
2 2 1 !m2#/~2R̂C! 1 ¯, (37)

where fC [ R̂C 1 wC 2 wP . The term r2 in the coeffi-
cient of R̂C

21 in Eq. (37) plays an essential role in specify-
ing the degree to which g is stationary on C: r appears
only linearly in the earlier terms of the expansion. The
term m2 in this coefficient, on the other hand, merely rep-
resents a small correction of the order of R̂C

21 to the de-
pendence of the value of g on m and is of no consequence
as far as the asymptotic values of the radiation integrals
are concerned. We shall therefore neglect the term
R̂C

21m2 in Eq. (37) from now on.
We have already alluded to the distinction between ob-

servation points in and outside the plane of the source
(Subsection 4.A); we shall now treat these two cases sepa-
rately in Sections 5 and 6.

5. RADIATION FIELD IN THE PLANE OF
THE SOURCE’S ORBIT
A. Treatment of Individual Volume Elements;
Asymptotic Expansion of the Green’s Function
Suppose that the observation point is located within the
region z, < zP < z. spanned by the orbital planes of
various volume elements of the source and that its coor-
dinate wP at the observation time tP is such that the sta-
tionary point O falls within the range Dw of integration in
Eq. (25) (z, , 0 and z. . 0 stand for the extremities of
the z extent of the source distribution). Then the leading
term in the asymptotic expansion of G̃i for large RP and n
may be obtained by the method of stationary phase: by
replacing the phase function g in Eq. (25) with its ex-
panded version (33), approximating the coefficient fi of
the rapidly oscillating exponential by its limiting value

fiuO 5 rP
21~sin j 21 1 ! (38)

at O, and extending the range of integration Dw to (wO
2 p, wO 1 p) (see Refs. 24–26).

The integral that appears in the resulting expression,
G̃i ; ~2p!21 exp$in@ŵ 2 fO 2 ~h2 1 z2!/~2 r̂P!#

1 iVwO /v%E
2p

p

dj fiuO

3 exp$2i@~n 2 V/v!j 2 nr̂ sin j#%, (39)

can be evaluated in terms of an Anger function and its de-
rivative:

G̃i ; 2rP
21 exp$in@ŵ 2 fO 2 ~h2 1 z2!/~2 r̂P!#

1 iVwO /v%

3 @iJn2V/v8 ~nr̂ ! Jn2V/v~nr̂ ! 2Jn2V/v~nr̂ !#,

(40)

where J and J8 are an Anger function and the derivative
of an Anger function with respect to its argument and the
symbol ; denotes asymptotic approximation. The Anger
function Jn(x) is defined by

Jn~x! [ ~2p!21E
2p

p

dj exp@2i~nj 2 x sin j!#

5 Jn~x! 1 p21 sin~np!E
0

`

dt exp~2nt 2 x sinh t!,

(41)

in which Jn(x) is the Bessel function of the first kind.27,28

There is no difference between an Anger and a Bessel
function when n is an integer. The second integral in Eq.
(41), which constitutes the difference between these two
functions when sin(np) Þ 0, has the asymptotic expansion

E
0

`

dt exp~2nt 2 x sinh t!

; ~1 1 n/x!21x21 2 ~1 1 n/x!24x23

1 ~9 2 n/x!~1 1 n/x!27x25 1 ¯ (42)

for large x and positive n (see Ref. 28). The leading con-
tributions toward the values of the Anger functions in re-
lation (40), therefore, come from the Bessel functions
Jn2V/v(nr̂) and Jn2V/v8 (nr̂), whose asymptotic values for
large n decay more slowly than n21 in the superluminal
regime. (Here and in what follows, we treat V as a posi-
tive constant.)

When the argument of Jn(x) is smaller than its order
and so can be written as x 5 n sech a for some a . 0, the
asymptotic values, for large n, of this Bessel function and
its derivative are given by

Jn~n sech a! ; ~2pn tanh a!21/2 exp@n~tanh a 2 a!#,
(43a)

Jn8~n sech a! ; ~4pn/sinh 2a!21/2 exp@n~tanh a 2 a!#

(43b)
(see Ref. 27). In this regime, the Bessel functions in
question decrease exponentially with increasing n: The
exponent tanh a 2 a is negative for all positive a. But
when the argument of Jn(x) is greater than its order and
can be written as x 5 n sec b for some 0 , b , p/2, we
have27
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Jn~n sec b! ; ~
1
2 pn tan b!21/2 cos@n~tan b 2 b! 2

p
4 #,

(44a)

Jn8~n sec b! ; ~pn/sin 2b!21/2 sin@n~tan b 2 b! 2
p
4 #.

(44b)
In this case, the Bessel functions in question oscillate
with amplitudes that decrease algebraically, like n21/2,
with increasing n. When x and n are equal, these func-
tions decay even more slowly: Jn(n) ; 0.44730n21/3 and
Jn8(n) ; 0.41085n22/3 (see Ref. 27).

The contributions in relation (24) that arise from the
source elements in r̂ , 1 2 V/(nv), therefore, are expo-
nentially smaller than those that arise from r̂ . 1
2 V/(nv): The asymptotic values of the Green’s func-
tions appearing in relation (24) are proportional either to
Jn2V/v(nr̂) or to Jn2V/v8 (nr̂) for large n. In particular,
the contributions proportional to Jn2V/v(n) and
Jn2V/v8 (n), which arise from a source element at the sta-
tionary point O, are greater for the terms involving V in
relation (24) than for those involving 2V.

B. Frequencies of Emission from Individual Volume
Elements
The emission is strongest at the frequency with which the
source oscillates as it moves, i.e., at a value of nv for
which the integer n is closest to V/v. Figures 6 and 7 re-
spectively show the n dependences of the squares of the
two Bessel functions Jn2V/v(n) and Jn2V/v8 (n) for V/v
5 15.5, each normalized by its value at n 5 16. The
plotted quantities are respectively proportional to the
squares of moduli of the Green’s functions G̃2 and G̃1 at O
[see relation (40)]. Figure 6 depicts the spectral distribu-
tion of the emission that arises from the single comoving
point O of a polarization along the r or the z direction, and
Fig. 7 depicts the spectrum of the corresponding emission
from a current that flows in the w direction [see relation
(24) for uP 5 p/2].

The spectral distributions shown in Figs. 6 and 7 con-
firm the following result that was earlier inferred from
time-domain considerations in Section 2: The contribu-
tions of a rotating point source that is coincident with
O, and so approaches the observer with the speed of
light and zero acceleration at the retarded time, are made
over a wide range of frequencies and have peaks at
harmonic numbers n @ 1 that are of the order of
(V/v)3 when v ! V ! nv. This is a consequence of
the fact that in this regime we have Jn2V/v(n)
; (2/n)1/3 Ai@2(2/n)1/3V/v# and Jn2V/v8 (n)
; 2(2/n)2/3 Ai8@2(2/n)1/3V/v# and that the Airy function
Ai@2(2/n)1/3V/v# and its derivative peak where the mag-
nitude of their arguments is of the order of unity.27

C. Superposition of the Contributions from the
Constituent Volume Elements of the Source
The Green’s function G̃i(r, ŵ, z; n) calculated in Section
5.A represents the contribution to Ẽn of a specific volume
element of the uniformly rotating source: that which has
the azimuthal coordinate ŵ at the time t 5 0 and which
moves on a circular orbit of radius r on a plane that is nor-
mal to and crosses the rotation axis at z. To find the ra-
diation field that arises from an extended source, we must
superpose the contributions from the constituent volume
elements of that source, i.e., we must insert this Green’s
function in the integral representation (24) of the field
and perform the integrations with respect to r, ŵ, and z
that extend over the localized region of the rest frame oc-
cupied by that source.

Relations (24) and (40) jointly yield

Ẽn ;
1

2
r̂P

21 exp@2i~nfO 2 VwO /v!#Q ŵE
2`

`

dẑ

3 expF2
1

2
inr̂P

21~ ẑ 2 ẑP!2G
3 E

0

`

r̂dr̂ expF2
1

2
inr̂P

21~ r̂ 2 1 !2G
3 V 1 $m → 2m, V → 2V%, (45)

Fig. 6. Spectral distribution of the Green’s function G̃2(n) for
V/v 5 15.5, normalized by the value G̃2(16) of this function at a
harmonic number (n 5 16) close to V/v. (Frequency f and har-
monic number n are related through 2pf 5 nv.) The inset
highlights the highest-frequency peak of the spectrum. Note
that the ranges of frequencies shown in the figure and its inset
are complementary. This function represents the spectral dis-
tribution of the emission arising from the single comoving point
O of a polarization along the r or the z direction [see relations
(24) and (40)].

Fig. 7. Spectral distribution of the Green’s function G̃1(n) for
V/v 5 15.5, normalized by the value G̃1(16) of this function at a
harmonic number (n 5 16) close to V/v. (Frequency f and har-
monic number n are related through 2pf 5 nv.) The inset
highlights the highest-frequency peak of the spectrum. Note
that the ranges of frequencies shown in the figure and its inset
are complementary. This function represents the spectral dis-
tribution of the emission arising from the single comoving point
O of a polarization current that flows in the w direction [see re-
lation (40) and relation (24) for uP 5 p/2].
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in which

Q ŵ [ 2
1

2 (
m5m6

E
2p

1p

dŵ m2 exp@i~n 2 m!ŵ#

5 ~21 !n1m sin~pV/v!@m1
2 ~n 2 m1!21

1 m2
2 ~n 2 m2!21# (46)

and V stands for

V [ ~srW2 1 swW1!êi 1 @~cos uP!~swW2 2 srW1!

1 ~sin uP!szW3#ê' , (47)

with

Wj [ @iJn2V/v8 ~nr̂ ! Jn2V/v~nr̂ ! 2Jn2V/v~nr̂ !#. (48)

Here we have replaced r, rP , and z by their values in
units of the light-cylinder radius ( r̂, r̂P , and ẑ) and have
used the definition m6 [ (V/v) 6 m to rewrite sin@p (n
2 m6)# as (21)n1m11 sin(p V/v). The Anger function J
and its derivative J8 are defined in Eq. (41).

Note that if V/v is an integer, the factors sin@p (n
2 m6)# /(n 2 m6) in Eq. (46) would have the value p at
n 5 m6 and would vanish at all other n. When V is not
an integral multiple of v, on the other hand, neither the
numerators nor the denominators in these factors can
vanish at any n. For nonintegral values of n, the quan-
tity Q ŵ , and hence the spectrum of the source density
(15), is nonzero for all frequencies (see also Section 2 and
Fig. 5). We shall here assume not only that the param-
eter V/v is different from an integer but also that it is ap-
preciably greater than unity. Our interest lies primarily
in the high-frequency regime, where the radiation fre-
quency nv is appreciably greater than the frequencies
umv 6 Vu that enter into the creation of the source (see
Appendix A).

The leading terms in the asymptotic expansions for
large n of the integrals over r̂ and ẑ in the expression for
Ẽn can both be found by an elementary version of the
method of stationary phase.24–26 If the lower and upper
limits of the radial interval in which the source densities
sr,w,z are nonzero are denoted by r̂, , 1 and r̂. . 1, re-
spectively, then the asymptotic value of the integral over
r̂ in relation (45) is given by

E
0

`

r̂dr̂ expF2
1

2
inr̂P

21~ r̂ 2 1 !2GV ; Vu r̂51Qr , (49)

in which

Qr [ E
r̂,

r̂.

dr̂ expF2
1

2
inr̂P

21~ r̂ 2 1 !2G
5 ~p r̂P /n !1/2$C~h.! 2 C~h,! 2 i@S~h.! 2 S~h,!#%,

(50a)

with

h. [ @n/~p r̂P!#1/2~ r̂. 2 1 !, (50b)

h, [ @n/~p r̂P!#1/2~ r̂, 2 1 !, (50c)

and the functions C(h) and S(h) are the Fresnel
integrals.27 We have integrated over the interval
( r̂, , r̂.), rather than (2`, `), in order to obtain expres-
sions that are valid also within the Fresnel distance
rP ; (r. 2 r,)2(nv)/(pc) from the source. For an ob-
servation point that lies at infinity, the integration with
respect to r̂ may be directly performed over (2`, `), with-
out introducing r̂, and r̂. .

If we now insert relation (49) in relation (45) and carry
out the remaining integration with respect to ẑ in a simi-
lar way, we arrive at

Ẽn ; 1
2 r̂P

21 exp@2i~nfO 2 VwO /v!#Q ŵQrQzVu r̂51,ẑ5ẑP

1 $m → 2m, V → 2V%, (51)

in which

Qz [ E
ẑ,

ẑ.

dẑ expF2
1

2
inr̂P

21~ ẑ 2 ẑP!2G
5 ~p r̂P /n !1/2$C~z.! 2 C~z,! 2 i@S~z.! 2 S~z,!#%,

(52a)

with

z. [ @n/~p r̂P!#1/2~ ẑ. 2 ẑP!, (52b)

z, [ @n/~p r̂P!#1/2~ ẑ, 2 ẑP!. (52c)

Here z. . zP and z, , zP are respectively the lower and
upper limits on the extent of the source distribution in the
z direction. (The coordinates r and z without the caret
are measured in standard units of length rather than in
units of the light-cylinder radius c/v.)

When the z interval z. 2 z, that is occupied by the
source is appreciably smaller than the radius of the light
cylinder, the observer would need to have a colatitude uP
that is quite close to p/2 for the stationary point O to lie
within the source distribution. From Eqs. (47) and (48)
for uP 5 p/2, it therefore follows that

Vu r̂51,ẑ5ẑP
5 Jn2V/v~n !~srOêi 2 szOê'!

1 iJn2V/v8 ~n !swOêi , (53)

in which srO,wO,zO stand for the values of sr,w,z at the sta-
tionary point O. Thus the contributions of the poloidal
components of the polarization (sr and sz) to the radiation
field are both stronger than, and 90 deg out of phase with,
the contribution of the toroidal component sw (see Table
2).

D. Radiated Power and Its Spectral Distribution
The expression that is given by relation (51) for the Fou-
rier component Ẽn of the radiation field in the plane of ro-
tation applies to any frequency nv for which n @ 1, pro-
vided of course that the distance rP of the observer
appreciably exceeds both the radius c/v of the light cylin-
der and the dimensions r. 2 r, and z. 2 z, of the
source. If nv is also much greater than the frequencies
umv 6 Vu that enter into the creation of the source, the
asymptotic value of the radiation field for large frequency
reduces to

Ẽn ; ~21 !n1mr̂P
21 exp@2i~nfO 2 VwO /v!#~m2 1 V2/v2!

3 sin~pV/v!QrQzn
21@Jn2V/v~n !~srOêi 2 szOê'!

1 iJn2V/v8 ~n !swOêi#, (54)
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for both the additional terms in the Anger functions [Eq.
(41)] and the terms associated with 2V [relation (51)]
would be negligibly small. This expression holds not
only in the far zone but also within the Fresnel zone.
The Fresnel distance from the source, which designates
the boundary between the near and far zones at a given
frequency nv, is defined by rP . @nv/(pc)#max$(r.

2 r,)2, (z. 2 z,)2% in the present case.
When the observation point lies closer to the source

than the Fresnel distance, the arguments of the Fresnel
integrals C and S in Eqs. (50) and (52) are large and so Qr
and Qz assume the values

Qr ; ~2p r̂P /n !1/2 exp~2ip/4!, r̂P ! ~n/p!~ r̂. 2 r̂,!2,
(55a)

Qz ; ~2p r̂P /n !1/2 exp~2ip/4!, r̂P ! ~n/p!~ ẑ. 2 ẑ,!2.
(55b)

Beyond the Fresnel distance from the source, on the other
hand, the limiting values of C and S are such27 that

Qr ; r̂. 2 r̂, , r̂P @ ~n/p!~ r̂. 2 r̂,!2, (56a)

Qz ; ẑ. 2 ẑ, , r̂P @ ~n/p!~ ẑ. 2 ẑ,!2, (56b)

for in the far zone the arguments of the oscillating expo-
nentials in the integrands in Eqs. (50a) and (52a) tend to
zero. The inclusion of higher-order terms in the expan-
sion of g in powers of r̂ 2 1 and ẑ 2 ẑP would not alter
this result: The coefficients of these higher-order terms
contain correspondingly higher powers of r̂P

21.
The radiated power received by an observer in the far

zone per harmonic per unit solid angle is given by
dPn /dVP 5 cRP

2 uẼnu2/(2p), where dVP denotes the ele-
ment (sin uP)duPdwP of solid angle in the space of obser-
vation points. According to relations (54) and (56), this
power has the following asymptotic value for high fre-
quency and uP 5 p/2:

dPn /dVP ; ~2pc !21v2~m2 1 V2/v2!2

3 sin2~pV/v!~r. 2 r,!2

3 ~z. 2 z,!2n22uJn2V/v~n !~srOêi 2 szOê'!

1 iJn2V/v8 ~n !swOêiu2. (57)

It depends on the harmonic number n like n22Jn2V/v
2 (n)

if the polarization lies in the z or the r direction and like
n22Jn2V/v82 (n) if the polarization lies in the w direction.

Figures 8 and 9 show the emitted power by a poloidal
polarization current (sr or sz) for V/v 5 15.5 and m
5 72. The amplitude of this power has in both figures
been normalized by its value at the harmonic number
closest to the source frequency mv 1 V, i.e., by the
power that is emitted into n 5 87. [Note that the peak
emission of the device described in Appendix A is always
close to f 5 (mv 1 V)/(2p); in the case of V/v
5 integer, the only emission occurs at this frequency and
its companion f 5 (mv 2 V)/(2p). We show
elsewhere22 that, irrespective of the value of V/v, the non-
spherically-decaying part of the emission contains only
the frequencies f 5 umv 6 Vu/(2p).]

The curves shown in Figs. 8 and 9 decrease monotoni-
cally from unity (the maximum power) at n 5 87 to zero
at its minimum (see Fig. 9). As a result of the presence of
the extra factor Q ŵ
2 ; n22, the value of n at which the

curve in Fig. 8 attains its high-frequency maximum is
somewhat lower than that of the corresponding curve
shown in the inset to Fig. 6. The order of magnitude of
this n, however, is still given by (V/v)3: The result ear-
lier encountered in Sections 2 and 5.B in the context of a
point source thus applies also to an extended source.

Note that, according to relations (54) and (55), the am-
plitude of Ẽn is independent of the distance rP from the
source throughout the Fresnel zone: It diminishes
like rP

21 only beyond the Fresnel distance, i.e., for rP
@ @nv/(pc)#max$(r. 2 r,)2, (z. 2 z,)2%. This non-
spherical decay of the field amplitude within the Fresnel
zone is encountered whenever the radiated wave fronts
have envelopes; the field of Čerenkov radiation, for in-
stance, decays like RP

21/2 within its Fresnel zone. How-
ever, the constancy of the amplitude of the radiation with
the distance is here compensated by a steeper dependence
of this amplitude on the frequency. At the position of an
observer who is closer to the source than the Fresnel dis-
tance, the rate of decay of dPn /dVP with n is by the factor
n22 higher than that of the power that is radiated in the
far zone.

Fig. 8. Spectral distribution of the radiation that is generated
by a poloidal polarization current for V/v 5 15.5 and m 5 72.
The normalization factor is the magnitude Ẽ87 of the radiation
field at a harmonic number (n 5 87) close to the peak emission
at n 5 (m 1 V/v) or f 5 (mv 1 V)/(2p) (see Fig. 9); frequency
f and harmonic number n are related through 2pf 5 nv. The
plotted quantity has the value of unity at n 5 87 and decreases
monotonically over the range 87 , n , 400 of harmonic num-
bers not shown here (see Fig. 9). The inset highlights the
highest-frequency peak of the spectrum.

Fig. 9. Logarithm of the normalized intensity, log10uẼn /Ẽ87u2,
shown in Fig. 8 over the lower range (30 , n , 400) of harmonic
numbers (recall that V/v 5 15.5 and m 5 72). Note that the
ranges of frequencies in this figure and in Fig. 8 are complemen-
tary. The contribution from um2vu 5 mv 2 V (see Table 1) to
the radiation field is in this case too small to make a difference to
the figure, even at these lower frequencies.
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6. RADIATION FIELD OUTSIDE THE PLANE
OF THE SOURCE’S ORBIT
A. Asymptotic Expansion of the Green’s Function
When the observation point is located at a colatitude uP
that is different from p/2, the leading contribution to the
asymptotic value of the radiation field for large R̂P and
large n comes from those volume elements of the source
that lie on the curve described in Eqs. (28), the curve that
we designated as C. For R̂P @ 1, C is coincident with the
cusp curve of the bifurcation surface, Cb , and the source
points in question are those that approach the observer
with the speed of light and zero acceleration at the re-
tarded time (see Fig. 2). The integrations with respect to
w and r in relation (24) and Eq. (25) can, as a result, be
evaluated by the method of stationary phase once again.

It can be seen from the far-field limit of Eqs. (29) that
the cusp curve Cb will intersect the source distribution if
uP lies in the interval uuP 2 p/2u < arccos(1/r̂.), where r.

is the radial coordinate of the outer boundary of the
source.6 Hence the range of values of uP to which the fol-
lowing analysis is applicable would be as wide as (0, p) if
the extent r. 2 c/v of the superluminally moving part of
the source is comparable with the radius c/v of the light
cylinder.

For uP Þ p/2, the relevant expansion of the phase func-
tion g about the locus of its stationary points is that found
in Eq. (37). The counterpart of relation (39) is therefore
given by

G̃i ; ~2p!21 exp$i@n~ ŵ 2 fC 2
1
2 R̂C

21r2! 1 VwC /v#%

3 E
2p

p

dm fiuC exp$2i@~n 2 V/v!m

2 n~ r̂/ r̂C!sin m#%, (58)

in which r̂C , wC , and R̂C , defined in Eqs. (28) and (36),
have their far-field values

r̂C . csc uP , wC . wP 1 3p/2,

R̂C . R̂P 2 ẑ cos uP (59)

and fiuC has its limiting value

fiuC 5 RP
21~sin m 21 1 !. (60)

[The term R̂C
21m2 in Eq. (37) has, for the reasons given in

Section 4, been omitted here.]
The integral that appears in relation (58) is expressible

in terms of an Anger function and its derivative:

G̃i ; 2RP
21 exp$i@n~ ŵ 2

3
2 p 2 R̂P 1 ẑ cos uP 2

1
2 R̂P

21r2!

1 VwC /v#%W̄i , (61)

with

W̄j [ [iJn2V/v8 ~nr̂ sin uP! Jn2V/v~nr̂ sin uP!

2Jn2V/v~nr̂ sin uP!]. (62)

Hence relations (24) and (61) jointly yield
Ẽn ; 1
2 R̂P

21 exp$2i@n~R̂P 1
3
2 p! 2 VwC /v#%Q ŵ

3 E
2`

`

dẑ exp~inẑ cos uP!

3 E
0

`

r̂dr̂ expF2
1

2
inR̂P

21~ r̂ 2 csc uP!2G V̄

1 $m → 2m, V → 2V%, (63)

where V̄ differs from the vector V defined in Eq. (47) only
in that Wi is everywhere replaced in it by W̄i [cf. Eq. (62)].
The quantity Q ŵ , resulting from the integration with re-
spect to ŵ, is the same here as in Eq. (46).

The dominant contribution toward the asymptotic ap-
proximation to the integral over r̂ for high frequency
arises from the value of its integrand at the stationary
point r̂ 5 csc uP of its phase, just as in relation (49). The
r̂ integral in relation (63) therefore has the asymptotic
value

E
0

`

r̂dr̂ exp@2
1
2 inR̂P

21~ r̂ 2 csc uP!2#V̄

; ~csc uP!V̄u r̂5csc uP
Q̄r , (64)

where

Q̄r 5 ~pR̂P /n !1/2$C~ h̄.! 2 C~ h̄,! 2 i@S~ h̄.! 2 S~ h̄,!#%,
(65a)

with

h̄. [ @n/~pR̂P!#1/2~ r̂. 2 csc uP!, (65b)

h̄, [ @n/~pR̂P!#1/2~ r̂, 2 csc uP!, (65c)

and r̂, , csc uP and r̂. . csc uP are respectively the lower
and upper limits of the radial interval in which the source
densities sr,w,z are nonzero.

B. Radiated Power and Its Spectral Distribution
From relations (63) and (64) it now follows that

Ẽn ; 1
2 r̂P

21 exp$2i@n~R̂P 1
3
2 p! 2 VwC /v#%Q ŵQ̄rQ̄z

1 $m → 2m, V → 2V%, (66)

in which

Q̄z [ @ s̄ rJn2V/v~n ! 1 is̄wJn2V/v8 ~n !#êi 1 @~ s̄w cos uP

2 s̄z sin uP!Jn2V/v~n ! 2 is̄r~cos uP!Jn2V/v8 ~n !#ê' ,

(67)

with

s̄ r,w,z [ E
2`

`

dẑ exp~inẑ cos uP!sr,w,zuC . (68)

The source densities sr,w,z in s̄ r,w,z are evaluated along
curve C and so are functions of z only. Note that the An-
ger functions that appear in this expression are precisely
the same as those appearing in Eq. (53) and depicted in
Figs. 6 and 7: The field Ẽn depends on uP only through
the other factors in Eq. (67).

The corresponding expression for the radiated power
per harmonic per unit solid angle is therefore given by
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dPn /dVP ; ~2p!21c csc2 uP sin2~pV/v!

3 ~m2 1 V2/v2!2~r. 2 r,!2n22uQ̄zu2

(69)

when the observation point lies beyond the Fresnel dis-
tance RP ; (nv/c)(r. 2 r,)2 and n appreciably exceeds
um 6 V/vu. Here, as in relation (54), both the additional
terms in the Anger functions [Eq. (41)] and the terms as-
sociated with 2V [relation (66)] are negligibly small, so
that the Anger functions in uQ̄zu may be approximated by
Bessel functions.

The rate of decay of uQ̄zu with the harmonic number n
depends on the length scale of variations of sr,w,zuC with z.
The smoother the distribution of these source densities in
z, the faster the rate of decay of uQ̄zu with n. In the case
of a source with a limited extent in z whose density falls
to zero sharply at its z boundaries, such as the source de-
scribed in Appendix A, the quantity uQ̄zu decays like n21

for large n. The dependence of the poloidal part of the
above dPn /dVP on n for uQ̄zu ; n21 differs from the cor-
responding spectrum shown in Fig. 8 only in that its am-
plitude is reduced and its peak is shifted to a slightly
lower value of n.

In the high-frequency regime [where Jn2V/v(n) de-
creases like n21/3], the dominant terms of dPn /dVP in re-
lations (57) and (69) decay according to a power law n2a:
The index a in this power law has the value 8/3 in the
plane of the source’s orbit and a value >11/3 outside that
plane.

C. Polarization State of the Emitted Radiation
Having examined the dependence of the emitted radiation
on the polar angle uP , we finally summarize its polariza-
tion and indicate how this is related to the direction s of
the emitting current within the device described in Ap-
pendix A. This summary, for cases in which one of the
cylindrical components of s is appreciably larger than the
other components, is shown in Table 2.

7. COMPARISON WITH ČERENKOV,
SYNCHROTRON, AND DIPOLE RADIATION
The features that the above analysis has in common with
that of Čerenkov radiation, such as the multivaluedness
of the retarded time and the presence of an envelope of
wave fronts at which the phases of the radiation integrals
are stationary, are easily recognizable. To compare our
results with those that are familiar from the analyses of
synchrotron and dipole radiation, however, we need to
give a brief parallel account of certain features of these
more conventional emission processes in the present no-
tation.

The electric current density for a uniformly rotating
point source (i.e., the source of synchrotron radiation) is
described by

j~r, w, z, t ! 5 qvd ~r 2 r0!d ~ŵ 2 ŵ0!d ~z 2 z0!êw ,

(70)

in which the charge q and the coordinates (r0 , ŵ0 , z0)
are all constant. (Recall that ŵ [ w 2 vt.)
Insertion of this source density in relation (14) results
in

E . q~v/c !2E
0

`

rdrE
2`

1`

dzE
2p

1p

dŵ d ~r 2 r0!

3 d8~ ŵ 2 ŵ0!d ~z 2 z0!~G1êi 1 ~cos uP!G2ê'!,

(71)

where G1 and G2 are defined by the same integral as that
in Eq. (20) with V 5 0. The time dependence of the in-
tegrand in relation (71) can once again be expanded into a
Fourier series, not because ŵ is limited to an interval of
length 2p (here ŵ has a single fixed value ŵ0) but because
the source density is periodic. Evaluation of the trivial
integrals with respect to (r, ŵ, z) thus results in the fol-
lowing counterpart of relation (24):

Ẽn . 2in~v/c !2qr0@G̃1êi 1 ~cos uP!G̃2ê'#. (72)

The definitions of G̃1 and G̃2 in this expression differ from
those appearing in Eqs. (25) and (26) only in that in them
V 5 0, Dw is (wP 2 p, wP 1 p), and (r, ŵ, z) are every-
where replaced by (r0 , ŵ0 , z0).

Once the phase function g in these definitions is ap-
proximated by its far-field value [relation (30)] and the in-
tegrations with respect to w are performed, we arrive at
expressions for G̃i whose limiting values for r̂0 → r̂C are
identical to the expressions that follow from the far-field
versions of relation (61) and Eq. (62) when V 5 0. Inser-
tion of the resulting expressions for G̃1 and G̃2 in relation
(72) then leads to

Ẽn ; inq~v/c !2~r0 /RP!

3 exp@in~ ŵ0 2
3
2 p 2 R̂P 1 ẑ0 cos uP!#

3 @iJn8 ~nr̂0 sin uP!êi 1 r̂0
21Jn~nr̂0 sin uP!

3 ~cot uP!ê'#, (73)

i.e., to the familiar field of synchrotron radiation (see Ref.
21).

The Bessel functions that appear in relation (73) have
arguments that are smaller than their orders [as in rela-
tion (43)] and so decrease exponentially with increasing n:
The speed r0v of the source is subluminal ( r̂0 [ r0v/c
, 1) in the synchrotron process. In contrast, the Bessel
functions that appear in the superluminal regime have
arguments that could equal or exceed their orders and so
oscillate with an amplitude that decreases algebraically,
like n21/3, n21/2, or n22/3 [see relation (44) and the para-
graph following them]. Were it to exist, a superluminally
rotating point source would therefore be a much more ef-
ficient source of high-frequency radiation than a sublumi-
nally rotating one. In fact, as can be more directly seen
from an analysis in the time domain,6,22 the field of a (hy-
pothetical) superluminally moving point source is infi-
nitely strong, i.e., has a divergent value, on the envelope
of the wave fronts that emanate from it.

On the other hand, by virtue of being pointlike, the
source of synchrotron radiation has a spectrum that al-
ready contains all frequencies. Because the spectral dis-
tribution of the source in Eq. (70) is independent of fre-
quency, the spectrum of synchrotron radiation is
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determined solely by the spectral distribution of its
Green’s function. An extended source is radically differ-
ent in this respect: The spectral content of an extended
source of the same type, i.e., a rotating source with a den-
sity j 5 j(r, ŵ, z) whose strength is time independent in
its own rest frame, is limited to only those wavelengths
that characterize the length scales of its variations in ŵ.
Had V been zero for the source described in Eq. (7), the
spectrum of this source, and hence that of the radiation
that arose from it, would have contained only the single
frequency mv. [What endows the volume source (7) with
the broad—albeit rapidly decaying—spectral distribution
given in Eq. (9) is a new effect, having to do with centrip-
etal acceleration, which would not come into play unless
the source strength varied with time.]

In the subluminal regime, volume-distributed charges
and currents are typically weak as sources of radiation:
The contributions from their separate volume elements
(those more distant from each other than a radiation
wavelength) would arrive at the observer with differing
phases and so would, as a rule, superpose and interfere
destructively. The contributions to the radiation field
that arise from the source elements located in the vicinity
of a stationary point of the optical distance g, however,
are an exception to this rule. In the case of a superlumi-
nally moving extended source, where the derivatives of g
have zeros, it is possible for the contributions from source
elements that are more distant than a wavelength to su-
perpose and interfere constructively. Not only does the
radiation described in Section 5 receive contributions
from an interval of retarded time that is by a factor of the
order of n2/3 longer than its period 2p/(nv), but also the
source elements that contribute coherently toward this
emission occupy r and z intervals that are by the factors
;n1/2 and ;n longer than the wavelength 2pc/(nv) in
the Fresnel and far zones, respectively [see the values of
Qr and Qz found in relations (55) and (56)].

To compare the present results with those that are fa-
miliar from the analysis of dipole radiation, we consider a
case in which the polarization P lies in the z direction
(i.e., sr 5 sw 5 0) and V/v is an integer. The only non-
zero values of the quantity Q ŵ appearing in Eq. (46) are in
this case those that occur when n 5 (V/v) 6 m, so that
the amplitude of the radiation field Ẽn reduces to

uẼnu ; p r̂P
21usu~ r̂. 2 r̂,!~ ẑ. 2 ẑ,!n2uJn2V/v~n !u (74)

for n 5 m 1 V/v [see relations (45), (54), and (56)].
The ŵ extent of the contributing part of the source is of

the order of a wavelength, 2pc/(nv). In terms of the to-
tal dipole moment p [ (r. 2 r,)(z. 2 z,)@2pc/(nv)#P
of the contributing source, therefore, relation (74) can be
written as

uẼnu ; 1
2 rP

21~nv/c !2unJn2V/v~n !pu. (75)

This differs from the familiar expression for the radiation
field of a stationary dipole in the plane normal to its
direction21 by the factor u 1

2 nJn2V/v(n)u, a factor that is of
the order of n2/3 when n @ 1. The difference can clearly
be traced to the phasing of the array of oscillating dipoles
that constitute the present moving source (cf. Appendix
A): The field calculated in Section 5 receives contribu-
tions from an interval of retarded time that exceeds the
period 2p/(nv) of the oscillations of its source by the very
same factor.

8. EFFICIENCY OF THE RADIATIVE
PROCESS
The efficiency of the emission process analyzed in Sec-
tions 5 and 6 is essentially independent of the way in
which a polarization current with a superluminally rotat-
ing distribution pattern is created. Our purpose in this
section is to derive a general expression for estimating the
radiation efficiency in the high-frequency regime n
; (V/v)3 and to apply the resulting expression to the
particular method of implementing the source density (7)
that is described in Appendix A.

If the polarization current density j that acts as the
source of the present radiation is produced by the influ-
ence of an external electric field Eext on a polarizable me-
dium with electric susceptibility xe , then the power re-
quired for maintaining j within a volume V would be
P in 5 *V( j – Eext)d

3x. The induced polarization P is
given by xeEext , so that the polarization current j
5 ]P/]t would have the magnitude uju ; xeVuEextu,
where V is the dominant frequency in the spectrum of os-
cillations of Eext and hence j. The input power would
therefore be of the order of

P in ; LrL ŵLzuju2/~xeV! (76)

in terms of u ju, where we have expressed V as the product
LrL ŵLz of the length scales of the source distribution in
various directions.

The power that is emitted into the frequency band
(Dn)v centered at nv ; (V/v)2V is, according to the
analysis in Section 5, given by

Pout ; c21Lr
2Lz

2uju2n22DnDVP , (77)

where the solid angle DVP is an estimate of the size of the
beam that is emitted into the plane of the source’s orbit.
Note that r. 2 r, , z. 2 z, , and Vusu in relation (57) cor-
respond to Lr , Lz , and uju, respectively, and that the high-
frequency limit of Jn(n) has the same order of magnitude
as (V/v)21 ; n21/3.

The above two expressions for the input and output
powers imply that the efficiency of the emission process in
question has a value of the order of

Pout /P in ; xe~Lr /L ŵ!~Lzv/c !n25/3DnDVP , (78)

in which we have replaced V/v by n1/3. The interval Dn
over which the high-frequency component of the radiation
is emitted is of the same order of magnitude as n (cf. Figs.
6–9). But the solid angle DVP in this expression is only
a small fraction of 4p (see below): The estimate in rela-
tion (77) is valid only within the distance Lz of the plane
of the source’s orbit.

Radiation of frequency nv ; (V/v)2V can be detected
also outside the plane of the source’s orbit. Although the
value of DVP in the corresponding expression for Pout /P in
is of the order of unity when uP Þ p/2 (see Section 6), the
greater steepness of the spectrum reduces the efficiency
in this case: The dependence of Pout /P in on n is by a fac-
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tor of the order of uQzu2 ; n22 smaller than that found in
relation (78) [see relation (69)].

Consider an experimental device, such as that de-
scribed in Appendix A, that is built with a polarizable me-
dium with the electric susceptibility xe . 10 and elec-
trodes that have the dimensions Lr . L ŵ . 5 cm, Lz
. 1 cm. If this device is operated with v/(2p)
. 5 MHz and V/(2p) . 300 MHz (the exact value of V/v
being different from an integer), then the efficiency with
which the radiation of frequency nv/(2p)
; (V/v)2V/(2p) . 1 THz is generated by each electrode
would be of the order of Pout /P in . 3 3 1026DVP . Note
that (n/p)(Lzv/c)2 . 1021 and (n/p)(Lrv/c)2 . 1 in
this case, so that the boundary between the Fresnel and
far zones lies at a distance from the source that is shorter
than the radius c/v . 103 cm of the light cylinder [see re-
lation (55)]. Beyond the Fresnel zone, the radiation that
is beamed into the cylindrical region z, < zP < z. sur-
rounding the plane of the source’s orbit therefore sub-
tends a solid angle that is smaller than DVP ; Lzv/c
; 1023 rad.

9. CONCLUDING REMARKS
We have investigated the spectral features of the intense
localized electromagnetic waves that are generated by
volume polarization currents with superluminally moving
distribution patterns. The analysis is based on current
practical devices for investigating emission from acceler-
ated superluminal sources1,4,5; these devices (Appendix A)
produce polarization currents whose distribution patterns
both rotate and oscillate, rotating with a constant angular
frequency v and oscillating with a frequency V . v that
is different from an integral multiple of v. Although the
only frequencies entering the production of the emitting
currents are mv and V (see Table 1), we find that the
broadband signals from such devices contain frequencies
that are higher than the oscillation frequency V by a fac-
tor of the order of (V/v)2. This does not mean that the
linear emission process considered here is capable of gen-
erating an output at frequencies that are not carried by
its input (the source), thus violating the convolution theo-
rem. What is made possible by this process is to gener-
ate radiation of a certain frequency from a source whose
creation does not require that frequency. The spectra of
such sources do contain the emitted frequencies [see Eq.
(9)].

The high frequencies (none of which is required for the
practical implementation of the source) stem from the co-
operation of the following two effects. The retarded time
is a multivalued function of the observation time in the
superluminal regime, so that the interval of retarded time
during which a particular set of wave fronts is emitted by
a volume element of the source can be significantly longer
than the interval of observation time during which the
same set of wave fronts is received at the observation
point. In addition, a remarkable effect of centripetal ac-
celeration is to enrich the spectral content of a rotating
volume source, for which V/v is different from an integer,
by effectively endowing the distribution of its density
with space–time discontinuities. These results are
mathematically rigorous consequences of the familiar
classical expression for the retarded potential.

The spectral distribution for the emitted radiation is
summarized in Figs. 8 and 9, and its possible polarization
states are listed in Table 2.

Many features of the radiation that is discussed in the
present paper are shared by the high-frequency emissions
that would arise from superluminally moving sources
with generically different trajectories. An example is a
superluminal source that moves along a line with accel-
eration. In the case of the circularly moving superlumi-
nal source considered here, the parameter v determines
both the linear velocity of each source element (rv) and
its acceleration (rv2). For a superluminal source whose
distribution pattern moves rectilinearly, on the other
hand, velocity (v) and acceleration (a) are two indepen-
dent parameters.

The emission (dt) and reception (dtP) time intervals for
the waves arising from the source elements that approach
the observer with the wave speed and zero acceleration
are in the rectilinear case, too, related by a cubic equa-
tion:

dtP 5
1
2 ~a/c !2@~v/c !2 2 1#21~dt !3 1 ¯, (79)

in which v is the retarded value of the source velocity (see
Appendix D of Ref. 6). Once again, therefore, a moving
source whose strength fluctuates like cos(Vt) would gen-
erate a field that oscillates with a period different from
that of its source: with the period @2pa/(cV)#2@(v/c)2

2 1#21(2p/V).
In practice, however, there is a crucial difference be-

tween rectilinear and centripetal accelerations. Centrip-
etal acceleration, as we have seen, enriches the spectral
content of a rotating volume source at the same time as
giving rise to the formation of caustics and so the com-
pression of dtP relative to dt. In contrast, rectilinear ac-
celeration requires for its implementation the very fre-
quencies that it endows the source with: The range of
frequencies with which the amplitude of a linearly accel-
erated source oscillates at a fixed point on its path (within
its distribution) is as wide as the range of frequencies that
feature in the Fourier decomposition of its density with
respect to time.

The rotating superluminal source described in Eq. (7)
can be implemented by an experimentally viable device1,4

whose construction and operation entail oscillations at
only the two frequencies mv and V (see Appendix A). As
a source of radiation at frequencies that cannot be nor-
mally generated in the laboratory, except by means of
large-scale facilities such as synchrotrons or free-electron
lasers, the potential practical significance of such a device
is clearly enormous1; as we have shown in Section 8, the
efficiency is large enough for many spectroscopic applica-
tions to be viable.

APPENDIX A: PRACTICAL
IMPLEMENTATION OF THE SOURCE
The purpose of this appendix is to demonstrate that the
polarization described in Eq. (7) can be implemented by
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an experimentally viable device1,4 whose construction and
operation entail oscillations at only the two frequencies
mv and V.

Consider a circular ring of radius r, made of a dielectric
material, with an array of N electrode pairs that are
placed beside each other around its circumference (Fig.
10). With a sufficiently large value of N (to be deter-
mined below), it would be possible to generate a sinu-
soidal distribution of polarization along the length of the
dielectric by applying a voltage to each pair indepen-
dently. The distribution pattern of this polarization can
then be animated, i.e., set in motion, by energizing the
electrodes with time-varying signals. We can synthesize
a transverse polarization wave cos@m(w 2 vt)# moving
around the ring by driving each electrode pair with a
sinusoidal signal whose frequency is fixed but whose
phase depends on the position of the pair around the ring.

The frequency mv and the wavelength 2pr/m of the
traveling polarization wave, and hence its speed rv, can
be controlled at will by varying the frequency mv with
which the electrodes are driven and the phase difference
2pm/N between neighboring electrode pairs. Introduc-
ing the factor cos(Vt) of Eq. (7) simply corresponds to mix-
ing a second frequency into the signal, driving the elec-
trodes with a phase that is the same for all electrodes.

To estimate the required value of N, we note that the
(w, t) dependence of the polarization that is thus gener-
ated by the discrete set of electrodes described above has
the form

P~w, t ! 5 cos~Vt ! (
k50

N21

P~k 2 Nw/2p!

3 cos@m~vt 2 2pk/N !#, (A1)

in which P(x) denotes the rectangle function, a function
that is unity when uxu , 1

2 and zero when uxu . 1
2 . [For

any given k, the function P(k 2 Nw/2p) is nonzero only
over the interval (2k 2 1)p/N , w , (2k 1 1)p/N.]
When the electrodes operate over a time interval exceed-
ing 2p/v, the generated current is a periodic function of w
for which the range of values of w correspondingly exceeds
the period 2p.

The Fourier-series representation of the function P(k
2 Nw/2p) with the period 2p is given by

P~k 2 Nw/2p!

5 N21 1 (
n51

`

~np/2!21 sin~np/N !cos@n~w 2 2pk/N !#.

(A2)

Fig. 10. View of the experimental device (a) from the side and
(b) from above, showing an arc of the dielectric medium (lightly
shaded regions), its polarized part (darkly shaded region), and
the electrode pairs (designated by 6 where on and by 00 where
off ).
If we now insert Eq. (A2) in Eq. (A1) and use formula
(4.3.32) of Ref. 27 to rewrite the product of the two cosines
in the resulting expression as the sum of two cosines, we
obtain two infinite series, each involving a single cosine
and extending over n 5 1, 2,...,`. These two infinite se-
ries can then be combined (by replacing n in one of them
by 2n everywhere and performing the summation over
n 5 21, 22,..., 2`) to arrive at

P~w, t ! 5 cos~Vt ! (
n52`

`

~np!21 sin~np/N !

3 (
k50

N21

cos@mvt 2 nw 1 2p~n 2 m !k/N#,

(A3)

in which the order of summations with respect to n and k
has been interchanged and the contribution N21 on the
right-hand side of Eq. (A2) has been incorporated into the
n 5 0 term: The coefficient (np)21 sin(np/N) has the
value N21 when n 5 0.

The finite sum over k can be evaluated by means of the
geometric progression. The result, according to formula
(1.341.3) of Ref. 29, is

(
k50

N21

cos@mvt 2 nw 1 2p~n 2 m !k/N#

5 cos@mvt 2 nw 1 p~n 2 m !~N 2 1 !/N#

3 sin@~n 2 m !p#csc@~n 2 m !p/N#. (A4)

The right-hand side of Eq. (A4) vanishes when (n
2 m)/N is different from an integer. If n 5 m 1 lN,
where l is an integer, the above sum would have the value
N cos(mvt 2 nw), as can be seen by directly inserting
n 5 m 1 lN in the left-hand side of Eq. (A4). Perform-
ing the summation with respect to k in Eq. (A3), we there-
fore obtain

P~w, t ! 5 ~mp/N !21 sin~mp/N !cos~Vt !

3 H cos@m~w 2 vt !#

1 (
lÞ0

~21 !l~1 1 Nl/m !21

3 cos@~Nl 1 m !w 2 mvt#J , (A5)

since only those terms of the infinite series survive for
which n has the value m 1 lN with an l that ranges over
all integers from 2` to `.

We have written out the l 5 0 term of the series in Eq.
(A5) explicitly in order to bring out the following points.
The parameter N/m, which signifies the number of elec-
trodes within a wavelength of the source distribution,
need not be large for the factor (mp/N)21 sin(mp/N) to be
close to unity: This factor equals 0.9 even when N/m is
only 4. Moreover, if the traveling polarization wave
cos(mŵ) that is associated with the l 5 0 term has a
phase speed rv that is only moderately superluminal, the
phase speeds rv/u1 1 Nl/mu of the waves described by all
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the other terms in the series would be subluminal. Not
only would these other polarization waves have ampli-
tudes that are by the factor u1 1 Nl/mu21 smaller than
that of the fundamental wave associated with l 5 0, but
also they would generate electromagnetic fields whose
characteristics (e.g., the peak frequencies of their spectra)
are different from those generated by the superluminally
moving polarization wave.

The fundamental (l 5 0) component of the polarization
current that is created by the present device, therefore,
has precisely the same (w, t) dependence as that which is
described in Eq. (7) above. Neither the reduction in its
amplitude, which arises from the departure of the value
of (mp/N)21 sin(mp/N) from unity, nor the presence of
the other lower-amplitude waves that are superposed on
it, makes any difference to the fact that the creation of
this fundamental component entails only the two frequen-
cies mv and V. Linearity of the emission process en-
sures that the radiation generated by an individual term
of the series in Eq. (A5) is not in any way affected by those
that are generated by the other terms of this series.

For the distribution pattern of the created polarization
current to be moving, it is, however, essential that the
number of electrodes per wavelength of this pattern,
N/m, exceed 2. For N/m 5 2, the l 5 21 term becomes
cos@m(w 1 vt)# and so represents a wave that has the
same amplitude as, and travels with the same speed in
the opposite direction to, the wave represented by the
l 5 0 term. In this particular case, the fundamental
wave is thus turned into a standing wave.

Note, finally, that the speed of light is easily attainable:
If N 5 100 electrodes on a circle of radius r 5 1 m are
driven with the frequency mv 5 600 MHz and the phase
difference 2pm/N 5 0.125 rad, then the distribution pat-
tern of the induced polarization current will consist of
m 5 2 wavelengths of a sinusoidal wave train that moves
along the circle with the speed rv 5 3 3 108 m/s. More-
over, only an arc of such a circularly shaped device is
needed for generating the present radiation: The pulse
that is received at any given observation point arises al-
most exclusively from the limited part of the source that
approaches the observer with the speed of light and zero
acceleration at the retarded time.
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