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Generation of focused, nonspherically decaying pulses of electromagnetic radiation

H. Ardavan
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom

~Received 26 January 1998; revised manuscript received 20 July 1998!

Periodic pulses of polarized electromagnetic radiation can be generated whose intensity diminishes with the
distanceRP from their source likeRP

21 instead ofRP
22. The source required is an extended charge with a

rotating distribution pattern whose outer parts move with linear phase speeds exceeding the speed of lightin
vacuo. The coherence and beaming of the radiation in question stem from constructive interference of the
emitted waves and formation of caustics. These processes take place at different distances from the source for
different sets of waves, so that the propagating wave packets embodying the pulses are constantly dispersed
and reconstructed out of other waves.@S1063-651X~98!05211-8#

PACS number~s!: 03.40.Kf, 41.20.Jb, 42.25.2p, 97.60.Gb
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I. INTRODUCTION

Bolotovskii and Ginzburg@1# and Bolotovskii and Bykov
@2# have shown that the coordinated motion of aggregate
charged particles can give rise to extended electric cha
and currents whose distribution patterns propagate wit
phase speed exceeding the speed of lightin vacuoand that,
once created, such propagating charged patterns ac
sources of the electromagnetic fields in precisely the sa
way as any other moving sources of these fields~see also@3#
and@4#!. That these sources travel faster than light is not
course, in any way incompatible with the requirements
special relativity. The superluminally moving pattern is cr
ated by the coordinated motion of aggregates of sublu
nally moving particles.

In this paper we calculate the electromagnetic fields t
are generated by an extended source of this type in the
where the charged pattern rotates about a fixed axis wi
constant angular frequency.~The simpler case in which th
superluminal source moves rectilinearly with a constant
celeration is analyzed in an appendix.! This calculation and
its outcome shed light on a diverse set of problems.

The recently discovered solutions of the homogene
wave equation referred to,inter alia, as nondiffracting radia-
tion beams, focus wave modes, or electromagnetic miss
describe signals that propagate through space with unexp
edly slow rates of decay or spreading@5#. The potential prac-
tical significance of such signals is clearly enormous. T
search forphysically realizablesources of them, howeve
has so far remained unsuccessful@6#. Our calculation pro-
vides a concrete example of the sources that are curre
looked for in this field by establishing a physically tenab
inhomogeneoussolution of Maxwell’s equations with the
same characteristics.

Investigation of the present emission process was or
nally motivated by the observational data on pulsars@7#. The
radiation received from these celestial sources of radio wa
consists of highly coherent pulses~with as high a bright-
ness temperature as 1030 K! that recur periodically~with
stable periods of the order of 1 sec!. The intense magnetic
field (;1012 G) of the central neutron star in a pulsar affec
a coupling between the rotation of this star and that of
distribution pattern of the plasma surrounding it, so that
PRE 581063-651X/98/58~5!/6659~26!/$15.00
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magnetospheric charges and currents in these objects a
the same type as those described above@8,9#. The effect
responsible for the extreme degree of coherence of the
served emission from pulsars, therefore, may well be
violation of the inverse square law that is here predicted
our calculation. The present analysis is relevant also to
mathematically similar problem of the generation of acous
radiation by supersonic propellers and helicopter rot
@10,11#.

We begin, in Sec. II, by considering the waves that a
emitted by an element of the superluminally rotating sou
from the standpoint of geometrical optics. Next we calcul
the amplitudes of these waves, i.e., the Green’s function
the problem, from the retarded potential~Sec. III!. In Sec. IV
we introduce the notion of and specify the bifurcation s
face: the locus of source points that approach the obse
along the radiation direction with the wave speed at the
tarded time. Section V is then devoted to handling the s
gularities of the integrands of the radiation integrals that
cur on the bifurcation surface: The electric and magne
fields are given by the Hadamard finite parts of the diverg
integrals that result from differentiating the retarded poten
under the integral sign. In Sec. VI we give a descripti
account of the analyzed emission process in more phys
terms.

There are also four appendixes: Appendix A, in which t
asymptotic values of the Green’s functions associated w
various components of the fields are calculated; Appendix
whose task is to point out that singularities would occur
respective of which alternative form of the retarded poten
we adopt; Appendix C, which is included to show that t
time interval during which the contributions from a sour
element on the bifurcation surface are made is by many
ders of magnitude longer than that in which these contri
tions are received; and Appendix D, which is concerned w
rectilinearly moving accelerated sources with superlumi
velocities. It emerges from the analysis in Appendix D th
constructive interference of the emitted waves and forma
of caustics occur, in the case of a short-lived source, o
long after the waves have emanated from the source and
only for a finite period. During this period, the intensity o
the propagating caustic that is generated by the rectiline
moving source in question decays only likeRP

22/3.
6659 © 1998 The American Physical Society
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II. ENVELOPE OF THE WAVE FRONTS AND ITS CUSP

Consider a point source~an element of the propagatin
distribution pattern of a volume source! that moves on a
circle of radiusr with the constant angular velocityvêz , i.e.,
whose pathx(t) is given in terms of the cylindrical pola
coordinates (r ,w,z), by

r 5const, z5const, w5ŵ1vt, ~1!

whereêz is the basis vector associated withz andŵ the initial
value of w. The wave fronts that are emitted by this poi
source in an empty and unbounded space are described

uxP2x~ t !u5c~ tP2t !, ~2!

where the constantc denotes the wave speed and the co
dinates (xP ,tP)5(r P ,wP ,zP ,tP) mark the space-time of ob
servation points. The distanceR between the observatio
point xP and a source pointx is given by

uxP2xu[R~w!5@~zP2z!21r P
2 1r 222r Pr cos~wP2w!#1/2,

~3!

so that inserting Eq.~1! in Eq. ~2! we obtain

R~ t ![@~zP2z!21r P
2 1r 222r Pr cos~wP2ŵ2vt !#1/2

5c~ tP2t !. ~4!

These wave fronts are expanding spheres of radiic(tP2t)
whose fixed centers~r P5r , wP5ŵ1vt, andzP5z! depend
on their emission timest ~see Fig. 1!.

Introducing the natural length scale of the problemc/v
and usingt5(w2ŵ)/v to eliminatet in favor of w, we can
express Eq.~4! in terms of dimensionless variables as

g[w2wP1R̂~w!5f, ~5!

in which R̂[Rv/c and

FIG. 1. Envelope of the spherical wave fronts emanating from
superluminally moving source point~S! in a circular motion. The
heavier curves show the cross section of the envelope with
plane of the orbit of the source. The larger of the two dotted circ
designates the orbit~at r 53c/v! and the smaller the light cylinde
(r P5c/v).
y

-

f[ŵ2ŵP ~6!

stands for the difference between the positionsŵ5w2vt of
the source point andŵP[wP2vtP of the observation point
in the (r ,ŵ,z) space. The Lagrangian coordinateŵ in Eq. ~5!
lies within an interval of length 2p ~e.g.,2p,ŵ<p!, while
the anglew, which denotes the azimuthal position of th
source point at the retarded timet, ranges over~2`, `!.

Figure 1 depicts the wave fronts described by Eq.~5! for
fixed values of (r ,ŵ,z) and f ~or tP! and a discrete set o
values ofw ~or t!. These wave fronts possess an envelo
because whenr .c/v and so the speed of the source excee
the wave speed, several wave fronts with differing emiss
times can pass through a single observation point simu
neously. Stated mathematically, for certain values of the
ordinates (r P ,ŵP ,zP ;r ,z) the functiong(w) shown in Fig. 2
is oscillatory and so can equalf at more than one value o
the retarded positionw: A horizontal linef5const intersects
curve~a! in Fig. 2 at either one or three points. Wave fron
become tangential to one another and so form an envelop
those points (r P ,ŵP ,zP) for which two roots ofg(w)5f
coincide. The equation describing this envelope can the
fore be obtained by eliminatingw between g5f and
]g/]w50.

Thus the values ofw on the envelope of the wave front
are given by

]g/]w512 r̂ r̂ Psin~wP2w!/R̂~w!50. ~7!

a

e
s

FIG. 2. Curve representingg(w) versusw for wP50, r̂ P53, r̂
52, and~a! ẑ5 ẑP , inside the bifurcation surface~the envelope!,
~b! ẑ5 ẑc , on the cusp curve of the bifurcation surface~the enve-
lope!, and~c! ẑ52ẑc2 ẑP , outside the bifurcation surface~the en-
velope!. The marked adjacent turning points of curve~a! have the
coordinates (w6 ,f6) and wout represents the solution ofg(w)
5f0 for a f0 that tends tof2 from below.
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When the curve representingg(w) is as in Fig. 2, curve~a!
~i.e., r̂ .1 andD.0!, this equation has the doubly infinit
set of solutionsw5w612np, where

w65wP12p2arccos@~17D1/2!/~ r̂ r̂ P!#, ~8!

D[~ r̂ P
2 21!~ r̂ 221!2~ ẑ2 ẑP!2, ~9!

n is an integer, and (r̂ ,ẑ; r̂ P ,ẑP) stand for the dimensionles
coordinatesrv/c, zv/c, r Pv/c, and zPv/c, respectively.
The function g(w) is locally maximum atw112np and
minimum atw212np.

Insertingw5w6 in Eq. ~5! and solving the resulting equa
tion for f as a function of (r̂ P ,ẑP), we find that the envelope
of the wave fronts is composed of two sheets

f5f6[g~w6!52p2arccos@~17D1/2!/~ r̂ r̂ P!#1R̂6 ,
~10!

in which

R̂6[@~ ẑ2 ẑP!21 r̂ 21 r̂ P
2 22~17D1/2!#1/2 ~11!

are the values ofR̂ at w5w6 . For a fixed source poin
(r ,ŵ,z), Eq.~10! describes a tubelike spiraling surface in t
(r P ,ŵP ,zP) space of observation points that extends fro
the speed-of-light cylinderr̂ P51 to infinity ~see Figs. 1 and
3!.

The two sheetsf5f6 of this envelope meet at a cus
The cusp occurs along the curve

f52p2arccos@1/~ r̂ r̂ P!#1~ r̂ P
2 r̂ 221!1/2[fc , ~12a!

ẑ5 ẑP6~ r̂ P
2 21!1/2~ r̂ 221!1/2[ ẑc , ~12b!

shown in Fig. 4, and constitutes the locus of points at wh
threedifferent wave fronts intersect tangentially. On the cu

FIG. 3. Three-dimensional view of the light cylinder and t
envelope of the wave fronts for the same source point~S! as that in
Fig. 1 ~only those parts of these surfaces that lie within the cy
drical volume r̂ P<9, 22.25< ẑP2 ẑ<2.25 are shown!. The two-
sheeted tubelike surface constituting the envelope is symmetric
respect to the plane of the orbit and the cusp along which its sh
f5f6(r P ,zP) meet is tangential to the light cylinder. For fast
moving source points, the two sheets of the envelope intersect
another, as in Fig. 5.
h
p

curve f5fc , z5zc , the functiong(w) has a point of in-
flection @Fig. 2, curve~b!# and ]2g/]w2, as well as]g/]w
andg, vanishes at

w5wP12p2arccos@1/~ r̂ r̂ P!#[wc . ~12c!

This, in conjunction witht5(w2ŵ)/v, represents the com
mon emission time of the three wave fronts that are mutu
tangential at the cusp curve of the envelope.

In the highly superluminal regime, wherer̂ @1, the sepa-
ration of the ordinatesf1 andf2 of adjacent maxima and
minima in Fig. 2, curve~a!, can be greater than 2p. A hori-
zontal linef5const will then intersect the curve represen
ing g(w) at more than three points and so give rise to sim
taneously received contributions that are made at 5, 7
distinct values of the retarded time. In such cases, the s
f2 of the envelope~issuing from the conical apex of thi
surface! undergoes a number of intersections with the sh
f1 before reaching the cusp curve~as in Fig. 5!. We shall be
concerned in this paper, however, mainly with source e
ments whose distances from the rotation axis do not ap
ciably exceed the radiusc/v of the speed-of-light cylinder
and so for which the equationg(w)5f has at most three
solutions.

-

ith
ts

ne

FIG. 4. Segment215< ẑP2 ẑ<15 of the cusp curve of the en
velope shown in Fig. 3. This curve touches, and is tangential to,
light cylinder at the point~r̂ P51, ẑP5 ẑ f5fcu r̂ P51) on the plane
of the orbit.
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At points of tangency of their fronts, the waves that inte
fere constructively to form the envelope propagate norma
the sheetsf5f6(r P ,zP) of this surface, in the directions

n̂6[~c/v!“P~f62f!5êr P
@ r̂ P2 r̂ P

21~17D1/2!#/R̂6

1êwP
/ r̂ P1êzP

~ ẑP2 ẑ!/R̂6 , ~13!

with the speedc. ~êr P
, êwP

, and êzP
are the unit vectors

associated with the cylindrical coordinatesr P , wP , andzP
of the observation point, respectively.! Nevertheless, the re
sulting envelope is a rigidly rotating surface whose sha
does not change with time: In the (r P ,ŵP ,zP) space, its
conical apex is stationary at (r ,ŵ,z) and its form and dimen-
sions only depend on the constant parameterr̂ .

The set of waves that superpose coherently to form a
ticular section of the envelope or its cusp therefore canno
the same~i.e., cannot have the same emission times! at dif-
ferent observation times. The packet of focused waves c
stituting any given segment of the cusp curve of the en
lope, for instance, is constantly dispersed and reconstru
out of other waves. This one-dimensional caustic would
be unlimited in its extent as shown in Fig. 4, unless
source is infinitely long lived: Only then would the duratio
of the source encompass the required intervals of emis
time for every one of its constituent segments~cf. the similar
caustic encountered in Appendix D!.

III. AMPLITUDES OF THE WAVES GENERATED
BY A POINT SOURCE

Our discussion has been restricted so far to the geom
cal features of the emitted wave fronts. In this section

FIG. 5. Light cylinder and the bifurcation surface associa
with the observation pointP for a counterclockwise source motion
In this figure,P is located atr̂ P59 and only those parts of thes
surfaces that lie within the cylindrical volumer̂<11, 21.5< ẑ
2 ẑP<1.5 are shown. The two sheetsf5f6(r ,z) of the bifurca-
tion surface meet along a cusp~a curve of the same shape as th
shown in Fig. 4! that is tangential to the light cylinder. For a
observation point in the far zone (r̂ P@1), the spiraling surface tha
issues fromP undergoes a large number of turns, in which its tw
sheets intersect one another, before reaching the light cylinder
-
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proceed to find the Lienard-Wiechert potential for the
waves.

The scalar potential arising from an element of the mo
ing volume source we have been considering is given by
retarded solution of the wave equation

¹82G02]2G0 /]~ct8!2524pr0 , ~14a!

in which

r0~r 8,w8,z8,t8!5d~r 82r !d~w82vt82ŵ !d~z82z!/r 8
~14b!

is the density of a point source of unit strength with t
trajectory ~1!. In the absence of boundaries, therefore, t
potential has the value

G0~xP ,tP!5E d3x8dt8r0~x8,t8!

3d~ tP2t82uxP2x8u/c!/uxP2x8u ~15a!

5E
2`

1`

dt8d„tP2t82R~ t8!/c…/R~ t8!,

~15b!

where R(t8) is the function defined in Eq.~4! ~see, e.g.,
@12#!.

If we use Eq.~1! to change the integration variablet8 in
Eq. ~15b! to w and express the resulting integrand in terms
the quantities introduced in Eqs.~3!, ~5!, and~6!, we arrive at

G0~r ,r P ,ŵ2ŵP ,z2zP!5E
2`

1`

dw d„g~w!2f…/R~w!.

~16!

This can then be rewritten, by formally evaluating the in
gral, as

G05 (
w5w j

1

Ru]g/]wu
, ~17!

where the anglesw j are the solutions of the transcenden
equationg(w)5f in 2`,w,1` and correspond, in con
junction with Eq. ~1!, to the retarded times at which th
source point (r ,ŵ,z) makes its contribution towards th
value ofG0 at the observation point (r P ,ŵP ,zP).

Equation~17! shows, in the light of Fig. 2, that the poten
tial G0 of a point source is discontinuous on the envelope
the wave fronts: If we approach the envelope from outsi
the sum in Eq.~17! has only a single term and yields a fini
value for G0 , but if we approach this surface from insid
two of thef j ’s coalesce at an extremum ofg and Eq.~17!
yields a divergent value forG0 . Approaching the sheetf
5f1 or f2 of the envelope from inside this surface corr
sponds, in Fig. 2, to raising or lowering a horizontal linef
5f05const, with f2<f0<f1 , until it intersects curve
~a! of this figure at its maximum or minimum tangentially
At an observation point thus approached, the sum in Eq.~17!
has three terms, two of which tend to infinity.

On the other hand, approaching a neighboring observa
point just outside the sheetf5f2 ~say! of the envelope
corresponds, in Fig. 2, to raising a horizontal linef5f0

d

t
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5const, withf0<f2 , towards a limiting position in which
it tends to touch curve~a! at its minimum. As long as it has
not yet reached the limit, such a line intersects curve~a! at
one point only. The equationg(w)5f therefore has only a
single solutionw5wout in this case, which is different from
bothw1 andw2 and so at which]g/]w is nonzero~see Fig.
2!. The contribution that the source makes when locate
w5wout is received by both observers, but the constructiv
interfering waves that are emitted at the two retarded p
tions approachingw2 only reach the observer inside the e
velope.

The functionG0 has an even stronger singularity at t
cusp curve of the envelope. On this curve, all three of
w j ’s coalesce@Fig. 2, curve~b!# and each denominator in th
expression in Eq.~17! both vanishes and has a vanishi
derivative (]g/]w5]2g/]w250).

There is a standard asymptotic technique for evalua
radiation integrals with coalescing critical points that d
scribe caustics@13–15#. By applying this technique, which
we have outlined in Appendix A, to the integral in Eq.~16!,
we can obtain a uniform asymptotic approximation toG0 for
small uf12f2u, i.e., for points close to the cusp curve
the envelope whereG0 is most singular. The result is

G0
in;2c1

22~12x2!21/2@p0cos~ 1
3 arcsinx!

2c1q0sin~ 2
3 arcsinx!#, uxu,1, ~18!

and

G0
out;c1

22~x221!21/2@p0sinh~ 1
3 arccoshuxu!

1c1q0sgn~x!sinh~ 2
3 arccoshuxu!#, uxu.1,

~19!

wherec1 , p0 , q0 , andx are the functions of~r,z! defined in
Eqs.~A2!, ~A5!, ~A6!, and~A10! and approximated in Eqs
~A23!–~A30!. The superscripts ‘‘in’’ and ‘‘out’’ designate
the values ofG0 inside and outside the envelope and t
variablex equals11 and21 on the sheetsf5f1 andf2

of this surface, respectively.
The functionG0

out is indeterminate but finite on the enve
lope @cf. Eq. ~A39!#, whereasG0

in diverges like)c1
22(p0

7c1q0)/(12x2)1/2 as x→61. The singularity structure o
G0

in close to the cusp curve is explicitly exhibited by

G0
in;

2

31/6 ~v/c!~ r̂ 2r̂ P
2 21!21/2c0

1/2~ ẑc2 ẑ!1/2/@c0
3~ ẑc2 ẑ!3

2~fc2f!2#1/2, ~20!

in which 0< ẑc2 ẑ!1, ufc2fu!1, and

c0[
2

32/3 ~ r̂ 2r̂ P
2 21!21~ r̂ P

2 21!1/2~ r̂ 221!1/2 ~21!

@see Eqs.~18! and~A22!–~A26!#. It can be seen from expres
sion ~20! that both the singularity on the envelope~at which
the quantity inside the square brackets vanishes! and the sin-
gularity at the cusp curve~at whichẑc2 ẑ andfc2f vanish!
are integrable singularities.
at
y
i-

e

g
-

The potential of a volume source, which is given by t
superposition of the potentialsG0 of its constituent volume
elements and so involves integrations with respect
(r ,ŵ,z), is therefore finite. Since they are created by t
coordinated motion of aggregates of particles, the types
sources we have been considering cannot, of course
pointlike @1,2#. It is only in the physically unrealizable cas
where a superluminal source is pointlike that its potential
the extended singularities described above.

In fact, not only is the potential of an extended super
minally moving source singularity free, but it decays in t
far zone like the potential of any other source. The alter
tive form of the retarded solution to the wave equati
¹2A02]2A0 /](ct)2524pr @which may be obtained from
~15a! by performing the integration with respect to time#,

A05E d3x r~x,tP2ux2xPu/c!/ux2xPu, ~22!

shows that if the densityr of the source is finite and vanishe
outside a finite volume, then the potentialA0 decays like
uxPu21 as the distanceuxP2xu.uxPu of the observer from the
source tends to infinity.

IV. THE BIFURCATION SURFACE OF AN OBSERVER

Let us now consider anextendedsource that rotates abou
thez axis with the constant angular frequencyv. The density
of such a source, when it has a distribution with an uncha
ing pattern, is given by

r~r ,w,z,t !5r~r ,ŵ,z!, ~23!

where the Lagrangian variableŵ is defined byw2vt as in
Eq. ~1! and r can be any function of (r ,ŵ,z) that vanishes
outside a finite volume.

If we insert this density in the expression for the retard
scalar potential@12# and change the variables of integratio
from (r ,w,z,t) to (r ,ŵ,z,t), we obtain

A0~xP ,tP!5E d3x dt r~x,t !d~ tP2t2ux2xPu/c!/ux2xPu

~24a!

5E r dr dŵ dz r~r ,ŵ,z!

3G0~r ,r P ,ŵ2ŵP ,z2zP!, ~24b!

whereG0 is the function defined in Eq.~16! that represents
the scalar potential of a corresponding point source. That
potential of the extended source in question is given by
superposition of the potentials of the moving source poi
that constitute it is an advantage that is gained by mark
the space of source points with the natural coordina
(r ,ŵ,z) of the source distribution. This advantage is lost
we use any other coordinates~cf. Appendix B!.

In Sec. III, where the source was pointlike, the coor
nates (r ,ŵ,z) of the source point inG0(r ,r P ,ŵ2ŵP ,z
2zP) were held fixed and we were concerned with the b
havior of this potential as a function of the coordinat
(r P ,ŵP ,zP) of the observation point. When we superpo
the potentials of the volume elements that constitute an
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6664 PRE 58H. ARDAVAN
tended source, on the other hand, the coordina
(r P ,ŵP ,zP) are held fixed and we are primarily concern
with the behavior ofG0 as a function of the integration var
ables (r ,ŵ,z).

BecauseG0 is invariant under the interchange of (r ,ŵ,z)
and (r P ,ŵP ,zP) if f is at the same time changed to2f @see
Eqs.~5! and~16!#, the singularity ofG0 occurs on a surface
in the (r ,ŵ,z) space of source points that has the same sh
as the envelope shown in Fig. 3 but issues from the fi
point (r P ,ŵP ,zP) and spirals around thez axis in the oppo-
site direction to the envelope~see Fig. 5!. In this paper we
refer to this locus of singularities ofG0 as thebifurcation
surfaceof the observation pointP.

Consider an observation pointP for which the bifurcation
surface intersects the source distribution, as in Fig. 6.
envelope of the wave fronts emanating from a volume e
ment of the part of the source that lies within this bifurcati
surface encloses the pointP, butP is exterior to the envelope
associated with a source element that lies outside the b
cation surface.

We have seen that three wave fronts, propagating in
ferent directions, simultaneously pass an observer who is
cated inside the envelope of the waves emanating fro
point source and only one wave front passes an obse
outside this surface. Hence, in contrast to the source
ments outside the bifurcation surface that influence the
tential atP at only a single value of the retarded time, th
potential receives contributions from each of the eleme
inside the bifurcation surface atthree distinct values of the
retarded time.

FIG. 6. Full curves depict the cross section, with the cylind
r̂ 51.5, of the bifurcation surface of an observer located atr̂ P53.
~The motion of the source is counterclockwise.! The projection of
the cusp curve of this bifurcation surface onto the cylinderr̂ 51.5 is
shown as a dotted curve and the region occupied by the source
dotted area. In this figure the observer’s position is such that on
the points ~f5fc , z5zc! at which the cusp curve in questio
intersects the cylinderr̂ 51.5, the one withzc.0, is located within
the source distribution. As the radial positionr P of the observation
point tends to infinity, the separation, at a finite distancezc2z from
(fc ,zc), of the shown cross sections decreases liker P

23/2.
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The elements inside but adjacent to the bifurcation s
face, for whichG0 diverges, are sources of the constructive
interfering waves that not only arrive atP simultaneously but
also are emitted at the same~retarded! time. These source
elements approach the observer along the radiation direc
xP2x with the wave speed at the retarded time, i.e.,
located at distancesR(t) from the observer for which

dR

dt U
t5tP2R/c

52c ~25!

@see Eqs.~4!, ~7!, and~8!#. Their accelerations at the retarde
time,

d2R

dt2
U

t5tP2R/c

57
cvD1/2

R̂6

, ~26!

are positive on the sheetf5f2 of the bifurcation surface
and negative onf5f1 .

The source points on thecusp curveof the bifurcation
surface, for whichD50 and all three of the contributing
retarded times coincide, approach the observer, accordin
Eq. ~26!, with zero acceleration as well as with the wa
speed.

From a radiative point of view, the most effective volum
elements of the superluminal source in question are th
that approach the observer along the radiation direction w
the wave speed and zero acceleration at the retarded
since the ratio of the emission to reception time intervals
the waves that are generated by these particular source
ments generally exceeds unity by several orders of ma
tude ~see Appendix C!. On each constituent ring of th
source distribution that lies outside the light cylinderr
5c/v) in a plane of rotation containing the observatio
point there are two volume elements that approach the
server with the wave speed at the retarded time: one wh
distance from the observer diminishes with positive accele
tion and another for which this acceleration is negati
These two elements are closer to one another the smalle
radius of the ring. For the smallest of such constituent rin
i.e., for the one that lies on the light cylinder, the two volum
elements in question coincide and approach the observer
with zero acceleration.

The other constituent rings of the source distributi
~those on the planes of rotation that do not pass through
observation point! likewise contain two such elements
their radii are large enough for their velocityrvew to have a
component along the radiation direction equal toc. On the
smallest possible ring in each plane, there is again a sin
volume element, at the limiting position of the two coales
ing volume elements of the neighboring larger rings, th
moves towards the observer not only with the wave sp
but also with zero acceleration.

For any given observation pointP, the efficiently radiat-
ing pairs of volume elements on various constituent rings
the source distribution collectively form a surface: the part
the bifurcation surface associated withP that intersects the
source distribution. The locus of the coincident pairs of v
ume elements, which is tangential to the light cylinder at
point where it crosses the plane of rotation containing

r
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observer, constitutes the segment of the cusp curve of
bifurcation surface that lies within the source distribution

Thus the bifurcation surface associated with any giv
observation point divides the volume of the source into t
sets of elements with differing influences on the obser
field. As in Eqs.~18! and~19!, the potentialsG0

in andG0
out of

the source elements inside and outside the bifurcation
face have different forms: The boundaryux(r ,r P ,ŵ2ŵP ,z
2zP)u51 between the domains of validity of Eqs.~18! and
~19! delineates the envelope of wave fronts when the sou
point (r ,ŵ,z) is fixed and the coordinates (r P ,ŵP ,zP) of the
observation point are variable and describes the bifurca
surface when the observation point (r P ,ŵP ,zP) is fixed and
the coordinates (r ,ŵ,z) of the source point sweep a volum

The expression~24b! for the scalar potential correspond
ingly splits into the following two terms when the observ
tion point is such that the bifurcation surface intersects
source distribution:

A05E dV rG0 ~27a!

5E
Vin

dV rG0
in1E

Vout

dV rG0
out, ~27b!

wheredV[r dr dŵ dz, Vin andVout designate the portion
of the source that fall inside and outside the bifurcation s
face ~see Fig. 6!, andG0

in and G0
out denote the different ex

pressions forG0 in these two regions. Note that the boun
aries of the volumeVin depend on the position (r P ,ŵP ,zP)
of the observer: The parameterr̂ P fixes the shape and size o
the bifurcation surface and the position (r P ,ŵP ,zP) of the
observer specifies the location of the conical apex of
surface. When the observation point is such that the c
curve of the bifurcation surface intersects the source dis
bution, the volumeVin is bounded byf5f2 , f5f1 , and
the part of the source boundaryr(r ,ŵ,z)50 that falls within
the bifurcation surface. The corresponding volumeVout is
bounded by the same patches of the two sheets of the b
cation surface and by the remainder of the source bound

In the vicinity of the cusp curve~12!, i.e., for ufc2fu
!1 and 0< ẑc2 ẑ!1, the cross section of the bifurcatio
surface with a cylinderr̂ 5const is described by

f62fc.2~ r̂ 221!1/2~ r̂ P
2 21!1/2~ r̂ 2r̂ P

2 21!21/2~ ẑc2 ẑ!

6
23/2

3
~ r̂ 221!3/4~ r̂ P

2 21!3/4

3~ r̂ P
2 r̂ 221!23/2~ ẑc2 ẑ!3/2 ~28!

@see Eqs.~10!–~12! and~A26!#. This cross section, which i
shown in Fig. 6, has two branches meeting at the inters
tions of the cusp curve with the cylinderr̂ 5const whose
separation inf, at a givenẑc2 ẑ, diminishes liker̂ P

23/2 in the
limit r̂ P→`. Thus, at finite distancesẑc2 ẑ from the cusp
curve, the two sheetsf5f2 andf1 of the bifurcation sur-
face coalesce and become coincident with the surfacf
5 1

2 (f21f1)[c2 as r̂ P→`, that is to say, the volumeVin

vanishes liker̂ P
23/2.
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Because the dominant contributions towards the value
the radiation field come from those source elements that
proach the observer, along the radiation direction, with
wave speed and zero acceleration at the retarded time
what follows we shall be primarily interested in far-field o
servers, the cusp curves of whose bifurcation surfaces in
sect the source distribution. For such observers, the Gre
function limr̂ P→`

G0 undergoes a jump discontinuity acro
the coalescing sheets of the bifurcation surface: The va
of x on the sheetsf5f6 , and hence the function
G0

outuf5f2
andG0

outuf5f1
, remain different even in the limit

wheref5f2 andf1 coincide@cf. Eqs.~A10! and ~A39!#.

V. DERIVATIVES OF THE RADIATION INTEGRALS
AND THEIR HADAMARD FINITE PARTS

A. Gradient of the scalar potential

In this section we begin the calculation of the electric a
magnetic fields by finding the gradient of the scalar poten
A0 , i.e., by calculating the derivatives of the integral in E
~27a! with respect to the coordinates (r P ,wP ,zP) of the ob-
servation point. If we regard its singular kernelG0 as a clas-
sical function, then the integral in Eq.~27a! is improper and
cannot be differentiated under the integral sign without ch
acterizing and duly handling the singularities of its integran
On the other hand, if we regardG0 as a generalized function
then it would be mathematically permissible to interchan
the orders of differentiation and integration when calculat
“PA0 .

This interchange results in a new kernel“PG0 whose
singularities are nonintegrable. However, the theory of g
eralized functions prescribes a well-defined procedure
obtaining the physically relevant value of the resulting div
gent integral, a procedure involving integration by parts t
extracts the so-called Hadamard finite part of this integ
@16#. Hadamard’s finite part of the divergent integral repr
senting“PA0 yields the value that we would have obtaine
if we had first evaluated the original integral forA0 as an
explicit function of (r P ,ŵP ,zP) and then differentiated it.

From the standpoint of the theory of generalized fun
tions, therefore, differentiation of Eq.~27a! yields

“PA05E dV r“PG05~“PA0! in1~“PA0!out,

~29a!

in which

~“PA0! in,out[E
Vin,out

dV r“PG0
in,out. ~29b!

Sincer vanishes outside a finite volume, the integral in E
~27a! extends over all values of (r ,ŵ,z) and so there is no
contribution from the limits of integration towards the d
rivative of this integral.

The kernels“PG0
in,out of the above integrals may be ob

tained from Eq.~16!. Applying “P to the right-hand side of
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Eq. ~16! and interchanging the orders of differentiation a
integration, we obtain an integral representation of“PG0
consisting of two terms: one arising from the differentiati
of R that decays liker P

22 asr P→` and so makes no contri
bution to the field in the radiation zone and another t
arises from the differentiation of the Diracd function and
decays less rapidly thanr P

22. For an observation point in th
radiation zone, we may discard terms of the order ofr P

22 and
write

“PG0.~v/c!E
2`

1`

dw R21d8~g2f!n̂, r̂ P@1, ~30!

in which d8 is the derivative of the Dirac delta function wit
respect to its argument and

n̂[êr P
@ r̂ P2 r̂ cos~w2wP!#/R̂1êwP

/ r̂ P1êzP
~ ẑP2 ẑ!/R̂.

~31!

Equation~30! yields“PG0
in or “PG0

out depending on whethe
f lies within the interval (f2 ,f1) or outside it. If we now
insert Eq.~30! in Eq. ~29b! and perform the integrations wit
respect toŵ by parts, we find that

~“PA0! in.~v/c!E
S
r dr dzH 2@rG1

in#f5f2

f5f1

1E
f2

f1

df ]r/]ŵ G1
inJ , r̂ P@1, ~32!

and

~“PA0!out.~v/c!E
S

r dr dzH @rG1
out#f5f2

f5f1

1S E
2p

f2

1E
f1

1p D df ]r/]ŵ G1
outJ , r̂ P@1,

~33!

in which S stands for the projection ofVin onto the (r ,z)
plane andG1

in andG1
out are given by the values of

G1[E
2`

1`

dw R21d~g2f!n̂5 (
w5w j

R21u]g/]wu21n̂

~34!

for f inside and outside the interval (f2 ,f1), respectively.
Like G0

in , the Green’s functionG1
in diverges on the bifur-

cation surfacef5f6 , where]g/]w vanishes, but this sin
gularity of G0

in is integrable so that the value of the seco
integral in Eq.~32! is finite ~see Sec. III and Appendix A!.
Hadamard’s finite part of (“PA0) in ~denoted by the prefixF!
is obtained by simply discarding those ‘‘integrated’’
boundary terms in Eq.~32! that diverge~see@16#!. Hence the
physically relevant quantityF$(“PA0) in% consists, in the far
zone, of the volume integral in Eq.~32!.
t

Let us choose an observation point for which the cu
curve of the bifurcation surface intersects the source dis
bution~see Fig. 6!. When the dimensions (;L) of the source
are negligibly smaller than those of the bifurcation surfa
~i.e., whenL!r P and sozc2z!r P throughout the source
distribution! the functionsG1

in,out in Eqs.~32! and~33! can be
approximated by their asymptotic values~A34! and~A35! in
the vicinity of the cusp curve~see Appendix A!.

According to Eqs.~A34!, ~A36!, and ~A44!, G1
in decays

like p1 /c1
25O(1) at points interior to the bifurcation surfac

where limRP→`x remains finite. Since the separation of th

two sheets of the bifurcation surface diminishes liker̂ P
23/2

within the source@see Eq.~28!#, it therefore follows that the
volume integral in Eq.~32! is of the order ofr̂ P

23/2, a result
that can also be inferred from the far-field version of E
~A34! by explicit integration. Hence

F$~“PA0! in%5O~ r̂ P
23/2!, r̂ P@1, ~35!

decays too rapidly to make any contribution towards
value of the electric field in the radiation zone.

BecauseG1
out is, in contrast toG1

in , finite on the bifurca-
tion surface, both the surface and the volume integrals on
right-hand side of Eq.~33! have finite values. Each compo
nent of the second term has the same structure as the ex
sion for the potential itself and so decays liker P

21 ~see the
ultimate paragraph of Sec. III!. However, the first term,
which would have canceled the corresponding bound
term in Eq.~32! and so would not have survived in the e
pression for“PA0 had the Green’s functionG1 been con-
tinuous, behaves differently from any conventional contrib
tion to a radiation field.

Insertion of Eq.~A39! in Eq. ~33! yields the following
expression for the asymptotic value of this boundary term
the limit where the observer is located in the far zone and
source is localized about the cusp curve of his or her bif
cation surface:

E r dr dz@rG1
out#f2

f1; 1
3 c1

22E r dr dz@p1~ruf1
2ruf2

!

12c1q1~ruf1
1ruf2

!#. ~36!

In this limit, the two sheets of the bifurcation surface a
essentially coincident throughout the domain of integrat
in Eq. ~36! @see Eq.~28!#. So the difference between th
values of the source density on these two sheets of the b
cation surface is negligibly small (; r̂ P

23/2) for a smoothly
distributed source and the functionsruf6

appearing in the
integrand of Eq.~36! may correspondingly be approximate
by their common limiting valuerBS(r ,z) on these coalescing
sheets.

Once the functionsruf6
are approximated byrBS(r ,z)

andq1 by Eq. ~A41!, Eq. ~36! yields an expression that ca
be written, to within the leading order in the far-field a
proximation r̂ P@1 @see Eqs.~A44! and ~A45!#, as
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E
S
r dr dz@rG1

out#f2

f1

;23/2~c/v!2r̂ P
23/2E

r̂,

r̂.
dr̂~ r̂ 221!21/4n1

3E
ẑc2Lẑv/c

ẑc
dẑ~ ẑc2 ẑ!21/2rBS~r ,z!

;25/2~c/v!2r̂ P
23/2E

r̂,

r̂.
dr̂~ r̂ 221!21/4n1~Lẑv/c!1/2^rBS&,

~37!

with

^rBS&~r ![E
0

1

dh rBS~r ,z!uz5zc2h2Lẑ
, ~38!

where zc2Lẑ(r )<z<zc and r ,<r<r . are the intervals
over which the bifurcation surface intersects the source
tribution ~see Fig. 6!. The quantity^rBS&(r ) may be inter-
preted, at any givenr, as a weighted average, over the inte
section of the coalescing sheets of the bifurcation surf
with the planez5zc2h2Lẑ , of the source densityr.

The right-hand side of Eq.~37! decays liker P
23/2 as r P

→`. The second term in Eq.~33! thus dominates the firs
term in this equation and so the quantity (“PA0)out itself
decays liker P

21 in the far zone.

B. Time derivative of the vector potential

Inasmuch as the charge density~23! has an unchanging
distribution pattern in the (r ,ŵ,z) frame, the electric curren
density associated with the moving source we have b
considering is given by

j ~x,t !5rvr~r ,ŵ,z!êw , ~39!

in which rvêw5rv@2sin(w2wP)êr P
1cos(w2wP)êwP

# is the
velocity of the element of the source pattern that is locate
(r ,w,z). This current satisfies the continuity equatio
]r/](ct)1“• j50 automatically.

In the Lorentz gauge, the retarded vector potential co
sponding to Eq.~24a! has the form@12#

A~xP ,tP!5c21E d3x dt j ~x,t !

3d~ tP2t2ux2xPu/c!/ux2xPu. ~40!

If we insert Eq.~39! in Eq. ~40! and change the variables o
integration from (r ,w,z,t) to (r ,w,z,ŵ), as in Eq.~24!, we
obtain

A5E dV r̂r~r ,ŵ,z!G2~r ,r P ,ŵ2ŵP ,z2zP!, ~41!

in which dV5r dr dŵ dz, the vectorG2 , which plays the
role of a Green’s function, is given by
s-

-
e

n

at

-

G2[E
2`

1`

dw êwd„g~w!2f…/R~w!

5 (
w5w j

R21u]g/]wu21êw , ~42!

andg andw j ’s are the same quantities as those appearin
Eq. ~17! ~see also Fig. 2!.

Because Eqs.~17!, ~34!, and ~42! have the factor
u]g/]wu21 in common, the functionG2 has the same singu
larity structure as those ofG0 and G1 : It diverges on the
bifurcation surface]g/]w50 if this surface is approache
from inside and it is most singular on the cusp curve of
bifurcation surface where in addition]2g/]w250. It is,
moreover, described by two different expressionsG2

in and
G2

out inside and outside the bifurcation surface who
asymptotic values in the neighborhood of the cusp cu
have exactly the same functional forms as those found
Eqs.~18! and ~19!, the only difference being thatp0 andq0
in these expressions are replaced by thep2 andq2 given in
Eq. ~A37! ~see Appendix A!.

As in Eq.~29!, therefore, the time derivative of the vecto
potential has the form]A/]tP5(]A/]tP) in1(]A/]tP)out,
with

~]A/]tP! in,out[2vE
Vin,out

dV r̂r]G2
in,out/]ŵP , ~43!

when the observation point is such that the bifurcation s
face intersects the source distribution.

The functionsG2
in,out depend onŵP and ŵ in the combi-

nation ŵ2ŵP only. We can therefore replace]/]ŵP in Eq.
~43! by 2]/]ŵ and perform the integration with respect toŵ
by parts to arrive at

~]A/]tP! in5cE
S

dr dz r̂2H @rG2
in#f5f2

f5f1

2E
f2

f1

df ]r/]ŵ G2
inJ ~44!

and

~]A/]tP!out52cE
S

dr dz r̂2H @rG2
out#f5f2

f5f1

1S E
2p

f2

1E
f1

1p D df ]r/]ŵ G2
outJ . ~45!

For the same reasons as those given in the paragraphs
lowing Eqs. ~32! and ~33!, Hadamard’s finite part of
(]A/]tP) in consists of the volume integral in Eq.~44! and is
of the order ofr̂ P

23/2 @note that, according to Eqs.~A37! and
~A42!, p2@c1q2 andp2 /c1

25O(1)#. The volume integral in
Eq. ~45!, moreover, decays liker̂ P

21, as does its counterpar
in Eq. ~33!.

The part of]A/]tP that decays more slowly than conve
tional contributions to a radiation field is the boundary te
in Eq. ~45!. The asymptotic value of this term is given by a
expression similar to that appearing in Eq.~36!, except that
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p1 and q1 are replaced byp2 and q2 . Once the quantities
ruf6

andq2 in the expression in question are approxima

by rBS and Eq.~A42!, as before, it follows that

~]A/]tP!out;2cE
S

dr dz r̂2@rG2
out#f2

f1

;2
4

3
cE

S
dr dz r̂2rBSc1

21q2

;2
25/2

3
~c2/v! r̂ P

21/2êwP
E

r̂,

r̂.
dr̂ r̂ 2

3~ r̂ 221!21/4E
ẑc2Lẑv/c

ẑc
dẑ~ ẑc2 ẑ!21/2rBS.

~46!

This behaves liker̂ P
21/2 as r̂ P→` since theẑ quadrature in

Eq. ~46! has the finite value 2(Lẑv/c)1/2^rBS& in this limit
@see Eq.~37! and the text following it#. Hence the electric
field vector of the radiation

E52“PA02]A/]~ctP!;2c21~]A/]tP!out

;
27/2

3
~c/v! r̂ P

21/2êwP
E

r̂,

r̂.
dr̂ r̂ 2~ r̂ 221!21/4~Lẑv/c!1/2^rBS&

~47!

itself decays liker P
21/2 in the far zone: As we have alread

seen in Sec. V A, the term“PA0 has the conventional rate o
decayr P

21 and so is negligible relative to (]A/]tP)out.

C. Curl of the vector potential

There are no contributions from the limits of integratio
towards the curl of the integral in Eq.~41! becauser van-
ishes outside a finite volume and so the integral in this eq
tion extends over all values of (r ,ŵ,z). Hence differentiation
of Eq. ~41! yields

B5“P3A5Bin1Bout, ~48a!

in which

Bin,out[E
Vin,out

dV r̂r“P3G2
in,out. ~48b!

Operating with“P3 on the first member of Eq.~42! and
ignoring the term that decays liker P

22, as in Eq.~30!, we
find that the kernels“P3G2

in and“P3G2
out of Eq. ~48b! are

given, in the radiation zone, by the values of

“P3G2.~v/c!E
2`

1`

dw R21d8~g2f!n̂3êw , r̂ P@1,

~49!

for f inside and outside the interval (f2 ,f1), respectively.
@n̂ is the unit vector defined in Eq.~31!.#

Insertion of Eq.~49! in Eq. ~48! now yields expressions
whoseŵ quadratures can be evaluated by parts to arrive
d

a-

t

Bin.E
S

dr dz r̂2H 2@rG3
in#f5f2

f5f1

1E
f2

f1

df ]r/]ŵ G3
inJ , r̂ P@1, ~50!

and

Bout.E
S

dr dz r̂2H @rG3
out#f5f2

f5f1

1S E
2p

f2

1E
f1

1p D df ]r/]ŵ G3
outJ , r̂ P@1,

~51!

whereG3
in andG3

out stand for the values of

G3[E
2`

1`

dw R21d~g2f!n̂3êw

5 (
w5w j

R21u]g/]wu21n̂3êw ~52!

inside and outside the bifurcation surface. Once again, ow
to the presence of the factoru]g/]wu21 in G3

in , the first term
in Eq. ~50! is divergent so that the Hadamard finite part
Bin consists of the volume integral in this equation, an in
gral whose magnitude is of the order ofr̂ P

23/2 @see the para-
graph containing Eq.~35! and note that, according to Eq
~A38! and ~A44!, p3@c1q3 andp3 /c1

25O(1)#. The second
term in Eq. ~51! has, like those in Eqs.~33! and ~45!, the
conventional rate of decayr̂ P

21. Moreover, the surface inte
gral in Eq.~51!, which would have had the same magnitu
as the surface integral in Eq.~50! and so would have can
celed out of the expression forB hadG3

in andG3
out matched

smoothly across the bifurcation surface, decays as slowl
the corresponding term in Eq.~45!.

The asymptotic value ofG3 for source points close to th
cusp curve of the bifurcation surface has been calculate
Appendix A. It follows from this value ofG3 and from Eqs.
~51!, ~52!, ~A40!, ~A44!, and ~A45! that, in the radiation
zone,

B;E
S

dr dz r̂2@rG3
out#f2

f1;
4

3 E
S

dr dz r̂2rBSc1
21q3

;
25/2

3
~c/v! r̂ P

21/2E
r̂,

r̂.
dr̂ r̂ 2~ r̂ 221!21/4

3E
ẑc2Lẑv/c

ẑc
dẑ~ ẑc2 ẑ!21/2rBSn3 ~53!

to within the order of the approximation entering Eqs.~37!
and ~46!.

The far-field version of the radial unit vector defined
Eq. ~31! assumes the form

lim
r P→`

n̂uf5fc ,ẑ5 ẑc
5 r̂ 21êr P

2~12 r̂ 22!1/2êzP
~54!
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on the cusp curve of the bifurcation surface@see Eqs.~12b!,
~13!, and~A27! and note that the position of the observer
here assumed to be such that the segment of the cusp c
lying within the source distribution is described by the e
pression with the plus sign in Eq.~12b!, as in Fig. 6#. Son3
equalsn̂3êwP

in the regime of validity of Eq.~53! @see Eq.
~A45!#. Moreover,n̂ can be replaced by its far-field value

n̂.~r Pêr P
1zPêzP

!/RP , RP→`, ~55!

if it is borne in mind that Eq.~53! holds true only for an
observer, the cusp curve of whose bifurcation surface in
sects the source distribution.

Oncen3 in Eq. ~53! is approximated byn̂3êwP
and the

resultingẑ quadrature is expressed in terms of^rBS& @see Eq.
~38!#, this equation reduces to

B;n̂3E, ~56!

whereE is the electric field vector earlier found in Eq.~47!.
Equations~47! and ~56! jointly describe a radiation field
whose polarization vector lies along the direction of moti
of the sourceêwP

.
Note that there has been no contribution toward the va

of E andB from inside the bifurcation surface. These qua
tities have arisen in the above calculation solely from
jump discontinuities in the values of the Green’s functio
G1

out, G2
out, andG3

out across the coalescing sheets of the
furcation surface. We would have obtained the same res
had we simply excised the vanishingly small volum
limr P→`Vin from the domains of integration in Eqs.~29!,
~43!, and~48!.

Note also that the way in which the familiar relation~56!
has emerged from the present analysis is altogether diffe
from that in which it appears in conventional radiatio
theory. Essential though it is to the physical requirement t
the directions of propagation of the waves and of their
ergy should be the same, Eq.~56! expresses a relationshi
between fields that are here given by nonspherically dec
ing surface integrals rather than by the conventional volu
integrals that decay liker P

21.

VI. CONCLUSION: A PHYSICAL DESCRIPTION
OF THE EMISSION PROCESS

Expressions~47! and ~56! for the electric and magneti
fields of the radiation that arises from a charge-current d
sity with the components~23! and ~39! imply the Poynting
vector

S;
25

32 p21c~c/v!2r̂ P
21F E

r̂,

r̂.
dr̂ r̂ 2~ r̂ 221!21/4

3~Lẑv/c!1/2^rBS&G2

n̂. ~57!

In contrast, the magnitude of the Poynting vector for t
coherentcyclotron radiation that would be generated by
macroscopic lump of charge, if it moved subluminally with
centripetal acceleration cv, is of the order of
(^r&L3)2v2/(cRP

2 ) according to the Larmor formula, wher
rve
-

r-

s
-
e
s
-
lts

nt

at
-

y-
e

n-

e

L3 represents the volume of the source and^r& its average
charge density. The intensity of the present emission is th
fore greater than that of even a coherent conventional ra
tion by a factor of the order of (Lẑ /L)(Lv/c)24(RP /L), a
factor that ranges from 1016 to 1030 in the case of pulsars fo
instance.

The reason this ratio has so large a value in the far fi
(RP /L@1) is that the radiative characteristics of a volum
distributed source that moves faster than the waves it e
are radically different from those of a corresponding sou
that moves more slowly than the waves it emits. There
source elements in the former case that approach the
server along the radiation direction with the wave speed
the retarded time. These lie on the intersection of the sou
distribution with what we have here called the bifurcati
surface of the observer~see Figs. 5 and 6!: a surface issuing
from the position of the observer that has the same shap
the envelope of the wave fronts emanating from a sou
element~Figs. 1 and 3! but that spirals around the rotatio
axis in the opposite direction to this envelope and reside
the space of source points instead of the space of observ
points.

The source elements inside the bifurcation surface of
observer make their contributions towards the observed fi
at three distinct instants of the retarded time. The values
two of these retarded times coincide for an interior sou
element that lies next to the bifurcation surface. This limiti
value of the coincident retarded times represents the ins
at which the component of the velocity of the source point
question equals the wave speedc in the direction of the ob-
server. The third retarded time at which a source point ad
cent to, just inside, the bifurcation surface makes a contri
tion is the same as the single retarded time at which
neighboring source element just outside the bifurcation s
face makes its contribution towards the observed field.~The
source elements outside the bifurcation surface make t
contributions at only a single instant of the retarded time!

At the instant marked by this third value of the retard
time, the two neighboring source elements, just interior a
just exterior to the bifurcation surface, have the same ve
ity, but a velocity whose component along the radiation
rection is different fromc. The velocities of these two neigh
boring elements are, of course, equal at any time. Howe
at the time they approach the observer with the wave sp
the element inside the bifurcation surface makes a contr
tion towards the observed field while the one outside t
surface does not: The observer is located just inside the
velope of the wave fronts that emanate from the inter
source element but just outside the envelope of the w
fronts that emanate from the exterior one. Thus the const
tive interference of the waves that are emitted by the sou
element just outside the bifurcation surface takes place a
a caustic that at no point propagates past the observer a
conical apex of the bifurcation surface in question.

On the other hand, the radiation effectiveness of a sou
element that approaches the observer with the wave spe
the retarded time is much greater than that of a neighbo
element, the component of whose velocity along the rad
tion direction is subluminal or superluminal at this time. Th
is because the piling up of the emitted wave fronts along
line joining the source and the observer makes the ratio
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emission to reception time intervals for the contributions
the luminally moving source elements by many orders
magnitude greater than that for the contributions of any ot
elements~see Appendix C!. As a result, the radiation effec
tiveness of the various constituent elements of the sou
~i.e., the Green’s function for the emission process! under-
goes a discontinuity across the boundary set by the bifu
tion surface of the observer.

The integral representing the superposition of the con
butions of the various volume elements of the source to
potential thus entails a discontinuous integrand. When
volume integral is differentiated to obtain the field, the d
continuity in question gives rise to a boundary contributi
in the form of a surface integral over its locus. This integ
receives contributions from opposite faces of each shee
the bifurcation surface that do not cancel one another. Mo
over, the contributions arising from the exterior faces of
two sheets of the bifurcation surface do not have the sa
value even in the limitRP→` where this surface is infinitely
large and so its two sheets are, throughout a localized so
that intersects the cusp, coalescent. Thus the resulting
pression for the field in the radiation zone entails a surf
integral such as that which would arise if the source w
two dimensional, i.e., if the source were concentrated into
infinitely thin sheet that coincided with the intersection of t
coalescing sheets of the bifurcation surface with the sou
distribution.

For a two-dimensional source of this type, whether it
real or a virtual one whose field is described by a surf
integral, the near zone~the Fresnel regime! of the radiation
can extend to infinity, so that the amplitudes of the emit
waves are not necessarily subject to the spherical sprea
that normally occurs in the far zone~the Fraunhofer regime!.
The Fresnel distance that marks the boundary between t
two zones is given byRF;L'

2 /L i , in which L' andL i are
the dimensions of the source perpendicular and paralle
the radiation direction. If the source is distributed over
surface and so has a dimensionL i that is vanishingly small,
therefore, the Fresnel distanceRF tends to infinity.

In the present case the surface integral that arises from
discontinuity in the radiation effectiveness of the source
ements across the bifurcation surface has an integrand th
in turn singular on the cusp curve of this surface. This ha
do with the fact that the source elements on the cusp curv
the bifurcation surface approach the observer along the
diation direction not only with the wave speed but also w
zero acceleration. The ratio of the emission to reception t
intervals for the signals generated by these elements is
several orders of magnitude greater even than that for
elements on the bifurcation surface~see Appendix C!. When
the contributions of these elements are included in the
face integral in question, i.e., when the observation poin
such that the cusp curve of the bifurcation surface inters
the source distribution~as shown in Fig. 6!, the value of the
resulting improper integral turns out to have the depende
RP

21/2, rather thanRP
21, on the distanceRP of the observer

from the source.
This nonspherically decaying component of the radiat

is in addition to the conventional component that is conc
rently generated by the remaining volume elements of
source. It is detectable only at those observation points,
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cusp curves of whose bifurcation surfaces intersect
source distribution. It appears, therefore, as a spiral-sha
wave packet with the same azimuthal width as theŵ extent
of the source. For a source distribution whose superlum
portion extends fromr̂ 51 to r̂ ..1, this wave packet is
detectable, by an observer at infinity, within the angles1

2 p
2arccosr̂.

21<uP<1
2p1arccosr̂.

21 from the rotation axis:
Projection~12b! of the cusp curve of the bifurcation surfac
onto the~r,z! plane reduces to cotuP5(r̂221)1/2 in the limit
RP→`, whereuP[arctan(rP /zP) @also see Eq.~54!#.

Because it comprises a collection of the spiraling cusps
the envelopes of the wave fronts that are emitted by vari
source elements, this wave packet has a cross section
the plane of rotation whose extent and shape match thos
the source distribution. It is a diffraction-free propagati
caustic that, when detected by a far-field observer, wo
appear as a pulse of durationDŵ/v, whereDŵ is the azi-
muthal extent of the source.

Note that the waves that interfere constructively to fo
each cusp, and hence the observed pulse, are differe
different observation times: The constituent waves propag
in the radiation directionn̂ with the speedc, whereas the
propagating caustic that is observed, i.e., the segment o
cusp curve that passes through the observation point a
observation time, propagates in the azimuthal directionêwP

with the phase speedr Pv.
The fact that the intensity of the pulse decays more slo

than predicted by the inverse square law is not theref
incompatible with the conservation of energy, for it is not t
same wave packet that is observed at different distances
the source: The wave packet in question is constantly
persed and reconstructed out of other waves. The cusp c
of the envelope of the wave fronts emanating from an in
nitely long-lived source is detectable in the radiation zo
not because any segment of this curve can be identified
a caustic that has formed at the source and has subsequ
traveled as an isolated wave packet to the radiation zone
because certain set of waves superpose coherently on
infinity.

The relative phases of the set of waves that are emi
during a limited time interval is such that these waves do n
in general, interfere constructively to form a cusped envelo
until they have propagated some distance away from
source. The period in which this set of waves has a cus
envelope and so is detectable as a periodic train of n
spherically decaying pulses would of course have a limi
duration if the source is short lived~cf. Appendix D!. Thus
pulses of focused waves may be generated by the pre
emission process that not only are stronger in the far fi
than any previously studied class of signals, but can in ad
tion be beamed at only a select set of observers for a lim
interval of time.

It should not be difficult to generate such pulses in t
laboratory. The volume-distributed polarization current p
duced by applying a time-varying transverse electric field,
shining a radial beam of high-frequency ionizing radiatio
around the circumference of a torus-shaped dielectric s
stance of radius;1 m, for example, would in principle act a
the required source of this new type of emission provid
only the changes in the distribution of the resulting polariz
tion current have a fixed pattern and propagate around
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torus with a constant angular frequency of the order
108 rad/s.

A final remark is in order: The mechanism responsible
the effect described here is fundamentally different from t
which gives rise to the Cˇ erenkov effect. Because the pre
ence of a cusp in the bifurcation surface~or in the envelope
of the wave fronts emitted by a source point! is essential to
this emission mechanism, the present effect does not c
into play in the case of a rectilinearly moving source unle
the motion of the source is accelerated. It has been show
Appendix D, on the other hand, that in the superlumi
regime the radiation generated by an accelerated rectiline
moving source remains different from that generated b
corresponding constant-velocity source even in the limit
which the acceleration of the source tends to zero: In
limit, the cusp curve of the envelope merely moves to lar
distances from the source rather than disappear.
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APPENDIX A: ASYMPTOTIC EXPANSIONS
OF THE GREEN’S FUNCTIONS

In this appendix we calculate the leading terms in
asymptotic expansions of the integrals~16!, ~34!, ~42!, and
~52! for small f12f2 , i.e., for points close to the cus
curve ~12! of the bifurcation surface~or of the envelope of
the wave fronts!. The method, due to Chester, Friedman, a
Ursell @13#, that we use is a standard one that has been
cifically developed for the evaluation of radiation integra
involving caustics~see@14# and @15#!. The integrals evalu-
ated below all have a phase functiong(w) whose extrema
(w5w6) coalesce at the caustic~12!.

As long as the observation point does not coincide w
the source point, the functiong(w) is analytic and the fol-
lowing transformation of the integration variables in Eq.~16!
is permissible:

g~w!5 1
3 n32c1

2n1c2 , ~A1!

where n is the new variable of integration and the coef
cients

c1[~ 3
4 !1/3~f12f2!1/3, c2[ 1

2 ~f11f2! ~A2!

are chosen such that the values of the two functions on
posite sides of Eq.~A1! coincide at their extrema. Thus a
alternative exact expression forG0 is

G05E
2`

1`

dn f 0~n!d~ 1
3 n32c1

2n1c22f!, ~A3!

in which

f 0~n![R21dw/dn. ~A4!

Close to the cusp curve~12!, at whichc1 vanishes and the
extreman56c1 of the above cubic function are coinciden
f 0(n) may be approximated byp01q0n, with
f

r
t

e
s
in
l
rly
a
n
is
r

e

d
e-

h

p-

p05 1
2 ~ f 0un5c1

1 f 0un52c1
! ~A5!

and

q05 1
2 c1

21~ f 0un5c1
2 f 0un52c1

!. ~A6!

The resulting expression

G0;E
2`

1`

dn~p01q0n!d~ 1
3 n32c1

2n1c22f! ~A7!

will then constitute, according to the general theory d
scribed in@13–15#, the leading term in the asymptotic expa
sion of G0 for small c1 ~see@17#!.

To evaluate the integral in Eq.~A7! we need to know the
roots of the cubic equation that follows from the vanishing
the argument of the Diracd function in this expression. De
pending on whether the observation point is located inside
outside the bifurcation surface~the envelope!, the roots of

1
3 n32c1

2n1c22f50 ~A8!

are given by

n52c1cos~ 2
3 np1 1

3 arccosx!, uxu,1, ~A9a!

for n50, 1, and 2 or by

n52c1sgn~x!cosh~ 1
3 arccoshuxu!, uxu.1, ~A9b!

respectively, where

x[Ff2
1

2
~f11f2!G Y F1

2
~f12f2!G5

3

2
~f2c2!/c1

3.

~A10!

Note thatx equals11 on the sheetf5f1 of the bifurcation
surface~the envelope! and21 on f5f2 .

The integral in Eq.~A7!, therefore, has the following
value when the observation point lies inside the bifurcat
surface~the envelope!:

E
2`

1`

dn d~ 1
3 n32c1

2n1c22f!

5 (
n50

2

c1
22u4 cos2~ 2

3 np1 1
3 arccosx!21u21, uxu,1.

~A11!

Using the trignometric identity 4 cos2 a215sin 3a/sina,
we can write this as

E
2`

1`

dn d~ 1
3 n32c1

2n1c22f!

5c1
22~12x2!21/2(

n50

2

usin~ 2
3 np1 1

3 arccosx!u

52c1
22~12x2!21/2cos~ 1

3 arcsinx!, uxu,1, ~A12!

in which we have evaluated the sum by adding the sine fu
tions two at a time.
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When the observation point lies outside the bifurcat
surface~the envelope!, the above integral receives a cont
bution only from the single value ofn given in Eq.~A9b! and
we obtain

E
2`

1`

dn d~ 1
3 n32c1

2n1c22f!

5c1
22~x221!21/2 sinh~ 1

3 arccoshuxu!, uxu.1, ~A13!

where this time we have used the identity 4 cosh2a21
5sinh 3a/sinha. The second part of the integral in Eq.~A7!
can be evaluated in exactly the same way. It has the va

E
2`

1`

dn n d~ 1
3 n32c1

2n1c22f!

52c1
21~12x2!21/2(

n50

2

usin~ 2
3 np1 1

3 arccosx!u

3cos~ 2
3 np1 1

3 arccosx!

522c1
21~12x2!21/2sin~ 2

3 arcsinx!, uxu,1, ~A14!

when the observation point lies inside the bifurcation surf
~the envelope! and the value

E
2`

1`

dn n d~ 1
3 n32c1

2n1c22f!

5c1
21~x221!21/2sgn~x!sinh~ 2

3 arccoshuxu!, uxu.1,

~A15!

when the observation point lies outside the bifurcation s
face~the envelope!. Inserting Eqs.~A12!–~A15! in Eq. ~A7!
and denoting the values ofG0 inside and outside the bifur
cation surface~the envelope! by G0

in andG0
out, we obtain

G0
in;2c1

22~12x2!21/2@p0cos~ 1
3 arcsinx!

2c1q0sin~ 2
3 arcsinx!#, uxu,1, ~A16!

and

G0
out;c1

22~x221!21/2@p0sinh~ 1
3 arccoshuxu!

1c1q0sgn~x!sinh~ 2
3 arccoshuxu!#, uxu.1,

~A17!

for the leading terms in the asymptotic approximation toG0
for small c1 .

The functionf 0(n) in terms of which the coefficientsp0
andq0 are defined is indeterminate atn5c1 and2c1 : Dif-
ferentiation of Eq.~A1! yields dw/dn5(n22c1

2)/(]g/]w),
the zeros of whose denominator atw5w2 andw1 , respec-
tively, coincide with those of its numerator atn5c1 and
2c1 . This indeterminacy can be removed by means
l’Hôpital’s rule by noting that
e

r-

f

dw

dnU
n56c1

5
n22c1

2

]g/]w
U

n56c1

5
2n

~]2g/]w2!~dw/dn!
U

n56c1

,

~A18!

i.e., that

dw

dnU
n56c1

5S 62c1

]2g/]w2D 1/2U
w5w7

5
~2c1R̂7!1/2

D1/4 ,

~A19!

in which we have calculated (]2g/]w2)w6
from Eqs.~7! and

~8!. The right-hand side of Eq.~A19! is in turn indeterminate
on the cusp curve of the bifurcation surface~the envelope!
wherec15D50. Removing this indeterminacy by expan
ing the numerator in this expression in powers ofD1/4, we
find thatdw/dn assumes the value 21/3 at the cusp curve.

Hence the coefficientsp0 and q0 that appear in the ex
pressions~A16! and ~A17! for G0 are explicitly given by

p05~v/c!~ 1
2 c1!1/2~R̂2

21/21R̂1
21/2!D21/4 ~A20!

and

q05~v/c!~2c1!21/2~R̂2
21/22R̂1

21/2!D21/4 ~A21!

@see Eqs.~A4!–~A6! and~A19!#. In the regime of validity of
Eqs.~A16! and ~A17!, whereD is much smaller than (r̂ P

2 r̂ 2

21)1/2, the leading terms in the expressions forR̂6 , c1 , p0 ,
andq0 are

R̂65~ r̂ P
2 r̂ 221!1/26~ r̂ P

2 r̂ 221!21/2D1/21O~D!,
~A22!

c15221/3~r P
2 r̂ 221!21/2D1/21O~D!, ~A23!

p0521/3~v/c!~ r̂ 2r̂ P
2 21!21/21O~D1/2!, ~A24!

and

q05221/3~v/c!~ r̂ 2r̂ P
2 21!211O~D1/2!. ~A25!

These may be obtained by using Eq.~9! to expressẑ every-
where in Eqs.~10!, ~11!, and ~A2! in terms ofD and r̂ and
expanding the resulting expressions in powers ofD1/2. The
quantity D in turn has the following value at points 0< ẑc

2 ẑ!( r̂ P
2 21)1/2( r̂ 221)1/2:

D52~ r̂ P
2 21!1/2~ r̂ 221!1/2~ ẑc2 ẑ!1O@~ ẑc2 ẑ!2#,

~A26!

in which ẑc is given by the expression with the plus sign
Eq. ~12b!. For an observation point in the far zone (r̂ P
@1), the above expressions reduce to

R̂6; r̂ r̂ P , c1.21/6~ r̂ r̂ P!21/2~12 r̂ 22!1/4~ ẑc2 ẑ!1/2;
~A27!

D.2r̂ P~ r̂ 221!1/2~ ẑc2 ẑ!; ~A28!

p0.21/3~v/c!~ r̂ Pr̂ !21, q0.221/3~v/c!~ r̂ Pr̂ !22,
~A29!
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and

x.3~ 1
2 r̂ r̂ P!3/2~12 r̂ 22!23/4~f2fc!/~ ẑc2 ẑ!3/2,

~A30!

in which ẑc2 ẑ has been assumed to be finite.
Evaluation of the other Green’s functionsG1 , G2 , and

G3 entails calculations that have many steps in common w
that of G0 . Since the integrals in Eqs.~34!, ~42!, and ~52!
differ from that in Eq.~16! only in that their integrands re
spectively contain the extra factorsn̂, êw , and n̂3êw , they
can be rewritten as integrals of the form~A3! in which the
functions

f1~n![n̂f 0 , f2~n![êw f 0 , f3~n![n̂3êw f 0 ~A31!

replace thef 0(n) given by Eq.~A4!.
If p0 andq0 are correspondingly replaced, in accordan

with Eqs.~A5! and ~A6!, by

pk5 1
2 ~ fkun5c1

1fkun52c1
!, k51,2,3, ~A32!

and

qk5 1
2 c1

21~ fkun5c1
2fkun52c1

!, k51,2,3, ~A33!

then every step of the analysis that led from Eq.~A7! to Eqs.
~A16! and ~A17! would be equally applicable to the evalu
tion of Gk . It follows, therefore, that

Gk
in;2c1

22~12x2!21/2@pkcos~ 1
3 arcsinx!

2c1qksin~ 2
3 arcsinx!#, uxu,1, ~A34!

and

Gk
out;c1

22~x221!21/2@pksinh~ 1
3 arccoshuxu!

1c1qksgn~x!sinh~ 2
3 arccoshuxu!#, uxu.1,

~A35!

constitute the uniform asymptotic approximations to t
functionsGk inside and outside the bifurcation surface~the
envelope! uxu51.

Explicit expressions forpk and qk as functions of~r,z!
may be found from Eqs.~8!, ~A19!, and ~A31!–~A33!
jointly. The result is

p1

q1
J 5221/2~v/c!c1

61/2D21/4$@~ r̂ P2 r̂ P
21!~R̂2

23/26R̂1
23/2!

2 r̂ P
21D1/2~R̂2

23/27R̂1
23/2!#êr P

1 r̂ P
21~R̂2

21/26R̂1
21/2!êwP

1~ ẑP2 ẑ!~R̂2
23/26R̂1

23/2!êzP
%, ~A36!

p2

q2
J 5221/2~v/c!~ r̂ r̂ P!21c1

61/2D21/4$~R̂2
1/26R̂1

1/2!êr P

1@R̂2
21/26R̂1

21/21D1/2~R̂2
21/27R̂1

21/2!#êwP
%,

~A37!

and
h

e

p3

q3
J 5221/2~v/c!~ r̂ r̂ P!21c1

61/2D21/4$2~ ẑP2 ẑ!

3@R̂2
23/26R̂1

23/21D1/2~R̂2
23/27R̂1

23/2!#êr P

1~ ẑP2 ẑ!~R̂2
21/26R̂1

21/2!êwP
1 r̂ P@D1/2~R̂2

23/27R̂1
23/2!

2~ r̂ 221!~R̂2
23/26R̂1

23/2!#êzP
%, ~A38!

where use has been made of the fact thatêw52sin(w
2wP)êr P

1cos(w2wP)êwP
. Here the expressions with the up

per signs yield thepk and those with the lower signs theqk .
The asymptotic value of eachGk

out is indeterminate on the
bifurcation surface~the envelope!. If we expand the numera
tor of Eq.~A35! in powers of its denominator and cancel o
the common factor (x221)1/2 prior to evaluating the ratio in
this equation, we obtain

Gk
outuf5f6

5Gk
outux561;~pk62c1qk!/~3c1

2!. ~A39!

This shows thatGk
outuf5f2

and Gk
outuf5f1

remain different

even in the limit where the surfacesf5f2 and f1 coa-
lesce. The coefficientsqk that specify the strengths of th
discontinuities

Gk
outuf5f1

2Gk
outuf5f2

; 4
3 qk /c1 ~A40!

reduce to

q1.
3

21/3 ~v/c!~ r̂ r̂ P!23@~12 2
3 r̂ 2! r̂ Pêr P

1~ ẑP2 ẑ!êzP
#,

~A41!

q2.22/3~v/c!~ r̂ r̂ P!21êwP
, ~A42!

and

q3.222/3~v/c!~ r̂ r̂ P!22@~ ẑP2 ẑ!êr P
2 r̂ PêzP

# ~A43!

in the regime of validity of Eqs.~A27! and ~A28!. When 0
< ẑc2 ẑ!( r̂ 221)1/2r̂ P , the expressions~A41! and ~A43!
further reduce to

q1.
3

21/3 ~v/c!~ r̂ r̂ P!22n1 , q3.22/3~v/c!~ r̂ r̂ P!21n3 ,

~A44!

with

n1[~ r̂ 212 2
3 r̂ !êr P

2~12 r̂ 22!1/2êzP
,

n3[~12 r̂ 22!1/2êr P
1 r̂ 21êzP

, ~A45!

for in this case Eq.~12b!, with the adopted plus sign, can b
used to replaceẑ2 ẑP by (r̂ 221)1/2r̂ P .

APPENDIX B: ALTERNATIVE FORMS OF THE
RADIATION INTEGRALS

In this paper we have built up the potential of an extend
source distribution by superposing the potentials of the m
ing source elements that constitute it. Stated mathematic
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we have expressed the potential~24! as the convolution of
the source density with the Green’s function for the proble
An alternative procedure is one in which the potential of
moving extended source is built up from the superposition
the potentials of a fictitious set of stationary point sourc
This can be done by basing the analysis on the alterna
form of the retarded potential given in Eq.~22!. For fixed
values of~xP , tP!, the expression in Eq.~22! is the same as
that which would describe the potential of a tim
independent source with the density distributionr(x,tP2ux
2xPu/c).

The alternative form of the scalar potential that follow
from Eqs.~22! and ~23! has an integrand that is singulari
free in the radiation zone:

A0~r P ,ŵP ,zP!5E r dr dz dw r~r ,z,ŵu t5tP2R/c!/R,

~B1!

where R is the function defined in Eq.~3!. It may at first
seem, therefore, that the bifurcation surface, which featu
so prominently in our calculation of“PA0 , for instance,
neither appears nor plays any role in the present formula
of the problem. Our objective in this appendix is to point o
that this is not so: An analysis based on Eq.~B1! also entails
a handling of the singularities that occur on the bifurcat
surface and ultimately results in the same value for“PA0 .

The given data in the present problem consist of
source densityr as a function of (r ,ŵ,z) and the Sommer-
feld radiation condition at infinity. The boundary of th
source distribution is known in the (r ,ŵ,z) space and not in
the (r ,w,z) space over which the integration in Eq.~B1! is to
be performed. In the (r ,w,z) space, the surface at whic
r(r ,z,ŵu t5tP2R/c) vanishes is different for different observ
ers, or at different observation times, and is a multip
sheeted disconnected surface whose shape bears no
relationship with the shape of the actual source distributi
To find the limits of integration in Eq.~B1!, we need to use
the relationship

ŵ5~w2vt !u t5tP2R/c5w2vtP1@~ ẑ2 ẑP!21 r̂ 21 r̂ P
2

2 r̂ r̂ Pcos~w2wP!#1/2 ~B2!

betweenw and the retarded value ofŵ that appears in the
argument ofr to map the boundariesŵ5ŵ,(r ,z) and ŵ
5ŵ.(r ,z) of the source distribution from the (r ,ŵ,z) space
to the (r ,w,z) space.

Figure 2 depicts the relation~B2!, in its alternative form
~5!, for fixed values of (r P ,ŵP ,zP ;r ,z). Two adjacent ex-
trema of curve~a! in Fig. 2 occur on two different sheets o
the bifurcation surface: The constant values (r 0 ,z0) of ~r,z!
in this figure are such that the circler 5r 0 , z5z0 intersects
the bifurcation surface, so that asŵ ranges over the interva
shown in the figure the point (r ,ŵ,z) enters across one shee
traverses the interior, and leaves across another sheet o
bifurcation surface. At those points on the source bound
that lie within the bifurcation surface, therefore, the requir
mapping ŵ→w of the limits of integration in Eq.~B1! is
multivalued.
.
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The limits of the integration with respect tow in Eq. ~B1!
are given by the solutionsw(r ,ŵ,z;r P ,ŵP ,zP ;wP) of Eq.
~B2! or ~5! for a point (r ,ŵ,z) on the boundary of the sourc
distribution. Differentiating Eq.~5! with respect toxP while
holding (r ,ŵ,z) and the observation timeŵP constant, we
find that the derivatives of these integration limits are giv
by an expression

“Pw5r P
21êwP

2$@ r̂ P2 r̂ cos~w2wP!#êr P

1~ ẑP2 ẑ!êzP
%/~R]g/]w! ~B3!

whose denominator vanishes on the bifurcation surface
fact, this expression has an even stronger singularity on
cusp curve of the bifurcation surface at which its denomi
tor both vanishes and has a vanishing derivative.

Whenever the boundary of the source distribution int
sects the bifurcation surface or its cusp curve, therefore,
integral in Eq.~B1! is not differentiable~as a classical func-
tion! because the contributions from the derivatives of
limits to the value of “PA0 would appear as a two
dimensional integral whose integrand has extended singu
ties. If we denote the upper and lower limits of the integ
tion with respect tow by w. and w, and the projection of
the source distribution onto the~r,z! plane bySrz , then the
contributions in question would appear as

E
Srz

r dr dz$@r/R#w5w.
“Pw.2@r/R#w5w,

“Pw,%,

~B4!

in which “Pw. and “Pw, are given by Eq.~B3! and so
diverge at the pointsw5w6 on the intersection of the bound
ary of the source with the bifurcation surface. That is to s
contrary to what may seem at first, the calculation of“PA0
from Eq. ~B1! likewise requires a proper handling~with the
aid, e.g., of the theory of generalized functions! of the ex-
tended singularities that occur on the bifurcation surface
its cusp curve.

Hannay@18# has argued that since the only singularity
the integrand of Eq.~22! is that at the pointx5xP , which is
inoffensive, one can differentiate Eq.~22! under the integral
sign and evaluate the resulting expressions for“PA0 and
]A0 /]tP without any reference to the bifurcation surfac
Being based on an analysis in which neither the motion
the source nor the position of the observer are specifi
however, Hannay’s argument overlooks the specifically
perluminal feature of the problem that appears in Eq.~B3!:
Whereas, in the familiar subluminal regime, the contrib
tions to“PA0 or ]A0 /]tP from the derivatives of the limits
of thew integration in Eq.~B1! are either zero or cancel eac
other, here the corresponding contributions of those elem
on the boundary of the source that approach the obse
with the wave speed are divergent. Leibniz’s formula for t
differentiation of a definite integral~as a classical function!
is not of course applicable if there are any points at which
contributions from the limits of integration diverge.
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APPENDIX C: RATIO OF EMISSION TO RECEPTION
TIME INTERVALS

The interval of retarded timedt during which a set of
waves are emitted is, in the case of the source elements
lie adjacent to but inside the bifurcation surface, significan
longer than the interval of observation timedtP during which
these waves are received. The components of the veloc
of such elements in the directionxP2x are either just above
or just below the wave speed at the two coalescing retar
times at which these elements make their dominant contr
tions, so that, as in the Doppler effect, the emitted wa
fronts pile up along this radiation direction.

In this appendix we estimate the ratio of emission to
ception time intervals for three sets of source elements:
elements in the vicinity of the cusp curve of the bifurcati
surface and the elements adjacent to the bifurcation surf
just inside and just outside it. These three sets of elem
respectively approach the observer along the radiation di
tion with the wave speed and zero acceleration, with
wave speed and a nonzero acceleration, and with a s
different fromc and an acceleration different from zero.

Given the observation point (r P ,wP ,zP) and the moving
source point (r ,ŵ,z), the equation describing the wav
fronts @i.e., Eq. ~4!# specifies the reception timetP as the
following function of the emission timet:

tP5t1@~zP2z!21r P
2 1r 222r Pr cos~wP2ŵ2vt !#1/2/c.

~C1!

Calculating the first three derivatives oftP with respect tot
from Eq. ~C1! and evaluating these derivatives at the cu
curve ~12! of the bifurcation surface, we find that the dom
nant term in the Taylor expansion oftP about the valuetc of
the retarded time, at which an element on this curve ma
its contribution, is given by

dtP5
1

3!
d3tP /dt3u t5tc

~dt !31¯5 1
6 v2~dt !31¯ ,

~C2!

wheretc is defined by (wc2ŵ)/v with the wc given in Eq.
~12c!. That is to say, the ratio of emission to reception tim
intervals has the valuedt/dtP.61/3(vdtP)22/3 for the waves
that are generated by the source elements at the cusp c

To estimate the numerical value of this ratio, let us den
the wavelength of the radiation byl and consider the set o
wave fronts that arrive at the observer within the time int
val dtP5 1

2 l/c, i.e., that are received with essentially th
same phase. For this set of waves, the ratio in question
the value

dt/dtP.2331/3~lv/c!22/3, ~C3!

a value that could exceed unity by a large factor: Forl
;1 cm andv;2p rad/s~as in the case of pulsars!, this ratio
is of the order of 107.

Approaching the sheetf5f1 or f2 of the bifurcation
surface from inside this surface corresponds to raising
lowering a horizontal lineg5f05const with f2<f0
<f1 in Fig. 2 until it intersects curve~a! of this figure at its
maximum or minimum. At a source point thus approach
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dtP /dt vanishes butd2tP /dt2 is nonzero, so that the Taylo
expansions of Eq.~C1! about the valuest6[(w62ŵ)/v of
the retarded time on the two sheets of the bifurcation surf
assume the forms

dtP57v~2r̂ r̂ P!21/2~12 r̂ 22!1/4~ ẑc2 ẑ!1/2~dt !21¯ ,
~C4!

in which we have approximated the coefficient of (dt)2 by
its value for 0< ẑc2 ẑ!1, r̂ P@1 @see Eqs.~26!, ~A20!, and
~A21!#.

For the waves that arrive at the observer with a ph
differencecdtP /l< 1

2 , therefore, Eq.~C4! yields

dt/dtP.723/4~ r̂ r̂ P!1/4~12 r̂ 22!21/8~ ẑc2 ẑ!21/4~lv/c!21/2.
~C5!

With the values ofv andl adopted above, this is;105 for
a source point on the bifurcation surface that lies at a d
tanceẑc2 ẑ of the order ofr̂ P from the cusp curve.@Note that
the quadratic term in Eq.~C4! dominates the cubic term in
this series only at distancesẑc2 ẑ of the order ofr̂ P from the
cusp curve.#

On the other hand, for a neighboring source point that
just outside the sheetf5f2 ~say! of the bifurcation surface,
curve ~a! in Fig. 2 will have the same shape but the lineg
5f0 will be displaced such that it would lie just below th
minimum of g. Thus the equationg(w)5f2 has only a
single physically relevant solutionw5wout in this case, a
solution that is different fromw6 and so at which]g/]w
does not vanish. The neighboring source point just inside
bifurcation surface of course makes a contribution at the
tarded time corresponding tow5wout as well as at the two
retarded times that coalesce ontot25(w22ŵ)/v. How-
ever, the component of its speed along the radiation direc
has the limiting valuec only at the two retarded times tha
coalesce ontot2 . At the retarded time corresponding tow
5wout, at which the slope of the curve representingg(w) is
different from zero~see Fig. 2!, neither of the two neighbor-
ing source points approach the observer with the wave sp

We can findwout for a source point that lies adjacent
the sheetf5f2 of the bifurcation surface, close to the cus
curve, by replacingg(w) with the first three terms in its
Taylor expansion aboutw5w2 and by noting that the solu
tion, different fromw5w2 , of the resulting cubic equation
g(w)5f2 is given by

wout.w223~ 1
2 r̂ r̂ P!21/2~12 r̂ 22!1/4~ ẑc2 ẑ!1/2 ~C6!

for 0< ẑc2 ẑ!1 andr̂ P@1. Next expanding Eq.~C1! about
the corresponding valuetout5(ŵ2wout)/v of t and approxi-
mating the coefficient of the dominant term in the resulti
Taylor series by its far-field value for 0< ẑc2 ẑ!1, we ob-
tain

dtP53~ r̂ r̂ P!21~12 r̂ 22!1/2~ ẑc2 ẑ!dt1¯ . ~C7!

Hence there is no new effect in the case of a source elem
that lies adjacent to but outside the bifurcation surface: T
emission time interval is proportional to the reception tim
interval as in conventional emission mechanisms.
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Insofar as the ratiodt/dtP is a measure of the degree
coherence of the emission from a given source elemen
comparison of Eqs.~C3! and ~C7! suggests, therefore, tha
the radiation effectiveness of the source elements should
dergo a discontinuity across the bifurcation surface. T
suggestion, which has here emerged from a consideratio
the propagation properties of the wave fronts, is in fact c
firmed by the calculation~in Sec. III! of the amplitudes of
the emitted waves from Maxwell’s equations.

Hewish@19# has presented a geometrical argument wh
central result is expression~C3! for the ratio (dt/dtP)cusp.
He contends that the coherence factor implied by this r
constitutes the only difference between the intensities of
emissions that would arise from the superluminal and su
minal portions of the rotating sources in pulsars. As we h
seen, however, Eq.~C3! merely describes a single isolate
feature of the complicated emission process under dis
sion. It is not until it is compared with Eqs.~C5! and ~C7!
that its full implications, those pointing to the discontinui
in the radiative effectiveness of the source elements ac
the bifurcation surface, emerge. Even then, these impl
tions of an analysis that is based on geometrical optics ca
best be suggestive. The effect of the implied discontinuity
the intensity of the radiation produced by such an unfami
mechanism as that involved here cannot be predicted with
examining the relevant solution of the exact wave equa
itself.

APPENDIX D: RECTILINEARLY MOVING
ACCELERATED SOURCES WITH SUPERLUMINAL

VELOCITIES

Though perhaps less interesting from a practical poin
view, the rectilinear version of the emission process we h
discussed above is simpler in its caustic geometry and
conceptually more transparent. Here we include an anal
of this more elementary problem to illustrate not only t
basic principles common to different examples of the em
sion process under discussion but also those of its feat
that specifically arise from the finiteness of the duration
the source.

Consider a point source~an element of the propagatin
distribution pattern of a volume source! that moves paralle
to thez axis of a Cartesian coordinate system with the c
stant accelerationa, i.e., whose pathx(t) is given by

x5const, y5const, z5 z̃1ut1 1
2 at2, ~D1!

where z̃ and u are its position and its speed at the timet
50. The wave fronts that are emitted by this source in
empty and unbounded space are described by Eq.~2!. Insert-
ing Eq. ~D1! in Eq. ~2! and squaring the resulting equatio
we obtain

R̄2~ t ![~xP2x!21~yP2y!21~zP2 z̃2ut2 1
2 at2!2

5c2~ tP2t !2, ~D2!

in which the coordinates (xP ,yP ,zP ,tP) mark the space-time
of observation points. These wave fronts are expand
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spheres of radiic(tP2t) whose fixed centers~xP5x, yP
5y, zP5 z̃1ut1 1

2 at2! depend on their emission timest ~see
Fig. 7!.

Introducing the natural length scale of the probleml
5c2/a, we can express Eq.~D2! in terms of dimensionless
variables as

ḡ[ 1
4 b42~ 1

2 bP
2 2z11!b212bPb1~ 1

2 bP
2 2z!22bP

2 1j2

50, ~D3!

in which

j[@~x2xP!21~y2yP!2#1/2/ l ~D4!

represents the distance~in units of l! of the observation point
from the path of the source, the Lagrangian coordinate

z[~ z̃2 z̃P!/ l ~D5!

stands for the difference between the positionsz̃5z2ut
2 1

2 at2 of the source point and

z̃P[zP2utP2 1
2 atP

2 ~D6!

of the observation point in the (x,y,z̃) space, and the ‘‘Mach
numbers’’

b[~u1at!/c, bP[~u1atP!/c ~D7!

denote the scaled values of the emission time and the ob
vation time, respectively. Figure 7 depicts the wave fro
described by Eq.~D3! for a fixed value ofbP and a discrete
set of values ofb (,bP).

The wave fronts for whichb.1, i.e., the wave fronts tha
are emitted when the speed of the source exceeds the w
speed, possess an envelope: The functionḡ(b) is oscillatory
in this regime~see Fig. 8! and so there are points~j,z! at
which

]ḡ/]b5b32~bP
2 22z12!b12bP50. ~D8!

FIG. 7. Wave fronts emanating from the rectilinearly movin
source pointS and their envelope forbP52 ~andM,1!.
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The cubic equation~D8! has three real roots whe
33/2bP(bP

2 22z12)23/2,1, of which only two satisfy the
requirementb.0. These two physically relevant solutions
Eq. ~D8! are

b65
2

)
~bP

2 22z12!1/2cos@ 1
3 ~p6s!#, ~D9a!

where

s[arccos@33/2bP~bP
2 22z12!23/2#. ~D9b!

The functionḡ(b) is locally maximum atb1 and minimum
at b2 .

Inserting b5b6 in Eq. ~D3! and solving the resulting
equation forj as a function ofz, we find that the envelope o
the wave fronts is an axisymmetric surface consisting of t
sheets:j5j6(z) with

j6[@ 1
2 ~ 1

2 bP
2 2z11!b7

2 2 3
2 bPb71bP

2 2~ 1
2 bP

2 2z!2#1/2.
~D10!

@We have used the fact thatb6 satisfy Eq.~D8! to simplify
the above expressions forj6 .#

The cusp of the envelope~see Fig. 7! occurs along the
circle

j5~bP
2/321!3/2[jc , z5 1

2 bP
2 2 3

2 bP
2/311[zc .

~D11a!

FIG. 8. Curve representingḡ(b) versusb for bP52, at a given
~j, z!: ~a! at ~0.2, 0.9! outside the envelope~or the bifurcation
surface!, ~b! at (jc ,zc) on the cusp curve of the envelope~or the
bifurcation surface!, ~c! at ~0, 0.4! inside the envelope~or the bifur-
cation surface!, and ~d! at ~0.085, 0.142! on the envelope~or the
bifurcation surface!.
o

When j5jc , z5zc , the functionḡ(b), shown in Fig. 8,
curve ~b!, has a point of inflection and]2ḡ/]b2, as well as
]ḡ/]b and ḡ, vanishes at

b5bP
1/3[bc . ~D11b!

The cusp propagates with the speeds (12bP
22/3)1/2c and

bP
21/3c in the directions perpendicular and parallel to t

source’s path, respectively, so that the coincident sheet
the envelope at the cusp propagate normal to themselve
a direction making the angle arctan(bP

2/321)1/2 with the z̃P

axis, at the speedc.
The tangential wave fronts that constitute the coni

sheet (j5j1) of the envelope are emitted during the interv
bP

1/3,b,bP of retarded time, while those constituting th
second sheetj5j2 are emitted during 1,b,bP

1/3. This
may be seen by noting that the intercept of thej2 sheet with
the z̃P axis, the cusp, and the conical apex of thej1 sheet
occur atz5 1

2 (bP21)2, zc , and 0, respectively, and tha
according to Eq.~D8!, the values ofb at these points are
given by 1,bP

1/3, and bP , monotonically increasing along
the envelope from thej2 intercept to the apex.

The particular set of waves that interfere constructively
form the cusp of the envelope, therefore, is different at d
ferent observation times: It consists, at a given observa
time bP , of those waves whose emission times lie close
b5bP

1/3. As the observation timebP changes, so does th
emission time of the cusp and hence the identity of the
terfering waves in question.

If the source is short lived, then the emission timeb
5bP

1/3 of a cusp that can be observed atbP may or may not
fall within its life span. The envelope of the emitted wav
would be cusped in this case only during a correspondin
short interval of observation time. Figure 9 traces the evo
tion in time of the relative positions of a particular set of t
propagating wave fronts, those emitted during a limited ti
interval, that were earlier shown in Fig. 7: before their env
lope develops a cusp, during the time interval in which th
envelope possesses a cusp, and afterward.

In the case of a source whose strength is nonzero o
within the finite interval 0,t,T of retarded time, for in-
stance, the envelope of the emitted waves has a cusp du
the interval of observation time in whichbu t50<bP

1/3

<bu t5T . Solving this fortP , we obtain

M ~M221!l /c<tP<M @M2~11aT/u!321# l /c,
~D12!

whereM[u/c stands for the Mach number of the source
t50. For aT/u!1, therefore, the life span of the caust
3M2T is proportional to that of the source.

The distance of the caustic from the position of the sou
at the retarded time, i.e.,

R̄P[R̄u t5tP2R̄/c5bP
1/3~bP

2/321!l , ~D13!

can be arbitrarily large even when the duration of the sou
T is short. This is because there is no upper limit on the va
of the lengthl ([c2/a) that enters Eqs.~D12! and~D13!: l
tends to infinity fora→0 and is as large as 1018 cm whena
equals the acceleration of gravity. ThusR̄P can be rendered
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arbitrarily large, by a suitable choice of the parameterl, with-
out requiring either the duration of the source~T! or the
retarded value (bP

1/3c) of the speed of the source to be co
respondingly large.

If either M or l is large, the waves emitted by a short-live
source do not focus to such an extent as to form a cus
envelope until they have traveled a long distance away fr
the source. The period (;M2T) during which they then do
so can~in the case ofM@1! be significantly longer than the
life span of the source.~Note that this period is distinct from
the duration of the pulse of focused waves that would
received by a stationary observer. The latter is of the orde
Lj /c, whereLj is the dimension of the source in the rad
direction.!

For an observation point in the far zone, the two sheet
the truncated envelopes shown in Fig. 9 are essentially c
cident. In the vicinity of the cusp, the difference between
dimensionless coordinatesj1 andj2 of these two sheets at
fixed z is given by

j12j252~ 2
3 !3/2bP

1/3~bP
2/321!23/2~zc2z!3/21¯

~D14!

@see Eqs.~D10! and ~D11!#. As bP and hence the distanc
between the caustic and the source increases, therefore
separation (j12j2) l of the two sheets at a finite distanc
uz2zcu l from the cusp decreases likebP

22/3l 21/2 and so
shrinks to zero when eitherbP or l is much greater than
unity.

FIG. 9. Evolution in observation timebP of the relative posi-
tions and the envelope of a set of wave fronts emitted during
retarded time interval 1.26,b,1.96. The snapshots~a!–~f! respec-
tively correspond tobP52, 2.5, 3, 3.75, 4.75, and 8. These inclu
times at which the envelope has not yet developed a cusp@~a! and
~b!#, has a cusp@~c!–~e!#, and has already lost its cusp~f!.
ed
m

e
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e

the

The scalar Lienard-Wiechert potential describing the a
plitudes of the above waves is given by the retarded solu
of the wave equation~14a! for the source density

r̄0~x8,y8,z8,t8!5d~x82x!d~y82y!d~z82 z̃2ut8

2 1
2 at82!u~ t8!. ~D15!

Here the step functionu(t), which equals 1 whent.0 and
zero whent,0, is introduced to exclude any cases in whi
the velocity of the source may change direction. In the
sence of boundaries, therefore, this potential has the val

Ḡ0~xP ,tP!52cE d3x8E
2`

tP
dt8r̄0~x8,t8!

3d„uxP2x8u22c2~ tP2t8!2
… ~D16a!

52cE
0

tP
dt8d„R̄2~ t8!2c2~ tP2t8!2

…,

~D16b!

where R̄(t8) is the function defined in Eq.~D2! ~see, e.g.,
@12#!.

In terms of the variables earlier introduced in Eqs.~D3!–
~D7!, the expression on the right-hand side of Eq.~D16b!
reduces to

Ḡ052l 21E
M

bP
db d~ ḡ!52l 21 (

b5b i

u]ḡ/]bu21,

~D17!

in which the b i ’s are solutions ofḡ(b)50 in the range
M,b,bP . Equation~D17! shows, in conjunction with Fig.
8, that the potentialḠ0 of a point source is discontinuous o
the envelope of the wave fronts: If we approach the envel
from outside, the sum in Eq.~D17! has only a single term
and yields a finite value forḠ0 , but if we approach this
surface from inside, two of theb i ’s coalesce at an extremum
of ḡ and Eq.~D17! yields a divergent value forḠ0 . On the
cusp curve of the envelope, where three wave fronts m
tangentially, all three of theb i ’s coincide@Fig. 8, curve~b!#
and the denominator of the expression in Eq.~D17!
both vanishes and has a vanishing derivative (]ḡ/]b
5]2ḡ/]b250).

The uniform asymptotic approximation toḠ0 at points
close to this cusp curve can be found by the method outli
in Appendix A. The resulting expressions for the valu
Ḡ0

in,out of this function inside and outside the envelope~or the
bifurcation surface! have the same functional forms as tho
appearing in Eqs.~18! and~19! except thatx, c1 , p0 , andq0
are respectively replaced by

x̄5@ ḡ~b2!1ḡ~b1!#/@ ḡ~b2!2ḡ~b1!#, ~D18!

c̄15~ 3
4 !1/3@ ḡ~b1!2ḡ~b2!#1/3, ~D19!

p̄05 1
2 ~ f̄ 0un5 c̄1

1 f̄ 0un52 c̄1
!, ~D20!

and

q̄05 1
2 c̄1

21~ f̄ 0un5 c̄1
2 f̄ 0un52 c̄1

!, ~D21!

e



s

-

he
su

-

an

e
m

ion
u-
nts

of
own

the

n
is
The

PRE 58 6679GENERATION OF FOCUSED, NONSPHERICALLY . . .
with

f̄ 0un56 c̄1
5

2

l
F c̄1sin

p7s

3

~ 1
2 bP

2 2z11!sin s
G 1/2

. ~D22!

The variablex̄ equals11 on the sheetj2 and 21 on the
sheetj1 of the envelope~or the bifurcation surface!. In the
immediate vicinity of the cusp curve~D11!, we haveb6

.bP
1/37( 2

3 )1/2(zc2z)1/2 and so

x̄.~ 3
2 !3/2bP

21/3~bP
2/321!@~bP

2/321!1/2~jc2j!

2~zc2z!#/~zc2z!3/2, ~D23!

c̄1.
21/2

31/6 bP
1/9~zc2z!1/2, ~D24!

and

p̄0.
2

31/3 l 21bP
21/9, q̄0.2325/3l 21bP

25/9 ~D25!

for the leading terms in the expansions of these quantitie
powers ofj2jc andz2zc .

The functionḠ0
out is indeterminate but finite on the enve

lope @see Eq.~D38!#, whereasḠ0
in diverges asx̄→61. It can

be seen from the expression forḠ0
in in the immediate vicinity

of the cusp curve,

Ḡ0
in;) l 21~zc2z!1/2$bP

2/3~zc2z!32~ 3
2 !3~bP

2/321!2

3@~bP
2/321!1/2~jc2j!2~zc2z!#2%21/2, ~D26!

however, that both the singularity on the envelope~at which
the quantity inside the curly brackets vanishes! and the sin-
gularity at the cusp curve~at whichj2jc andz2zc vanish!
are integrable singularities. Singularities persist, in ot
words, only in the physically unrealizable case where a
perluminal source is pointlike@1,2#.

Let us now consider anextendedsource that moves par
allel to thez axis with the constant accelerationa. The den-
sity of such a source, when it has a distribution with
unchanging pattern, is given by

r̄~x,y,z,t !5 r̄~x,y,z̃!u~ t !, ~D27!

where the Lagrangian variablez̃ is defined by z2ut
2 1

2 at2, as in Eq.~D1!, andr̄ can be any function of (x,y,z̃)
that vanishes outside a finite volume.

If we insert this density in the expression for the retard
potential @12# and change the variables of integration fro
~x,y,z,t! to (x,y,z̃,t), we obtain

Ā0~xP ,tP!52cE d3xE
2`

tP
dt r̄~x,t !d„uxP2xu2

2c2~ tP2t !2
… ~D28a!
in

r
-

d

5E dx dy dz̃r̄~x,y,z̃!Ḡ0~x2xP ,y2yP ,z̃2 z̃P ,tP!,

~D28b!

whereḠ0 is the function defined in Eq.~D17!. The potential
of the extended source in question at the posit
(xP ,yP ,z̃P ,tP) of a fixed observer is thus given by the s
perposition of the potentials of the moving source poi
(x,y,z̃) that constitute it.

BecauseḠ0 is invariant under the interchange of (x,y,z̃)
and (xP ,yP ,z̃P) if z is at the same time changed to2z @see
Eqs.~D3! and~D17!#, the locus of singularities ofḠ0 in the
(x,y,z̃) space of source points, i.e., the bifurcation surface
the observer atP, has the same shape as the envelope sh
in Fig. 7 but issues from the fixed point (xP ,yP ,z̃P) and
points in the opposite direction to the envelope~see Fig. 10!.

According to Eqs.~D2!, ~D8!, and ~D10!, the elements
inside but adjacent to the bifurcation surface approach
observer along the radiation directionxP2x with the wave
speed at the retarded time:

dR̄

dt
U

j5j6

52c. ~D29!

The accelerations of these elements at the retarded time

d2R̄

dt2
U

j5j6

5
a~b7

3 2bP!

b7~bP2b7!
~D30!

are positive on the sheetj5j1 of the bifurcation surface and
negative onj5j2 @see the paragraphs following Eq.~D11!#.
Hence the source points on thecusp curveof the bifurcation

FIG. 10. Cross sections with a meridional plane (m5const) of
the two sheets (j5j6) of the bifurcation surface of the observatio
point P for bP52. The truncated section of this surface, which
relevant to a short-lived source, is designated by heavier lines.
dotted region represents the volume occupied by the source.
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surface, for whichb15b25bP
1/3, approach the observe

with zero acceleration as well as with the wave speed.
An analysis similar to that presented in Appendix

shows that the ratiodt/dtP of emission to reception time
intervals for the waves that arise from the source element
the cusp curve is given by 21/3(bP

2/321)1/3(adtP /c)22/3. De-
noting the wavelength of the radiation byl and considering
the set of waves that are received by the observer wit
phase differencecdtP /l of only 1

2, we find that the ratio in
question has the value

dt/dtP.2~bP
2/321!1/3~ l /l!2/3, ~D31!

a value that can be exceedingly large: Forl;1 cm anda
;103 cm/s2, we havel /l;1018, so that this ratio is of the
order of 1012 even whenbP is not large. Thus the dominan
contributions towards the value of the radiation field co
from those source elements that approach the observer, a
the radiation direction, with the wave speed and zero ac
eration at the retarded time.

The preceding discussion applies to a source whose
span encompasses the interval 0,t,tP . If the source is
short lived, the locus of singularities ofḠ0 would be modi-
fied. We have already seen that when the source has
duration 0,t,T the envelope of the wave fronts emanati
from one of its elements consists, as in Fig. 9~d!, of only a
truncated section of the surface shown in Fig. 7 and p
sesses a cusp during only the correspondingly finite inte
of observation time~D12!. If we incorporate the finiteness o
the duration of the source in the expression forḠ0 by replac-
ing the upper limit of integration in Eq.~D28a! with T, then
the locus of singularities of the resulting modifiedḠ0 will
likewise consist of only a truncated section of the full bifu
cation surface, a section such as that designated by
heavier lines in Fig. 10. This locus likewise has a cusp o
during the limited interval of time~D12!.

For a value oftP well within the interval ~D12!, the z̃
extent of the truncated bifurcation surface in question is
the order of (cT)2/ l . This can be seen by noting that Eq
~D8! and ~D11! joinly yield the following value for thez
coordinate of the point of the envelope to which the wa
front emitted at the retarded timeb is tangential:z5zc

2(b2bP
1/3)2( 1

2 1bP
1/3/b). So, at an observation time clos

to the center of interval~D12!, e.g., forbP
1/35M1 1

2 cT/ l , the
difference between thez coordinates of the cusp and th
boundaryb5M ~or t50! of the truncated bifurcation sur
face is zc2zub5M5 3

8 (11 1
3 aT/u)(cT/ l )2. This expression

reduces to3
8 (cT/ l )2 whenaT/u!1.

In what follows we let the observation point be such th
the cusp curve of the bifurcation surface intersects the so
distribution ~as in Fig. 10! and designate the portions of th
source that fall inside and outside this surface byV̄in and
V̄out. Irrespective of the duration of the source, the sepa
tion of the patches of the two sheets of the bifurcation s
face that lie within the source is of the order ofbP

22/3l 21/2

and so is vanishingly small in the far zone@see Eq.~D14!#.
The boundaries of the volumeV̄in for a far-field observer
consist, therefore, of the surfacesj5j2 , j5j1 , andr50
if the source is long lived and of the surfacesj5j2 , j
on
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5j1 , and the smaller ofr50 and z̃5 z̃c2 3
8 (cT)2/ l if the

source has the durationT ~wherez̃c[ z̃P1zcl is the z̃ coor-
dinate of the cusp!.

The gradient of the scalar potential at such an observa
point is given, according to Eq.~D28b!, by

“PĀ05~“PĀ0! in1~“PĀ0!out ~D32!

in which

~“PĀ0! in,out[E
V̄in,out

dV̄ r̄“PḠ0
in,out52E

V̄in,out

dV̄ r̄“Ḡ0
in,out

5E
V̄in,out

dV̄ “ r̄Ḡ0
in,out2 R

]V̄in,out

r̄Ḡ0
in,outdS

~D33!

anddV̄ and]V̄ stand for the volume elementdx dy dz̃and
the boundary of the volumeV̄, respectively. Here we hav
used the fact thatḠ0

in,out depend on (xP ,yP ,z̃P) in the com-
binationsxP2x, yP2y, and z̃P2 z̃ to rewrite“PḠ0

in,out as
2“Ḡ0

in,out and have invoked the identityr“G52G“r
1“(rG) and the divergence theorem to arrive at the fin
expression in Eq.~D33!.

We have seen thatḠ0
in diverges on the sidesj5j1 and

j2 of the boundary]V̄in , but that this singularity ofḠ0
in is

integrable. Hadamard’s finite part of (“PĀ0) in consists,
therefore, of the volume integral overV̄in in the second line
of Eq. ~D33!. ~The contribution from the remaining side o
the boundary]V̄in that falls within the bifurcation surface
vanishes sincer̄50 on this boundary.!

The functionḠ0
in decays likep̄0 / c̄1

25O(R̄P
21/3) at points

interior to the bifurcation surface@see Eqs.~18!, ~19!, ~D24!,
and~D25!# and the volumeV̄in , together with the separatio
of the two sheets of the bifurcation surface, diminishes l
R̄P

22/3 @see Eqs.~D13! and ~D14!#. It therefore follows that
the volume integral in the expression~D33! for (“PĀ0) in

decays likeR̄P
21/33R̄P

22/3 in the far zone. That is to say,

F$~“PĀ0! in%5O~R̄P
21!, R̄P / l @1, ~D34!

a result that can also be inferred from the far-field version
Eq. ~D26! by explicit integration. Each component of th
volume integral in the expression~D33! for (“PĀ0)out has
the same structure as the expression for the potential i
and so decays likeR̄P

21 @see the paragraph containing E
~22!#.

To evaluate the surface integral in (“PĀ0)out it is more
convenient to change the variables of integration fro
(x,y,z̃) to the dimensionless polar coordinates~j,z,m! de-
fined by Eqs. ~D4!–~D6! and m[arctan@(y2yP)/(x2xP)#.
Then the elements of area on the sidesj5j1(z) andj2(z)
of the boundary]V̄out assume the forms

dSuj5j6~z!57 l 3j6dm dz “~j2j6!. ~D35!

The contribution from the other faces of]V̄out to the value of
the surface integral in Eq.~D33! is zero, for r̄ in the inte-
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grand of this integral vanishes on the boundary of the sou
distribution. The surface integral in question can therefore
written as

R
]V̄out

r̄Ḡ0
outdS5(

6
7 l 3E

S6

dz dm@jr̄Ḡ0
out#j6

“~j2j6!,

~D36!

in which the patchesS6 stand for the intersections of th
source distribution with the sheetsj5j6 of the bifurcation
surface, respectively.

Using Eqs.~D8!–~D10!, we obtain the following expres
sions for the vectors normal to these two sheets of the bi
cation surface:

“~j2j6!5 l 21@j6
21~ 1

2 b7
2 2 1

2 bP
2 1z!êz2êj#, ~D37!

where êj[@(xP2x)êx1(yP2y)êy#/( l j) is the radial unit
vector pointing away from the path of the source a
(êx ,êy ,êz) are the Cartesian basis vectors.

Furthermore, from Eq.~D18! and an appropriate versio
of Eq. ~19! we find that

Ḡ0
outuj5j6

5Ḡ0
outu x̄571;~ p̄072c̄1q̄0!/~3c̄1

2!, ~D38!

where we have removed the indeterminacy in the value
Ḡ0

out at x̄561 by expanding the numerator of Eq.~19! in
powers of its denominator and canceling out the comm
factor (x̄221)1/2 prior to evaluating the ratio in this equa
tion. This shows thatḠ0

outuj5j2
andḠ0

outuj5j1
remain differ-

ent even in the limit where the surfacesj5j2 andj1 coa-
lesce.

Insertion of Eqs.~D37! and ~D38! in Eq. ~D36! now
yields the asymptotic value of the required boundary term
the limit where the observer is located in the far zone and
source is localized about the cusp curve of his or her bi
cation surface. In this limit, the two sheets of the bifurcati
surface are essentially coincident throughout the domain
integration in Eq.~D36! @see Eq.~D14!#. So the difference
between the values of the source density on these two sh
of the bifurcation surface is negligibly small for a smooth
distributed source and the functionsr̄uj6

appearing in the
integrand of Eq.~D36! may correspondingly be approx
mated by their common limiting valuer̄BS(m,z̃) on these
coalescing sheets.

Once the functionsr̄uj6
are approximated byr̄BS(m,z̃)

andS6 are replaced with the surface resulting from the c
lescence of these two patches of the bifurcation surface,
~D37! and ~D38! yield an expression for the difference b
tween the two terms in the integrand of Eq.~D36!, which
reduces to

(
6

7j6“~j2j6!Ḡ0
outuj6

; 1
3 ~ 2

3 !3/2l 22~zc2z!21/2bP
22/3@jcêj2~2bP

2/311!êz#

~D39!
e
e

r-

f

n

n
e

r-

of

ets

-
s.

when it is expanded aboutz5zc @see Eqs.~D14! and~D23!–
~D25!#. To within the leading order in the far-field approx
mationbP@1, therefore, Eqs.~D36! and ~D39! yield

R
]V̄out

r̄Ḡ0
outdS; 1

2 ~ 2
3 !5/2êjbP

22/3l 1/2jcE
0

Lm /~jcl !
dm

3E
z̃c2Lz̃

z̃c
dz̃~ z̃c2 z̃!21/2r̄BS~m,z̃!

;~ 2
3 !5/2bP

22/3Lm~Lz̃ / l !1/2^r̄BS&êj ,

~D40!

with

^r̄BS&[E
0

1

dm̂E
0

1

dh r̄BSum5m̂Lm /~jcl !,z̃5 z̃c2h2Lz̃
,

~D41!

whereLm is the length of the segment of the cusp curve t
falls within the source andLz̃ is given either by thez̃ extent
of the intersection of the source distribution with the bifu
cation surface or by the smaller of this extent and3

8 (cT)2/ l ;
it is given by the former if the source is infinitely long live
and by the latter if the source has a finite life spanT.

According to Eq.~D13!, the distance between the cus
curve of the bifurcation surface and the observer at the
tarded time is R̄P.bPl for large values of bP[(u
1atP)/c. As the timetP elapses and the distance betwe
the source and the observer increases, therefore, the val
the above surface integral decays likeR̄P

22/3. The second
term in the expression~D33! for (“PĀ0)out thus dominates
the first term in this equation, which has the conventio
rate of decayR̄P

21, and so the quantity (“PĀ0)out itself de-
cays likeR̄P

22/3 in the far zoneR̄P@ l .
The electric current density associated with the mov

source we have been considering is given by

j̄ ~x,t !5cbr̄~x,y,z̃!u~ t !êz , ~D42!

in which cb ([u1at) is the velocity of the source patter
at time t. This current satisfies the continuity equatio
]r̄/](ct)1“• j̄50 in t.0 automatically.

If we insert Eq.~D42! in the expression for the retarde
vector potential@12# and change the variables of integratio
from ~x,y,z,t! to (x,y,z̃,b), as in Eq.~D28!, we obtain

Ā~xP ,tP!52E d3xE
2`

tP
dt j̄ ~x,t !d„uxP2xu22c2~ tP2t !2

…

5êzE dx dy dz̃r̄~x,y,z̃!

3Ḡ1~x2xP ,y2yP ,z̃2 z̃P ,tP!, ~D43!

in which Ḡ1 is given by

Ḡ1[2l 21E
M

bP
db b d~ ḡ!52l 21 (

b5b i

bu]ḡ/]bu21,

~D44!
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and ḡ andb i ’s are the same quantities as those appearin
Eq. ~D17!. Application of the method outlined in Appendi
A shows thatḠ1 is described by two different functionsḠ1

in

and Ḡ1
out inside and outside the bifurcation surface who

asymptotic values in the neighborhood of the cusp cu
have exactly the same functional forms as those ofḠ0

in,out,
the only difference being thatp̄0 andq̄0 in these expression
are replaced byp̄1 and q̄1 with the values

p̄1.
2

31/3 l 21bP
2/9, q̄1.

5

35/3 l 21bP
22/9 ~D45!

in the regimez̃c2 z̃! l @see Eqs.~18!, ~19!, and ~D18!–
~D24!#.

Hence the following expression for the magnetic fie
splits into two terms when the observation point is such t
the bifurcation surface intersects the source distribution:

B̄5“P3Ā52êz3E dV̄ r̄“PḠ1 . ~D46!

If we denote the contributions towards the value ofB̄ from
inside and outside the bifurcation surface byB̄in and B̄out,
then for the same reasons as those outlined in the paragr
following Eq. ~D33!, it turns out thatB̄in is divergent and has
a Hadamard finite part that decays like (p̄1 / c̄1

2)(j12j2)
5O(bP

22/3).
Moreover, B̄out consists of a volume integral with th

same structure as the potential and a surface integral o
form êz3r]V̄out

r̄Ḡ1
outdS. The volume integral in this cas

decays likebP
22/3 becausej̄ is proportional tobc5bP

1/3 at the
retarded time. However, the dominant contribution to
nonspherically diminishing part ofB̄ once again comes from
the surface integral in the expression forB̄out.

The evaluation of this surface integral entails precisely
same procedure as that followed in Eqs.~D35!–~D40!, ex-
cept thatp̄0 and q̄0 need to be replaced everywhere withp̄1
and q̄1 . The outcome of the calculation is

B̄;25~ 2
3 !5/2bP

21/3Lm~Lz̃ / l !1/2^r̄BS&êm , ~D47!

in which êm5êz3êj is the unit vector associated with th
azimuthal anglem[arctan@(y2yP)/(x2xP)#.

To find the remaining term]Ā/]tP5êz*dV̄ r̄]Ḡ1 /]tP in
the expression for the electric field, we now need to calcu
]Ḡ1 /]tP @see Eq.~D43!#. The Green’s functionḠ1 depends
on tP both throughbP and throughz̃P and hencez. Differ-
entiating the integral representation ofḠ1 in Eq. ~D44! with
respect to these two variables under the integral sign
using the chain rule, we obtain

]Ḡ1 /]tP54cl22E
M

bP
db b~b2bP!d8~ ḡ!, ~D48!

in which use has been made also of Eq.~D3!. This can be
cast into a form that is more appropriate for integration w
respect to the space coordinates by introducing the func

Ḡ2[2l 21E
M

bP
db b~bP2b!d~ ḡ!, ~D49!
in

e
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and noting that]Ḡ1 /]tP52c( l j)21]Ḡ2 /]j since ]ḡ/]j
52j according to Eq.~D3!.

Once the volume elementsdV̄ in the above integral rep
resentation of ]Ā/]tP is written in its polar form
l 3j dj dm dz, therefore, we arrive at

]Ā/]tP52cl2êzE dj dm dz r̄]Ḡ2 /]j. ~D50!

This splits into two terms when the observation point is su
that the bifurcation surface intersects the source distribut
]Ā/]tP5(]Ā/]tP) in1(]Ā/]tP)out with

~]Ā/]tP! in52cl2êzE
S

dm dzE
j2

j1

dj r̄]Ḡ2
in/]j,

~D51!

~]Ā/]tP!out52cl2êzE
S

dm dzS E
0

j2

1E
j1

` D dj r̄]Ḡ2
out/]j,

~D52!

whereS is the projection ofV̄in onto the~m,z! plane andḠ2
in

andḠ2
out differ from Ḡ0

in andḠ0
out only in that they entail

p̄2.
2

31/3 l 21bP
5/9~bP

2/321!, q̄2.325/3l 21bP
1/9~5bP

2/3211!

~D53!

in place ofp̄0 and q̄0 .
Integration by parts with respect toj shows@20# that the

Hadamard finite part of the integral in Eq.~D51! consists of

F$~]Ā/]tP! in%52cl3êzE
S

dm dzE
j2

j1

dj êj•“ r̄Ḡ2
in

~D54!

since the additional boundary term that results from this
tegration is divergent. In the far zone, this integral hasj
quadrature that is proportional to (p̄2 / c̄1

2)(j12j2)
5O(bP

1/3) @see Eqs.~D14! and ~D19!# and am quadrature
that is proportional toLm /( l jc) @see Eq.~D41! and the text
following it#. Its value decays, therefore, likebP

22/3.
The integration by parts with respect toj of the right-hand

side of Eq.~D52!, on the other hand, results in@20#

~]Ā/]tP!out5cl2êzH E
S

dm dz@r̄Ḡ2
out#j2

j1

2 l E
V̄out

dj dm dz êj•“ r̄Ḡ2
outJ ,

~D55!

whose terms are both finite. Since forbP@1 the retarded
value ofbP2b approximately equalsjc @see Eq.~D11!#, the
volume integral in Eq.~D55! is of the same structure as th
expression for the potentialĀ @cf. Eqs. ~D43!, ~D44!, and
~D49!# and so decays likebP

22/3. However, the surface inte
gral in this expression has a slower rate of decay.
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If, as in Eq. ~D40!, we approximater̄u6j by r̄BS(m,z̃),
then the relevant version of Eq.~D38! can be used to write
the asymptotic value of the surface integral in Eq.~D55! as

E
S

dm dz@r̄Ḡ2
out#j2

j1

;2 5
2 ~ 2

3 !5/2l 23/2bP
2/3E

0

Lm /~ l jc!

dm

3E
z̃c2Lz̃

z̃c
dz̃~ z̃c2 z̃!21/2r̄BS~m,z̄!

;25~ 2
3 !5/2l 22bP

21/3Lm~Lz̄ / l !1/2^r̄BS&,

~D56!

where use has been made of Eqs.~D19!, ~D53!, and~D41!.
This decays likeR̄P

21/3 when R̄P@ l @see Eq.~D13!#.
The far-field value of the contribution (]Ā/]tP)out, there-

fore, consists solely of the boundary term in Eq.~D55! and
dominatesF$(]Ā/]tP) in%, which decays likeR̄P

22/3. More-
over, the value thus implied by Eqs.~D51!–~D56! for
]Ā/]tP dominates that of“PĀ0 , which also has the deca
rateR̄P

22/3 in the far zone@see Eq.~D40! and the text follow-
ing it#.

Thus the electric field vector of the radiation is given b

Ē;2c21]Ā/]tP

;2c21~]Ā/]tP!out

;2 l 2êzE
S

dm dz@r̄Ḡ2
out#j2

j1

;B̄3êj , ~D57!

whereB̄ is the magnetic field vector given in Eq.~D47!. The
direction of propagation of the radiationêj is perpendicular
to the path of the source, i.e., coincides with the far-fi
limit of the normal to the envelope of wave fronts at its cu
@see the paragraph following Eq.~D11!#. The polarization
vector of the radiation lies along the direction of motion
the sourceêz .

Note that there has been no contribution toward the va
of Ē andB̄ from inside the bifurcation surface. These qua
tities have arisen in the above calculation solely from
jump discontinuities in the values of the Green’s functio
Ḡ0

out, Ḡ1
out, andḠ2

out across the coalescing sheets of the
f

s
-
e
s
-

furcation surface. We would have obtained the same res
had we simply excised the vanishingly small volum
limR̄P→`V̄in from the domains of integration in Eqs.~D33!,
~D46!, and~D50!.

The Poynting vector implied by Eqs.~D47! and ~D57! is

S̄;~ 5
3 !2~ 2

3 !3p21c^r̄BS&
2Lm

2 ~Lz̃ / l !~R̄P / l !22/3êj .
~D58!

In comparison, the magnitude of the Poynting vector for
coherent dipole radiation that would be generated by
macroscopic lump of charge, if it moved subluminal
with the constant accelerationa, is of the order of
(^r̄&L3)2a2/(c3RP

2 ), according to the Larmor formula
where L3 represents the volume of the source and^r̄& its
average density. The intensity of the present emission
therefore greater than that of even a coherent conventi
radiation by a factor of the order of (Lz̃/L)
3(Lm /L)2( l /L)5/3(R̄P /L)4/3, a factor that can exceed unit
by many orders of magnitude.

Note, finally, that the mechanism responsible for the
fect described here remains different from that which giv
rise to the Cˇ erenkov effect even in the limita→0. The elec-
tric field ~and the electric potential! owing to a rectilinearly
moving volume source of infinite duration whoseconstant
phase speed exceeds the speed of lightin vacuodecays non-
spherically, but with a different rate (R̄P

21/2) and for a differ-
ent reason: The emission time interval for those element
this source that approach the observer with the wave spee
the retarded time is by a factor of the order ofR̄P

1/2/(cdtP)1/2

greater than the time intervaldtP in which the signal gener-
ated by them is received. The resulting emission would v
late the inverse square law in this case only if the sourc
infinitely long lived. When the life span of the source
question is finite, both its potential and its field decay sphe
cally, for the contributing interval of retarded time
bounded by the duration of the source.

The present effect, in contrast, comes into play irresp
tive of whether the duration of the source is finite or infin
and gives rise to a nonspherically decaying caustic~at the
distanceR̄P.bPc2/a from the source! even in the limita
→0. Here it makes a difference whether we seta50 in Eq.
~D1! at the outset or whether we calculate the radiation fi
for a nonzero acceleration and then proceed to the lima
→0. The envelope of the wave fronts has no cusp in
former case, whereas there is a caustic in the latter case
merely moves to larger distances from the source asa→0
rather than disappear.
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