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Generation of focused, nonspherically decaying pulses of electromagnetic radiation
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Periodic pulses of polarized electromagnetic radiation can be generated whose intensity diminishes with the
distanceR, from their source IikeR;1 instead ongz. The source required is an extended charge with a
rotating distribution pattern whose outer parts move with linear phase speeds exceeding the speeéhof light
vacua The coherence and beaming of the radiation in question stem from constructive interference of the
emitted waves and formation of caustics. These processes take place at different distances from the source for
different sets of waves, so that the propagating wave packets embodying the pulses are constantly dispersed
and reconstructed out of other wavgS1063-651X98)05211-9

PACS numbes): 03.40.Kf, 41.20.Jb, 42.25p, 97.60.Gb

I. INTRODUCTION magnetospheric charges and currents in these objects are of
the same type as those described abf®8]. The effect
Bolotovskii and Ginzburg1] and Bolotovskii and Bykov responsible for the extreme degree of coherence of the ob-
[2] have shown that the coordinated motion of aggregates aferved emission from pulsars, therefore, may well be the
charged particles can give rise to extended electric chargedolation of the inverse square law that is here predicted by
and currents whose distribution patterns propagate with aur calculation. The present analysis is relevant also to the
phase speed exceeding the speed of lightacuoand that, mathematically similar problem of the generation of acoustic
once created, such propagating charged patterns act eadiation by supersonic propellers and helicopter rotors
sources of the electromagnetic fields in precisely the samgl0,11].
way as any other moving sources of these fi¢tte alsq3] We begin, in Sec. Il, by considering the waves that are
and[4]). That these sources travel faster than light is not, okemitted by an element of the superluminally rotating source
course, in any way incompatible with the requirements offrom the standpoint of geometrical optics. Next we calculate
special relativity. The superluminally moving pattern is cre-the amplitudes of these waves, i.e., the Green’s function for
ated by the coordinated motion of aggregates of sublumithe problem, from the retarded potenti&ec. ). In Sec. IV
nally moving particles. we introduce the notion of and specify the bifurcation sur-
In this paper we calculate the electromagnetic fields thatace: the locus of source points that approach the observer
are generated by an extended source of this type in the caséong the radiation direction with the wave speed at the re-
where the charged pattern rotates about a fixed axis with tarded time. Section V is then devoted to handling the sin-
constant angular frequencgThe simpler case in which the gularities of the integrands of the radiation integrals that oc-
superluminal source moves rectilinearly with a constant aceur on the bifurcation surface: The electric and magnetic
celeration is analyzed in an appendiXhis calculation and fields are given by the Hadamard finite parts of the divergent
its outcome shed light on a diverse set of problems. integrals that result from differentiating the retarded potential
The recently discovered solutions of the homogeneousinder the integral sign. In Sec. VI we give a descriptive
wave equation referred tmter alia, as nondiffracting radia- account of the analyzed emission process in more physical
tion beams, focus wave modes, or electromagnetic missileerms.
describe signals that propagate through space with unexpect- There are also four appendixes: Appendix A, in which the
edly slow rates of decay or spreadirtg. The potential prac- asymptotic values of the Green’s functions associated with
tical significance of such signals is clearly enormous. Thevarious components of the fields are calculated; Appendix B,
search forphysically realizablesources of them, however, whose task is to point out that singularities would occur ir-
has so far remained unsuccesdf]. Our calculation pro- respective of which alternative form of the retarded potential
vides a concrete example of the sources that are currentlye adopt; Appendix C, which is included to show that the
looked for in this field by establishing a physically tenabletime interval during which the contributions from a source
inhomogeneousolution of Maxwell's equations with the element on the bifurcation surface are made is by many or-
same characteristics. ders of magnitude longer than that in which these contribu-
Investigation of the present emission process was origitions are received; and Appendix D, which is concerned with
nally motivated by the observational data on pul§@isThe  rectilinearly moving accelerated sources with superluminal
radiation received from these celestial sources of radio wavegelocities. It emerges from the analysis in Appendix D that
consists of highly coherent pulséwith as high a bright- constructive interference of the emitted waves and formation
ness temperature as *PK) that recur periodically(with  of caustics occur, in the case of a short-lived source, only
stable periods of the order of 1 $ed@he intense magnetic long after the waves have emanated from the source and then
field (~10% G) of the central neutron star in a pulsar affectsonly for a finite period. During this period, the intensity of
a coupling between the rotation of this star and that of théhe propagating caustic that is generated by the rectilinearly
distribution pattern of the plasma surrounding it, so that themoving source in question decays only IiRe;Z’?’.
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FIG. 1. Envelope of the spherical wave fronts emanating from a
superluminally moving source poiit§) in a circular motion. The
heavier curves show the cross section of the envelope with the
plane of the orbit of the source. The larger of the two dotted circles
designates the orbiatr =3c/w) and the smaller the light cylinder

(rp=clw).

II. ENVELOPE OF THE WAVE FRONTS AND ITS CUSP

Consider a point sourcéan element of the propagating

distribution pattern of a volume soupcéhat moves on a
circle of radiusr with the constant angular velocitye, , i.e.,

whose pathx(t) is given in terms of the cylindrical polar

coordinates 1, ¢,2), by
r=const, z=const, ¢=¢+ ot, (1)

whereg, is the basis vector associated withnd ¢ the initial

value of ¢. The wave fronts that are emitted by this point
source in an empty and unbounded space are described by

Ixp—x(t)|=c(tp—1), 2

FIG. 2. Curve representing(¢) versuse for ¢p=0,7p=3, T
=2, and(a) z=2p, inside the bifurcation surfacghe envelopg
(b) z=Z,, on the cusp curve of the bifurcation surfagke enve-
lope), and(c) z=2z.—Zp, outside the bifurcation surfadthe en-
velope. The marked adjacent turning points of curie have the
coordinates ¢. ,¢-.) and ¢, represents the solution aj(¢)
= ¢ for a ¢, that tends top_ from below.

d=0—op (6)

stands for the difference between the positigrse — wt of
the source point an@p= ¢p— wtp of the observation point
in the (r,¢,2) space. The Lagrangian coordingtén Eq. (5)

where the constart denotes the wave speed and the coor-ies within an interval of length 2 (e.g., — m< <), while

dinates &p,tp) =(rp,¢p,zp,tp) Mark the space-time of ob-
servation points. The distand® between the observation

point xp and a source point is given by

Xe—X|=R(¢)=[(zp—2)*+r5+r?=2rpr codpp—¢)]"

()
so that inserting Eq1) in Eq. (2) we obtain
R(t)=[(zp—2)*+r5+r?=2rpr cog pp—o—wt)]"
=c(tp—1). (4)

These wave fronts are expanding spheres of redis—1t)
whose fixed center§ p=r, ¢p= ¢+ wt, andzp=z) depend
on their emission times (see Fig. 1

Introducing the natural length scale of the problefm
and usingt=(¢— @)/ w to eliminatet in favor of ¢, we can
express Eq(4) in terms of dimensionless variables as

9=¢—¢p+R(¢)=¢, 5

in which R= Rw/c and

the angleg, which denotes the azimuthal position of the
source point at the retarded tinheranges ovef—o, ).

Figure 1 depicts the wave fronts described by &j.for
fixed values of (,¢,z) and ¢ (or tp) and a discrete set of
values of ¢ (or t). These wave fronts possess an envelope
because when>c/w and so the speed of the source exceeds
the wave speed, several wave fronts with differing emission
times can pass through a single observation point simulta-
neously. Stated mathematically, for certain values of the co-
ordinates (p,®p,2zp ;r,z) the functiong(¢) shown in Fig. 2
is oscillatory and so can equdl at more than one value of
the retarded position: A horizontal line¢ = const intersects
curve(a) in Fig. 2 at either one or three points. Wave fronts
become tangential to one another and so form an envelope at
those points 1(p,¢p,zp) for which two roots ofg(¢)= ¢
coincide. The equation describing this envelope can there-
fore be obtained by eliminatinge betweeng=¢ and
a9l de=0.

Thus the values of on the envelope of the wave fronts
are given by

99/ d@=1—Ftpsin @p— @)/R(¢)=0. @)
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FIG. 3. Three-dimensional view of the light cylinder and the
envelope of the wave fronts for the same source p@nas that in
Fig. 1 (only those parts of these surfaces that lie within the cylin-
drical volumerp=<9, —2.25<7,—2<2.25 are shown The two-
sheeted tubelike surface constituting the envelope is symmetric with
respect to the plane of the orbit and the cusp along which its sheets
»=¢.(rp,zp) meet is tangential to the light cylinder. For faster
moving source points, the two sheets of the envelope intersect one
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another, as in Fig. 5.

When the curve representigf ¢) is as in Fig. 2, curvea)
(i.e.,r>1 andA>0), this equation has the doubly infinite
set of solutionsp= ¢.. +2n7, where

©.=@pt+2m—arccof(1FAY?)/(FTp)], (8)

©)

nis an integer, andr(z;fp,zp) stand for the dimensionless
coordinatesr w/c, zw/c, rpw/c, and zpw/c, respectively.
The functiong(e) is locally maximum ate, +2n7 and
minimum ate_ +2n7r.

Insertinge= ¢ in EQ.(5) and solving the resulting equa-
tion for ¢ as a function ofp,zp), we find that the envelope
of the wave fronts is composed of two sheets

A=(FE-1)(*~1)~(2-2)%

b=¢.=0g(p.)=2m—arcco§(1FAY3)/(FTp)]+R. ,
(10

in which
R.=[(2—2p)2+724f2-2(1FAY12 (11

are the values oR at ¢=¢-.. For a fixed source point

U

H

|
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FIG. 4. Segment-15<7,—27z=<15 of the cusp curve of the en-
velope shown in Fig. 3. This curve touches, and is tangential to, the
light cylinder at the pointfp=1, Zp=2 ¢= ¢C|rP:1) on the plane
of the orbit.

curve ¢p= ¢, z=2., the functiong(¢) has a point of in-
flection [Fig. 2, curve(b)] and d°g/d¢?, as well asdg/de
andg, vanishes at

o=opp+2m—arccofl(irp)]=o.. (129
This, in conjunction witht=(¢— ¢)/w, represents the com-
mon emission time of the three wave fronts that are mutually
tangential at the cusp curve of the envelope.

In the highly superluminal regime, where>1, the sepa-
ration of the ordinategp, and ¢_ of adjacent maxima and

(r.®,2), Eq.(10) describes a tubelike spiraling surface in theminima in Fig. 2, curve(@), can be greater thann2 A hori-
(rp,®p,zp) Space of observation points that extends fromzontal line ¢=const will then intersect the curve represent-

the speed-of-light cylinderp=1 to infinity (see Figs. 1 and
3.

The two sheetsh= ¢.. of this envelope meet at a cusp.

The cusp occurs along the curve

p=2m—arccofl/(itp)]+ (F3r2—1)"’=¢,, (129

7=7p+ (F2—1)Y4F2-1)Y=7, (12b)

ing g(¢) at more than three points and so give rise to simul-
taneously received contributions that are made at 5, 7,...,
distinct values of the retarded time. In such cases, the sheet
¢_ of the envelopdissuing from the conical apex of this
surface undergoes a number of intersections with the sheet
¢, before reaching the cusp curas in Fig. 5. We shall be
concerned in this paper, however, mainly with source ele-
ments whose distances from the rotation axis do not appre-
ciably exceed the radius/w of the speed-of-light cylinder

shown in Fig. 4, and constitutes the locus of points at whichand so for which the equatiog(¢)= ¢ has at most three
threedifferent wave fronts intersect tangentially. On the cuspsolutions.
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proceed to find the Lienard-Wiechert potential for these
waves.

The scalar potential arising from an element of the mov-
ing volume source we have been considering is given by the
retarded solution of the wave equation

V,ZGO_(S’ZGO,(S’(Ct,)zz_47Tp0, (148)
in which

po(r', @' ,2 t")=6(r"—1)8(¢' —wt' —@)8(z' —2)Ir’
(14b

is the density of a point source of unit strength with the
trajectory (1). In the absence of boundaries, therefore, this
potential has the value

Golxp tp) = f At po(x' ')

X 8(tp—t' —|xp—X'|/C)/|xp—X'| (153
FIG. 5. Light cylinder and the bifurcation surface associated

with the observation poirf for a counterclockwise source motion. +
In this figure,P is located aff p=9 and only those parts of these —f
surfaces that lie within the cylindrical volume<11, —1.5<Z 158
—27Zp=<1.5 are shown. The two sheefs= ¢. (r,z) of the bifurca- (15D
tion surface meet along a cugp curve of the same shape as that \yhere R(t') is the function defined in Eq) (see, e.g.,
shown in Fig. 4 that is tangenAtiaI to the light cylinder. For an [12]).
observation point in the far zone{>1), the spiraling surface that
issues fromP undergoes a large number of turns, in which its two
sheets intersect one another, before reaching the light cylinder.

dt’ 8(tp—t' —R(t")/C)/R(L"),

— o0

If we use Eq.(1) to change the integration variakié in
Eqg. (15b) to ¢ and express the resulting integrand in terms of
the quantities introduced in Eg®), (5), and(6), we arrive at
At points of tangency of their fronts, the waves that inter- .
fere constructively to form the envelope propagate normal to AA N f ” _
the sheetsp= ¢ (rp,zp) of this surface, in the directions Golrirp 9= ¢p.2=2p)= | de 2(g(¢) = A)R(¢).

A.=(clw)Vp(¢:—¢)=& [Fr—Tp (1T AYAVR, 1o

This can then be rewritten, by formally evaluating the inte-

+8,,/Tp+&,(2p—2)/R., (13  gral, as
with the speedc. (&, &,,, andég,, are the unit vectors 1
associated with the cylindrical coordinates, ¢p, andzp GO:(;;D- Rlaglde|’ (17
J

of the observation point, respectivel\Nevertheless, the re-
sulting envelope is a rigidly rotating surface whose shapgyhere the angleg; are the solutions of the transcendental
does not change with time: In the{,¢p,zp) Space, its equationg(¢) = ¢ in —o< @<+ and correspond, in con-

conical apex is stationary at (p,z) and its form and dimen- jynction with Eq. (1), to the retarded times at which the

sions only depend on the constant parameter source point ,¢,z) makes its contribution towards the
The set of waves that superpose coherently to form a paga|ue of G, at the observation point §,op ,zp).

ticular section of the envelope or its cusp therefore cannot be Equation(17) shows, in the light of Fig. 2, that the poten-
the same(i.e., cannot have the same emission timasdif- 5 G, of a point source is discontinuous on the envelope of
ferent observation times. The packet of focused waves colyne wave fronts: If we approach the envelope from outside,
stituting any given segment of the cusp curve of the envee sum in Eq(17) has only a single term and yields a finite
lope, for instance, is constantly dispersed and reconstructeg),e for G, but if we approach this surface from inside,
out of other waves. This one-dimensional caustic would no},yq of the ¢;’s coalesce at an extremum gfand Eq.(17)

be unlimit_ed_ i.n its extent as shown in Fig. 4, unless.theyiekjS a divergent value fo6,. Approaching the sheep
source is infinitely long lived: Only then would the duration _ #. or ¢_ of the envelope from inside this surface corre-

of the source encompass the required intervals of emissiogbondS in Fig. 2, to raising or lowering a horizontal lie
time for every one of its constituent segme(at the similar =¢0=(;onst, witH b_<do=c, , until it intersects curve
caustic encountered in Appendix.D (a) of this figure at its maximum or minimum tangentially.
Il. AMPLITUDES OF THE WAVES GENERATED At an observation point thus approached, the sum in(E4.
BY A POINT SOURCE has three terms, two of which tend to |r_1f|n|ty._ _
On the other hand, approaching a neighboring observation
Our discussion has been restricted so far to the geometrpoint just outside the sheebt=¢_ (say of the envelope
cal features of the emitted wave fronts. In this section wecorresponds, in Fig. 2, to raising a horizontal lige= ¢
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=const, with¢g< ¢ _ , towards a limiting position in which The potential of a volume source, which is given by the
it tends to touch curvéa) at its minimum. As long as it has superposition of the potentials, of its constituent volume
not yet reached the limit, such a line intersects cujeat elements and so involves integrations with respect to
one point only. The equatiog(¢) = ¢ therefore has only a (r,¢,z), is therefore finite. Since they are created by the
single solutiong= ¢, in this case, which is different from coordinated motion of aggregates of particles, the types of
both ¢, and¢_ and so at whichig/d¢ is nonzerasee Fig. sources we have been considering cannot, of course, be
2). The contribution that the source makes when located gpointlike [1,2]. It is only in the physically unrealizable case
o= @t IS received by both observers, but the constructivelywhere a superluminal source is pointlike that its potential has
interfering waves that are emitted at the two retarded posithe extended singularities described above.
tions approaching_ only reach the observer inside the en-  In fact, not only is the potential of an extended superlu-
velope. minally moving source singularity free, but it decays in the

The functionG, has an even stronger singularity at the far zone like the potential of any other source. The alterna-
cusp curve of the envelope. On this curve, all three of thdive form of the retarded solution to the wave equation
¢;’s coalescdFig. 2, curve(b)] and each denominator in the V?Ag—d°Ag/d(ct)?= —4mp [which may be obtained from
expression in Eq(17) both vanishes and has a vanishing (158 by performing the integration with respect to tiine
derivative @g/de=°gld@?=0).

'I_'h_ere i_s a standa_rd asympto_tic tec_hnique for evaluating Ao:J' d3x p(%,tp— |x—Xp|/C)/|X—Xp|, (22)
radiation integrals with coalescing critical points that de-
scribe caustic$13—15. By applying this technique, which
we have outlined in Appendix A, to the integral in H36),
we can obtain a uniform asymptotic approximatiorgfor
small|¢, —¢_|, i.e., for points close to the cusp curve o
the envelope wher&, is most singular. The result is

shows that if the density of the source is finite and vanishes
outside a finite volume, then the potentid}) decays like

f |xp| ! as the distanchxp— x| =|xp| of the observer from the
source tends to infinity.

Gg‘~201’2(1—)(2)’1’2[p0005(% arcsiny) IV. THE BIFURCATION SURFACE OF AN OBSERVER

Let us now consider aextendedource that rotates about

—cyqesin(§ arcsiny)],  [x|<1, (18 thezaxis with the constant angular frequensyThe density
of such a source, when it has a distribution with an unchang-
and ing pattern, is given by
Go''~cy A(x*— 1) Y posini 3 arccoshy|) p(r,e.2)=p(r,$,2), (23)
+¢100SgM x)sinh($ arccoshy|)], |x|>1, where the Lagrangian variable is defined bye— wt as in

Eqg. (1) and p can be any function ofr(¢,z) that vanishes
(19 outside a finite volume.
If we insert this density in the expression for the retarded
scalar potentia]12] and change the variables of integration
from (r,¢,z,t) to (r,¢,z,t), we obtain

wherec,, pg. 0o, andy are the functions ofr,z) defined in
Egs.(A2), (A5), (A6), and(A10) and approximated in Egs.
(A23)—(A30). The superscripts “in” and “out” designate
the values ofG, inside and outside the envelope and the
variable y equals+1 and—1 on the sheetg=¢, and¢_ Ao(xp,tp)=f d3x dt p(x,t) 8(tp—t—|x—Xp|/C)/|x—Xp|

of this surface, respectively. (243
The functionG5" is indeterminate but finite on the enve-
lope [cf. Eq. (A39)], whereasGy diverges likev3c; ?(po - .
FC100)/(1— x*»)*? as y— = 1. The singularity structure of :f rdrde dzp(r,¢,2)
Gy close to the cusp curve is explicitly exhibited by A
XGo(r,rp,¢— ¢p,2—2Zp), (24b)
G~ 3—5,3 (wlc)(F%2—1) YAz, )Y c3(2.— 2)° whereG, is the function defined in Eq16) that represents
the scalar potential of a corresponding point source. That the
—(po— )2]H2 (20) potential of the extended source in question is given by the
superposition of the potentials of the moving source points
in which 0<z,—2<1, |¢.— ¢|<1, and that constitute it is an advantage that is gained by marking

the space of source points with the natural coordinates
(r,®,z) of the source distribution. This advantage is lost if
we use any other coordinatésf. Appendix B.

In Sec. lll, where the source was pointlike, the coordi-
[see Eqs(18) and(A22)—(A26)]. It can be seen from expres- nates (,¢,z) of the source point inGy(r,rp,¢o— ¢p,z
sion (20) that both the singularity on the envelofs which  —zp) were held fixed and we were concerned with the be-
the quantity inside the square brackets vanishes the sin- havior of this potential as a function of the coordinates
gularity at the cusp curv@t whichz,—z and ¢.— ¢ vanish (rp,¢p,zp) Of the observation point. When we superpose
are integrable singularities. the potentials of the volume elements that constitute an ex-

2 ... A A
COE3—2,§(r2r§,—1) Yra—-nYAr2-1)2 (21
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The elements inside but adjacent to the bifurcation sur-
face, for whichG, diverges, are sources of the constructively
interfering waves that not only arrive Btsimultaneously but
also are emitted at the sanfestarded time. These source
elements approach the observer along the radiation direction
Xp—X with the wave speed at the retarded time, i.e., are
located at distanceR(t) from the observer for which

dR

a =—C (25)

t=tp—R/c

[see Egs(4), (7), and(8)]. Their accelerations at the retarded
time,
d’R

F =+—= , (26)

t=tp—R/c

are positive on the sheei= ¢ _ of the bifurcation surface
and negative orp= ¢, .

The source points on theusp curveof the bifurcation
surface, for whichA=0 and all three of the contributing
retarded times coincide, approach the observer, according to
Eq. (26), with zero acceleration as well as with the wave

FIG. 6. Full curves depict the cross section, with the cylinder
r=1.5, of the bifurcation surface of an observer locatedpat 3.
(The motion of the source is counterclockwjsg&he projection of
the cusp curve of this bifurcation surface onto the cylinden.5 is

shown as a dotted curve and the region occupied by the source assg?:ed. diati int of vi th t effecti |
dotted area. In this figure the observer’s position is such that one ofI roma r? If? ve p0|r|1 ol V|Iew, € most efiective vo urr?e
the points(é=d., 2=2,) at which the cusp curve in question elements of the superluminal source in question are those

intersects the cylinder= 1.5, the one witre,>0, is located within that approach the observer along the, radiation direction W,ith
the source distribution. As the radial positiop of the observation ~the wave speed and zero acceleration at the retarded time
point tends to infinity, the separation, at a finite distancez from  Since the ratio of the emission to reception time intervals for
(¢¢,20), of the shown cross sections decreases k& the waves that are generatec_j by these particular source el_e-
) ments generally exceeds unity by several orders of magni-
tended source, on the other hand, the coordinategde (see Appendix © On each constituent ring of the
(rp.¢ep,2zp) are held fixed and we are primarily concernedsoyrce distribution that lies outside the light cylinder (
with the behavior of5, as a function of the integration vari- =clw) in a plane of rotation containing the observation
abl;s f'ﬁ"’é%- s invariant under the interch o6 point there are two volume elements that approach the ob-
g ecauseso |s_f|nv_ar|an hun erthein errc]: angg £,2)  server with the wave speed at the retarded time: one whose
En (r5P "PF’d’Zié' ‘f;]'s att el samefgme changed-tap [sfee distance from the observer diminishes with positive accelera-

: qt?\.( ) and(16)], t efsmgu arity 'Ot Oﬂ?(ﬁl”s ?hn asur acE tion and another for which this acceleration is negative.
':S tk?e(ré(rﬁ\,/ze)lspgcs%gwiorr{cgi pm; Eut ?ssuaess fr?);amz Sfixae hese two elements are closer to one another the smaller the
oint (rp ¢ zp) and spirals e?rbund theaxis in the oppo- adius of the ring. For the smallest of such constituent rings,

gite dirgc,t(ipopn’ tg the enselop(esee Fig. 5 In this papeEF\)Ne i.e., for the one that lies on the light cylinder, the two volume
refer to this locus of singularities db, as thebifurcation el_ements In question coincide and approach the observer also
with zero acceleration.

surfaceof the observation poire. . . L
Consider an observation poiRtfor which the bifurcation The other constituent rings of the source distribution

surface intersects the source distribution, as in Fig. 6. Th&hose on the planes of rotation that do not pass through the
envelope of the wave fronts emanating from a volume eleObservation point likewise contain two such elements if
ment of the part of the source that lies within this bifurcationtheir radii are large enough for their velocitye, to have a
surface encloses the poiRt butP is exterior to the envelope component along the radiation direction equalctdOn the
associated with a source element that lies outside the bifusmallest possible ring in each plane, there is again a single
cation surface. volume element, at the limiting position of the two coalesc-
We have seen that three wave fronts, propagating in difing volume elements of the neighboring larger rings, that
ferent directions, simultaneously pass an observer who is lanoves towards the observer not only with the wave speed
cated inside the envelope of the waves emanating from hut also with zero acceleration.
point source and only one wave front passes an observer For any given observation poif, the efficiently radiat-
outside this surface. Hence, in contrast to the source eleng pairs of volume elements on various constituent rings of
ments outside the bifurcation surface that influence the pothe source distribution collectively form a surface: the part of
tential atP at only a single value of the retarded time, this the bifurcation surface associated wkhthat intersects the
potential receives contributions from each of the elementsource distribution. The locus of the coincident pairs of vol-
inside the bifurcation surface #tree distinct values of the ume elements, which is tangential to the light cylinder at the
retarded time. point where it crosses the plane of rotation containing the
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observer, constitutes the segment of the cusp curve of this Because the dominant contributions towards the value of
bifurcation surface that lies within the source distribution. the radiation field come from those source elements that ap-
Thus the bifurcation surface associated with any giverproach the observer, along the radiation direction, with the

observation point divides the volume of the source into twowave speed and zero acceleration at the retarded time, in
sets of elements with differing influences on the observedvhat follows we shall be primarily interested in far-field ob-
field. As in Egs.(18) and(19), the potentialss; andG5™" of  servers, the cusp curves of whose bifurcation surfaces inter-
the source elements inside and outside the bifurcation susect the source distribution. For such observers, the Green’s
face have different forms: The bounddry(r,rp,¢—¢p,z  function Iin‘pP%_Go undergoes a jump discontinuity across
—2p)|=1 between the domains of validity of Eq48) and  the coalescing sheets of the bifurcation surface: The values
(19 deliqeates the envelope of wave frontsAwhen the sourcef y on the sheets¢=¢., and hence the functions
point (r,¢,2) is fixed and the coordinatesg, ¢p,zp) Of the  Gg'{,_, andG§"j,-, , remain different even in the limit

observation point are variable and describes the bifurcatiop oy 4= and&. coincidelcf. Eas.(A10) and (A39
surface when the observation poimt(¢p,zp) is fixed and $=9- ¢+ [cf. Eds.(AL0) (A39)]

the coordinatesr(¢,z) of the source point sweep a volume.
The expressiori24b) for the scalar potential correspond- v, DERIVATIVES OF THE RADIATION INTEGRALS
ingly splits into the following two terms when the observa- AND THEIR HADAMARD FINITE PARTS
tion point is such that the bifurcation surface intersects the ) )
source distribution: A. Gradient of the scalar potential
In this section we begin the calculation of the electric and
magnetic fields by finding the gradient of the scalar potential
Ao=f dV pGy (273 A, i.e., by calculating the derivatives of the integral in Eq.
(279 with respect to the coordinatesy(, ¢p,zp) of the ob-
servation point. If we regard its singular kerrg} as a clas-
_ in out sical function, then the integral in ER73a is improper and
fv,ndv PGo* Jvomdv PG 279 cannot be differentiated under the integral sign without char-
. acterizing and duly handling the singularities of its integrand.
wheredV=r dr d¢ dz, V;, andV,, designate the portions On the other hand, if we regafs, as a generalized function,
of the source that fall inside and outside the bifurcation surthen it would be mathematically permissible to interchange
face (see Fig. 6, andGy' and G§"* denote the different ex- the orders of differentiation and integration when calculating
pressions foiG, in these two regions. Note that the bound- VA,.
aries of the volumev,, depend on the positiorr ¢, ¢p ,zp) This interchange results in a new kerfépG, whose
of the observer: The parametgy fixes the shape and size of singularities are nonintegrable. However, the theory of gen-
the bifurcation surface and the positions(¢p,zp) of the  eralized functions prescribes a well-defined procedure for
observer specifies the location of the conical apex of thisbtaining the physically relevant value of the resulting diver-
surface. When the observation point is such that the cusgent integral, a procedure involving integration by parts that
curve of the bifurcation surface intersects the source distriextracts the so-called Hadamard finite part of this integral
bution, the volumeV;, is bounded byp=¢_, ¢=¢ ., and [16]. Hadamard’s finite part of the divergent integral repre-
the part of the source boundapsyr,¢,z) =0 that falls within ~ sentingV pA, yields the value that we would have obtained
the bifurcation surface. The corresponding voluMg, is  if we had first evaluated the original integral f8g as an
bounded by the same patches of the two sheets of the bifuexplicit function of (p,¢p,zp) and then differentiated it.
cation surface and by the remainder of the source boundary. From the standpoint of the theory of generalized func-
In the vicinity of the cusp curvél?2), i.e., for |p.— ¢| tions, therefore, differentiation of E2749 yields
<1 and O<z.—2z<1, the cross section of the bifurcation
surface with a cylinder =const is described by
VPAOZJ dV pVpGo=(VpAg)int (VpA0)outs

¢s— do=— (PP YAFR-DVAFHE-1) VA2~ 2) (29
23/2
- (F2-1)(F-1)% in which
X (F3F2—1)"33(2,—2)%2 (28)
[see Eqs(10)—(12) and(A26)]. This cross section, which is (VpAQ)inou= L dV pVpGgot, (29
shown in Fig. 6, has two branches meeting at the intersec- inout
tions of the cusp curve with the cylindér=const whose

separation inp, at a giverz,— 2, diminishes likef¥?inthe  Sincep vanishes outside a finite volume, the integral in Eq.

limit Tp—oc. Thus, at finite distanceg.—z from the cusp (273 extends over all values of (¢,z) and so there is no
curve, the two sheet$=¢_ and ¢ of the bifurcation sur- contribution from the limits of integration towards the de-
face coalesce and become coincident with the suriace rivative of this integral.

=1(4_+¢,)=c, asfp—x, that is to say, the volum¥;, The kernelsV xG"°"" of the above integrals may be ob-
vanishes liker 5 2. tained from Eq(16). Applying V p to the right-hand side of
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Eq. (16) and interchanging the orders of differentiation and

integration, we obtain an integral representationVafG,
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Let us choose an observation point for which the cusp
curve of the bifurcation surface intersects the source distri-

consisting of two terms: one arising from the differentiation bution (see Fig. 6. When the dimensions<{L) of the source
of Rthat decays |ikar,;2 asrp— and so makes no contri- are negligibly smaller than those of the bifurcation surface
bution to the field in the radiation zone and another thati.e., whenL<rp and soz,—z<rp throughout the source

arises from the differentiation of the Dirag function and

decays less rapidly thar;z. For an observation point in the

radiation zone, we may discard terms of the orderfand
write

+ o0
Vpeoz(w/c)f de R715'(g— )R, Tp>1, (30)

in which &’ is the derivative of the Dirac delta function with

respect to its argument and

A=8& [fp—T cogo—¢p)I/R+&, /fp+8, (2p—2)/R.
(31)

Equation(30) yields V G or V .G depending on whether

¢ lies within the interval ¢_ ,¢.) or outside it. If we now

insert Eq.(30) in Eq. (29b) and perform the integrations with

respect top by parts, we find that

(VpAo)in:(w/C)fSr dr dzl —[pGilﬂ]Zzit

by o .
+f d¢ dpldp '1“}, re>1, (32
¢

and

(VpAo)ou=( /) f rdr dz[[pei“t]i_f;*
3 :

+

b + " "
f +J )d¢> apldg Gg“‘], Fp>1,
-7 [
(33

in which S stands for the projection o¥;, onto the ¢,z)
plane andGy and G are given by the values of

+ o0
Gi= [ “do R g~ 9= 5 Raglagl
o e
| (34
for ¢ inside and outside the intervad(_ ,¢.), respectively.

Like Gg', the Green's functioi]' diverges on the bifur-
cation surfacep= ¢.., wheredg/d¢ vanishes, but this sin-

distribution the functionsG"°"in Egs.(32) and(33) can be
approximated by their asymptotic valu@s34) and(A35) in
the vicinity of the cusp curvésee Appendix A

According to Egs.(A34), (A36), and (A44), G decays
like p1/c§=O(1) at points interior to the bifurcation surface
where Iirrhp_mx remains finite. Since the separation of the

two sheets of the bifurcation surface diminishes Iike"?
within the sourcdsee Eq(28)], it therefore follows that the
volume integral in Eq(32) is of the order of 52, a result
that can also be inferred from the far-field version of Eq.
(A34) by explicit integration. Hence

FUVpA)in}=0( %3, fp>1, (35)

decays too rapidly to make any contribution towards the
value of the electric field in the radiation zone.

BecauseG{" is, in contrast taG}', finite on the bifurca-
tion surface, both the surface and the volume integrals on the
right-hand side of Eq(33) have finite values. Each compo-
nent of the second term has the same structure as the expres-
sion for the potential itself and so decays like' (see the
ultimate paragraph of Sec. ]Il However, the first term,
which would have canceled the corresponding boundary
term in Eq.(32) and so would not have survived in the ex-
pression forVpAg had the Green’s functio; been con-
tinuous, behaves differently from any conventional contribu-
tion to a radiation field.

Insertion of Eq.(A39) in Eqg. (33 yields the following
expression for the asymptotic value of this boundary term in
the limit where the observer is located in the far zone and the
source is localized about the cusp curve of his or her bifur-
cation surface:

J rdr dz[peg“‘]jj~§c;2J rdrdz[pi(plg, —pls.)

+2¢101(ply, +pl )] (36)

In this limit, the two sheets of the bifurcation surface are
essentially coincident throughout the domain of integration
in Eqg. (36) [see EQg.(28)]. So the difference between the
values of the source density on these two sheets of the bifur-
cation surface is negligibly small~f%? for a smoothly
distributed source and the functiop$, appearing in the

gularity of GI is integrable so that the value of the secondintegrand of Eq(36) may correspondingly be approximated

integral in Eq.(32) is finite (see Sec. Il and Appendix)A
Hadamard'’s finite part ofV{ pAp)i, (denoted by the prefif)

is obtained by simply discarding those “integrated” or

boundary terms in Eq32) that diverge(see[16]). Hence the
physically relevant quantity{(V pA)i,} consists, in the far
zone, of the volume integral in EQ32).

by their common limiting valugg(r,z) on these coalescing
sheets.

Once the functiong|,, are approximated bygg(r,2)
andq; by Eqg.(A41), Eq. (36) yields an expression that can
be written, to within the leading order in the far-field ap-
proximationt p>1 [see Eqs(A44) and(A45)], as
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+
Lr dr dZ[pGgUI]if Gy= J_ de €,6(9(¢) — $)/R(e)
. . _ -1 ~17
N23/2(C/w)2r;3/2ﬁ dF(F2—1)"n, (PZ%_ R™Yaglae| *e,, (42
% andg and ¢;’s are the same quantities as those appearing in
x[ dz(z.—2) Y2pg4(r,z) Eq. (17) (see also Fig. 2
%~ Lywlc Because EQs.(17), (34), and (42) have the factor
T |ag/ 9|t in common, the functioi, has the same singu-
~25’2(c/w)2F;3’2fA di(F2—1)" Yn,(Ls0/c) Y pg), larity structure as those dB, and G;: It diverges on the
f<

bifurcation surfacedg/de=0 if this surface is approached
(37 from inside and it is most singular on the cusp curve of the
bifurcation surface where in addition?g/d@?=0. It is,
with moreover, described by two different expressi@sis and
G9" inside and outside the bifurcation surface whose
1 asymptotic values in the neighborhood of the cusp curve
<PBS>(r)EJO d7 pes(r12)|z=2- 205 (38 have exactly the same functional forms as those found in
Egs.(18) and(19), the only difference being thaty andqg

Cl(r)<7< <r< - in these expressions are replaced by pheandq, given in
where z.—Ly(r)<z<z, andr_<r=<r. are the intervals Eq. (A37) (see Appendix A

over which the bifurcation surface intersects the source dis- ) . S
tribution (see Fig. 6. The quantity(pge)(r) may be inter- As in Eq.(29), therefore, the time derivative of the vector
preted, at any given, as a weighted average, over the inter- p(_)tent|al has the formyA/dte=(9A/dtp)int (IA/Itp) our.
section of the coalescing sheets of the bifurcation surfac?—f\vIth
with the planez=z.— %°L;, of the source density. _

The right-hand side of Eq37) decays liker,*? asrp (IA]3tp)in ou= — © f dV TpaGy o, (43
—o, The second term in Eq33) thus dominates the first Vin,out
term in this equation and so the quantity gAy) o itself

o when the observation point is such that the bifurcation sur-
decays likerp = in the far zone.

face intersects the source distribution.
The functionsG,"°" depend onpp and ¢ in the combi-
B. Time derivative of the vector potential nation @ — ¢p only. We can therefore replacédep in Eq.
Inasmuch as the Charge dens{‘%) has an unchanging (43) by —&/é’é\oand perform the integl‘ation with reSpeCt(:dEO
distribution pattern in ther(g,z) frame, the electric current by parts to arrive at
density associated with the moving source we have been

considering is given by ((;A/rytp)inzcj dr dz }2[[pGi2n]$i+
S - —
jx,=rwp(r,¢,2)e,, (39
(44)

by o
—j d¢ dplde G5
¢

in whichr we,= rw[—sin(go—gop)érPJr cos(go—cpp)é%] is the
velocity of the element of the source pattern that is located at
(r,¢,z). This current satisfies the continuity equationand
dpld(ct)+V-j=0 automatically.

In the Lorentz gauge, the retarded vector potential corre- PINE _ _Cf dr dz 3! 1pGoué=24+
sponding to Eq(24a has the forn{12] ( Plou s LpG2y- s

& +
A(xp,tp)chlf d3x dtj(x.t) + fw+f¢+ >d¢ dplde GS”‘]- (45)
X 8(tp—t—|x—xp|/C)/|x—xp|. (400  For the same reasons as those given in the paragraphs fol-

lowing Egs. (32) and (33), Hadamard's finite part of

If we insert Eq.(39) in Eq. (40) and change the variables of (9A/dtp);, consists of the volume integral in EGL4) and is

integration from ¢,¢,z,t) to (r,¢,2,¢), as in Eq.(24), we  of the order off ;%2 [note that, according to EqéA37) and

obtain (A42), p,>c,q, andp,/c2=0(1)]. The volume integral in

Eq. (45), moreover, decays Iikégl, as does its counterpart

in Eq. (33).

The part ofdA/dtp that decays more slowly than conven-
tional contributions to a radiation field is the boundary term
in which dvV=r dr d¢ dz, the vectorG,, which plays the in Eq.(45). The asymptotic value of this term is given by an
role of a Green’s function, is given by expression similar to that appearing in Eg6), except that

AZJ'dV ?p(rv;oaz)GZ(rrrPvg’b_QDP’Z_ZP)r (41)
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p; andq; are replaced by, andg,. Once the quantities

p|¢+ andq, in the expression in question are approximated

by pgs and Eq.(A42), as before, it follows that

(’9A/(9tp)out~_cf dr dz PU)G%UI]?
S _

4 "2 -1
~— 3¢ _dr dz Ppese; o,

512 v
~—— (o) "%, J dr 72

><<f2—1>-1/4j7° A2z~ 2) pgs.

z—Lswlc

(46)
This behaves liké % astp— o since thez quadrature in
Eq. (46) has the finite value 2Gw/c)Y¥ pgg) in this limit
[see EQ.(37) and the text following it Hence the electric
field vector of the radiation
E=— VPAO_ 3A/&(Ctp)~ - C_l(aA/ﬂtp)out

27/2 ) R T o
~3 (c/w)rgl’ze%Ji Tdf FA(F2- 1) Y4 Lsw/c) Y& pgg)
<

(47)
~172

itself decays liker, < in the far zone: As we have already
seen in Sec. V A, the teri¥ pAg has the conventional rate of
decayr* and so is negligible relative to?f\/dtp) oy

C. Curl of the vector potential
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B, = Jsdr dz ?2{ ~[pGY145
¢+ ~ in -

+ . do dpldp G3'}, rp>1, (50

and

Bour= Ldr dz “rz[[peg“t]i‘?

b +a
+ f +f )d¢ apl g Gg“t), fp>1,
- [
(51)
whereGY and G3"" stand for the values of
+ " "
Gszf de Rflé(g—¢)n><e¢,
= > R Yagloe| 1hxe, (52)

P=Qj

inside and outside the bifurcation surface. Once again, owing
to the presence of the factbrg/de| 1 in G5, the first term

in Eq. (50) is divergent so that the Hadamard finite part of
B;, consists of the volume integral in this equation, an inte-
gral whose magnitude is of the orderqu-f3’2 [see the para-
graph containing Eq(35) and note that, according to Egs.
(A38) and (A44), p;>c,q; and p3/c§=0(1)]. The second
term in Eq.(51) has, like those in Eq933) and (45), the
conventional rate of decay, . Moreover, the surface inte-
gral in Eq.(51), which would have had the same magnitude

There are no contributions from the limits of integration @ the surface integral in E¢0) and so would have can-

towards the curl of the integral in E¢41) becausep van-

celed out of the expression f@& had Gj and G3" matched

ishes outside a finite volume and so the integral in this equasmoothly across the bifurcation surface, decays as slowly as

tion extends over all values of (¢,z). Hence differentiation
of Eq. (41) yields
B=VpXA=B,+ By, (483

in which

Binou= fv dV TpVpx Girout, (48b)
in,out

Operating withV X on the first member of Eq42) and
ignoring the term that decays like;2, as in Eq.(30), we
find that the kernel¥ X G3' andV px G5 of Eq. (48b) are
given, in the radiation zone, by the values of

+ o0
VPXGZZ(O)/C)j d(P R715,(9_¢)ﬁXé¢, Fp>l,
(49)

for ¢ inside and outside the intervad( ,¢. ), respectively.
[n is the unit vector defined in E¢31).]
Insertion of EQ.(49) in Eq. (48) now yields expressions

whoseg quadratures can be evaluated by parts to arrive at

the corresponding term in EE45).

The asymptotic value dB5 for source points close to the
cusp curve of the bifurcation surface has been calculated in
Appendix A. It follows from this value o553 and from Egs.
(51), (52), (A40), (A44), and (A45) that, in the radiation
zone,

~2 outyd+ 4 ~2 -1
B~ Jsdr dz r[pG; ]¢_~§ Jsdr dz r'pgsC; 03

25/2

3 (c/w)?{,”zﬁ>d? Fa(F2—1)"1
<

. o
XJA d2(2,—2)" *pgsns (53
Z—Lswlc

to within the order of the approximation entering E(¢37)
and (46).
The far-field version of the radial unit vector defined in
Eqg. (31) assumes the form
im Ay s-3 =7 & —(1-T" )", (54

rp—®
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on the cusp curve of the bifurcation surfdsee Eqs(12b), L3 represents the volume of the source dpjits average
(13), and(A27) and note that the position of the observer ischarge density. The intensity of the present emission is there-
here assumed to be such that the segment of the cusp curfe greater than that of even a coherent conventional radia-
lying within the source distribution is described by the ex-tion by a factor of the order ofl;;/L)(Lw/c) 4(Rp/L), a
pression with the plus sign in E¢L2b), as in Fig. § Son;  factor that ranges from #®to 10°°in the case of pulsars for
equalsnxe,, in the regime of validity of Eq(53) [see EQ. jnstance.
(A45)]. Moreover,n can be replaced by its far-field value The reason this ratio has so large a value in the far field
(Rp/L>1) is that the radiative characteristics of a volume-
distributed source that moves faster than the waves it emits
o ) ] are radically different from those of a corresponding source
if it is borne in mind that Eq(53) holds true only for an  hat moves more slowly than the waves it emits. There are
observer, the cusp curve of whose bifurcation surface intersgrce elements in the former case that approach the ob-
sects the source distribution. . server along the radiation direction with the wave speed at
Onceng in Eq. (53) is approximated byix e, and the  he retarded time. These lie on the intersection of the source
resultingz quadrature is expressed in terms pgs) [see Eq.  distribution with what we have here called the bifurcation

N=(rp&,+2p&, )/Rp, Rp—, (55)

(38)], this equation reduces to surface of the observésee Figs. 5 and)6a surface issuing
R from the position of the observer that has the same shape as
B~nXE, (56 the envelope of the wave fronts emanating from a source

element(Figs. 1 and B but that spirals around the rotation
axis in the opposite direction to this envelope and resides in
the space of source points instead of the space of observation
points.

The source elements inside the bifurcation surface of an

Note that there has been no contribution toward the valuegpserver make their contributions towards the observed field
of E andB from inside the bifurcation surface. These quan-at three distinct instants of the retarded time. The values of
tities have arisen in the above calculation solely from thewo of these retarded times coincide for an interior source
jump discontinuities in the values of the Green’s functionse|ement that lies next to the bifurcation surface. This limiting
G¥, G3*, andG3" across the coalescing sheets of the bi-value of the coincident retarded times represents the instant
furcation surface. We would have obtained the same resultgt which the component of the velocity of the source point in
had we simply excised the vanishingly small volume question equals the wave speeih the direction of the ob-
lim, ..V, from the domains of integration in Eq$29),  server. The third retarded time at which a source point adja-
(43), and (49). cent to, just inside, the bifurcation surface makes a contribu-

Note also that the way in which the familiar relati¢6)  tion is the same as the single retarded time at which its
has emerged from the present analysis is altogether differemeighboring source element just outside the bifurcation sur-
from that in which it appears in conventional radiation face makes its contribution towards the observed figltie
theory. Essential though it is to the physical requirement thasource elements outside the bifurcation surface make their
the directions of propagation of the waves and of their encontributions at only a single instant of the retarded time.
ergy should be the same, E(6) expresses a relationship At the instant marked by this third value of the retarded
between fields that are here given by nonspherically decaytime, the two neighboring source elements, just interior and
ing surface integrals rather than by the conventional volumgust exterior to the bifurcation surface, have the same veloc-

whereE is the electric field vector earlier found in E@L7).
Equations(47) and (56) jointly describe a radiation field
whose polarization vector lies along the direction of motion
of the sources, .

integrals that decay Iike;l. ity, but a velocity whose component along the radiation di-
rection is different front. The velocities of these two neigh-
VI. CONCLUSION: A PHYSICAL DESCRIPTION boring elements are, of course, equal at any time. However,
OF THE EMISSION PROCESS at the time they approach the observer with the wave speed,

the element inside the bifurcation surface makes a contribu-

Expressiong47) and (56) for the electric and magnetic tion towards the observed field while the one outside this
fields of the radiation that arises from a charge-current densurface does not: The observer is located just inside the en-
sity with the component§23) and (39) imply the Poynting  velope of the wave fronts that emanate from the interior

vector source element but just outside the envelope of the wave
05 A fronts that emanate from the exterior one. Thus the construc-
- ~ B> s np o - tive interference of the waves that are emitted by the source
S~ le(clw)?rpt f dr r2(F2—1)" ¥4 . . : )
327 (clo)7Te T ( ) element just outside the bifurcation surface takes place along

a caustic that at no point propagates past the observer at the

A (57) conical apex of the bifurcatior_1 s_urface in_question.
On the other hand, the radiation effectiveness of a source

element that approaches the observer with the wave speed at
In contrast, the magnitude of the Poynting vector for thethe retarded time is much greater than that of a neighboring
coherentcyclotron radiation that would be generated by aelement, the component of whose velocity along the radia-
macroscopic lump of charge, if it moved subluminally with a tion direction is subluminal or superluminal at this time. This
centripetal accelerationcw, is of the order of isbecause the piling up of the emitted wave fronts along the
({p)L®)?w?/(cR3) according to the Larmor formula, where line joining the source and the observer makes the ratio of

2
X (Lyw/c)" pgs)
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emission to reception time intervals for the contributions ofcusp curves of whose bifurcation surfaces intersect the
the luminally moving source elements by many orders ofsource distribution. It appears, therefore, as a spiral-shaped
magnitude greater than that for the contributions of any othewave packet with the same azimuthal width as ¢ghextent
elementssee Appendix € As a result, the radiation effec- of the source. For a source distribution whose superluminal
tiveness of the various constituent elements of the sourceortion extends front=1 to r.>1, this wave packet is
(., the Green’s function for the emission progessder- ~ detectable, by an observer at infinity, within the angles
goes a discontinuity across the boundary set by the bifurca= arccos’~'<@p<jm+arccos=" from the rotation axis:

tion surface of the observer. Projection(12b) of the cusp curve of the bifurcation surface

The integral representing the superposition of the contrionto the(r,z) plane reduces to cOh=(r>—1)? in the limit
butions of the various volume elements of the source to th&®— %, wherefp=arctan(p/zp) [also see Eq(54)].
potential thus entails a discontinuous integrand. When this Because it comprises a collection of the spiraling cusps of
volume integral is differentiated to obtain the field, the dis-the envelopes of the wave fronts that are emitted by various
continuity in question gives rise to a boundary contributionsource elements, this wave packet has a cross section with
in the form of a surface integral over its locus. This integralthe plane of rotation whose extent and shape match those of
receives contributions from opposite faces of each sheet dhe source distribution. It is a diffraction-free propagating
the bifurcation surface that do not cancel one another. Moresaustic that, when detected by a far-field observer, would
over, the contributions arising from the exterior faces of theappear as a pulse of duratidnp/w, whereA ¢ is the azi-
two sheets of the bifurcation surface do not have the sammuthal extent of the source.
value even in the limiRp— « where this surface is infinitely Note that the waves that interfere constructively to form
large and so its two sheets are, throughout a localized sour@ach cusp, and hence the observed pulse, are different at
that intersects the cusp, coalescent. Thus the resulting eglifferent observation times: The constituent waves propagate
pression for the field in the radiation zone entails a surfacén the radiation directiom with the speedc, whereas the
integral such as that which would arise if the source weregpropagating caustic that is observed, i.e., the segment of the
two dimensional, i.e., if the source were concentrated into agusp curve that passes through the observation point at the
infinitely thin sheet that coincided with the intersection of theobservation time, propagates in the azimuthal direcﬁ(pp
coalescing sheets of the bifurcation surface with the sourcgith the phase speethw.
distribution. The fact that the intensity of the pulse decays more slowly

For a two-dimensional source of this type, whether it bethan predicted by the inverse square law is not therefore
real or a virtual one whose field is described by a surfacencompatible with the conservation of energy, for it is not the
integral, the near zonghe Fresnel regimeof the radiation  same wave packet that is observed at different distances from
can extend to infinity, so that the amplitudes of the emittedhe source: The wave packet in question is constantly dis-
waves are not necessarily subject to the spherical spreadifgrsed and reconstructed out of other waves. The cusp curve
that normally occurs in the far zorithe Fraunhofer regime  of the envelope of the wave fronts emanating from an infi-
The Fresnel distance that marks the boundary between thefgely long-lived source is detectable in the radiation zone
two zones is given bR=~L?/L, in whichL, andL, are  not because any segment of this curve can be identified with
the dimensions of the source perpendicular and parallel ta caustic that has formed at the source and has subsequently
the radiation direction. If the source is distributed over atraveled as an isolated wave packet to the radiation zone, but
surface and so has a dimensionthat is vanishingly small, because certain set of waves superpose coherently only at
therefore, the Fresnel distanBg tends to infinity. infinity.

In the present case the surface integral that arises from the The relative phases of the set of waves that are emitted
discontinuity in the radiation effectiveness of the source elduring a limited time interval is such that these waves do not,
ements across the bifurcation surface has an integrand thatiis general, interfere constructively to form a cusped envelope
in turn singular on the cusp curve of this surface. This has taintil they have propagated some distance away from the
do with the fact that the source elements on the cusp curve afource. The period in which this set of waves has a cusped
the bifurcation surface approach the observer along the ranvelope and so is detectable as a periodic train of non-
diation direction not only with the wave speed but also withspherically decaying pulses would of course have a limited
zero acceleration. The ratio of the emission to reception timeluration if the source is short live@f. Appendix D. Thus
intervals for the signals generated by these elements is hyulses of focused waves may be generated by the present
several orders of magnitude greater even than that for themission process that not only are stronger in the far field
elements on the bifurcation surfatsee Appendix € When  than any previously studied class of signals, but can in addi-
the contributions of these elements are included in the sution be beamed at only a select set of observers for a limited
face integral in question, i.e., when the observation point ignterval of time.
such that the cusp curve of the bifurcation surface intersects It should not be difficult to generate such pulses in the
the source distributioas shown in Fig. | the value of the laboratory. The volume-distributed polarization current pro-
resulting improper mtegral turns out to have the dependencéuced by applying a time-varying transverse electric field, or
Rp 12 rather tharRP , on the distanc&®p of the observer shining a radial beam of high-frequency ionizing radiation,
from the source. around the circumference of a torus-shaped dielectric sub-

This nonspherically decaying component of the radiationstance of radius-1 m, for example, would in principle act as
is in addition to the conventional component that is concurthe required source of this new type of emission provided
rently generated by the remaining volume elements of thenly the changes in the distribution of the resulting polariza-
source. It is detectable only at those observation points, thion current have a fixed pattern and propagate around the
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torus with a constant angular frequency of the order of poz%(fo|yzcl+fo|vz_cl) (A5)
1C® rad/s.

A final remark is in order: The mechanism responsible foragnd
the effect described here is fundamentally different from that
which gives rise to the &enkov effect. Because the pres- QO:%Cl_l(foh:cl—foh:—cl)- (AB)
ence of a cusp in the bifurcation surfa@e in the envelope
of the wave fronts emitted by a source poiigt essential to  The resulting expression
this emission mechanism, the present effect does not come i
into play in the case of a rectilinearly moving source unless_ Go”J dV(IOo+qu)5(%V3—CiV+Cz— é) (A7)
the motion of the source is accelerated. It has been shown in —
Appendix D, on the other hand, that in the superluminal
regime the radiation generated by an accelerated rectilinearlill then constitute, according to the general theory de-
moving source remains different from that generated by &cribed in[13-15, the leading term in the asymptotic expan-
corresponding constant-velocity source even in the limit insion of G, for smallc, (see[17)).
which the acceleration of the source tends to zero: In this TO evaluate the integral in E¢A7) we need to know the
limit, the cusp curve of the envelope merely moves to |argef00t5 of the cubic equation that follows from the vanishing of

distances from the source rather than disappear. the argument of the Diraé function in this expression. De-
pending on whether the observation point is located inside or
ACKNOWLEDGMENTS outside the bifurcation surfad¢he envelopg the roots of
| thank J. E. Ffowcs Williams, J. H. Hannay, A. Hewish, sv:-clv+c,— ¢=0 (A8)

and D. Lynden-Bell for extended discussions. .
are given by
APPENDIX A: ASYMPTOTIC EXPANSIONS

2 1
= g+l <
OF THE GREEN'S FUNCTIONS v=2cic083n7+ 3 arccosy), [x|<1, (A%

In this appendix we calculate the leading terms in the®r =0, 1, and 2 or by
asymptotic expansions of the integrdls), (34), (42), and
(52) for small ¢, —¢_, i.e., for points close to the cusp v=2¢;5gn(y)costi(z arccoshy|), [x|>1, (A9b)
curve (12) of the bifurcation surfacéor of the envelope of
the wave fronts The method, due to Chester, Friedman, an
Ursell [13], that we use is a standard one that has been spe-
cifically developed for the evaluation of radiation integrals y=
involving caustics(see[14] and[15]). The integrals evalu-

Grespectively, where

1 1 3 .
b=5 (bt 9| [ |5 (dimd)|=5 (dcolcl.

ated below all have a phase functigfe) whose extrema (A10)
(¢=¢.) coalesce at the caustit2). Note thaty equals+1 on the sheep= ¢, of the bifurcation
As long as the observation point does not coincide withsurface(the envelopgand —1 on ¢=d¢_ .
the source point, the functiog(¢) is analytic and the fol- The integral in Eq.(A7), therefore, has the following
lowing transformation of the integration variables in Etf)  value when the observation point lies inside the bifurcation
is permissible: surface(the envelopg
9(¢)=3°—civ+c,, (AL) [+

dv 8(3v°—clv+co,— o)
where v is the new variable of integration and the coeffi- o
cients 2
=2 c; %4 cog(énm+3 arccosy)— 1|71, |x|<1.

=D — )™ c=3(di+ o) (A2 "=

are chosen such that the values of the two functions on op- _ o . . _
posite sides of Eg(Al) coincide at their extrema. Thus an Using the trignometric identity 4 cds—1=sin a/sina,
alternative exact expression @, is we can write this as

(A11)

+oo o
Go=f dv fo(v)8(3v3—civ+c,— @),  (A3) wadvﬁ(%v3—05v+cz—¢)

2

in which =c; 2(1—x?)~Y2> |sin(¢nm+ % arccosy)|
n=0

fo(v)=R lde/dv. (A4)
=2c; 21— x?) Y%coq} arcsiny), |x|<1, (A12)
Close to the cusp curvd 2), at whichc, vanishes and the
extremav= * ¢, of the above cubic function are coincident, in which we have evaluated the sum by adding the sine func-
fo(v) may be approximated by,+qgv, with tions two at a time.
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When the observation point lies outside the bifurcation g

surface(the envelopg the above integral receives a contri-
bution only from the single value ofgiven in Eq.(A9b) and
we obtain

+

I

dv 5(%V3—C§V+C2—¢)
=c; 4(x?*—1) Y2 sinh arccoshy|), |x|>1, (A13)

where this time we have used the identity 4 ceshl
=sinh 3n/sinha. The second part of the integral in E&\7)

can be evaluated in exactly the same way. It has the value

+ oo

f dv v 5(%V3—C§V+C2—¢)

2
=2c; Y(1—-x?) Y2 |sin(¢nm+ L arccosy)|
n=0

X coginw+3% arccosy)

=—2c; 11— x») Y%sin(% arcsiny), |x|<1, (A14)
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_Vz_Ci B 2v ‘
dv| _ aglag| . (d%glae®)(deldv)| _,
_—Cl V—_Cl V—_Cl
(A18)
i.e., that
de [ x2c, |2 _ (26,R;)?
dv .. \PPQloe? T AT
v== 1 =
(A19)

in which we have calculated?fg/agoz)% from Egs.(7) and
(8). The right-hand side of EqA19) is in turn indeterminate
on the cusp curve of the bifurcation surfagkee envelopg
wherec;=A=0. Removing this indeterminacy by expand-
ing the numerator in this expression in powersAdf*, we
find thatde/dr assumes the value? at the cusp curve.
Hence the coefficientp, and qq that appear in the ex-
pressiongA16) and (A17) for G, are explicitly given by

Po= (w/C)(%Cl)llz( |AQ: l/2+ Ii;l/Z)AflM (AZO)

and

do=(w/c)(2¢;) YARTVA-RMHA- Y (A21)

when the observation point lies inside the bifurcation surface

(the envelopeand the value

+

f dv v 5(%V3—C§V+C2—¢)

=c; Y(x?—1) Y%sgn(y)sinh(§ arccoshy|), |x|>1,

(A15)

[see EqgA4)—(A6) and (A19)]. In the regime of validity of
Egs.(A16) and (A17), whereA is much smaller thanfr2
—1)'2 the leading terms in the expressionsRor, ¢;, Po,
andqg are

ﬁZ::(?éfz—l)l/zi(f%fz— 1)_1/2A1/2+ O(A),

when the observation point lies outside the bifurcation sur-

face(the envelopg Inserting Eqs(A12)—(A15) in Eq. (A7)
and denoting the values @, inside and outside the bifur-
cation surfacdthe envelopeby Gg' andGS", we obtain

Go~2c, 2(1— x?) Y4 pocod § arcsiny)

—Cq00sin(5 arcsiny)], |x|<1, (A16)
and
Gg"'~c1 2(x*— 1)~ A posinh(3 arccoshy|)
+c1q0sgn x)sinh(§ arccoshy|)],  |x[>1,
(A17)

for the leading terms in the asymptotic approximatiorGp
for smallc;, .

The functionfy(v) in terms of which the coefficientg,
andqq are defined is indeterminate at=c; and —c,: Dif-
ferentiation of Eq.(Al) yields dgo/dv:(vz—ci)/(ag/mp),
the zeros of whose denominator@t ¢ and ¢, , respec-
tively, coincide with those of its numerator at=c, and

—cC,. This indeterminacy can be removed by means of

I'Ho pital’s rule by noting that

(A22)
ci=2"Y(rzi?—-1)"¥2AY21 0(a), (A23)
po=2"(wlc)(f?%2—1)"12+0(AY?),  (A24)

and
Qo=2""(wlc)(f?-1)"1+0(AY).  (A25)

These may be obtained by using E§) to express every-
where in Egs(10), (11), and(A2) in terms ofA andf and
expanding the resulting expressions in powersA&f. The
quantity A in turn has the following value at points<(r,
_2<(’r"2:_1)1/2(’r‘2_1)1/2:
A=2(Fp—D)YAF?-1)"42,~2) + O[(z.~2)°],

(A26)

in which z; is given by the expression with the plus sign in

Eq. (12b. For an observation point in the far zonep(
>1), the above expressions reduce to

R.~ffp, c=2"(ffp) Y11 22, —2)"
(A27)
A=2Fp(r?—1)Y4 2.~ 2); (A28)

Po=2Y%w/o)(Fof) L, dg=2" M wle)(Fpf) 2,

(A29)
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e 0% =2 Y 0)c) (FFe) it oAV (20— 2)
=35 LT3 ¥ g po)l (- D)2 *
(A30) % [IEC 324 &13/24_ Al/Z( IA?: 32— I‘?Is/z)]érp
in which Ec_—i has been assumed, to be finite. 1 (2p—2) (R V2 &11/2)(% +F [ AVAR-¥2E R
Evaluation of the other Green’s functio®;,, G,, and P
G; entails calculations that have many steps in common with —(F2— 1)(@:3’21 ﬁ%; 3/2)]ézp}' (A38)

that of Go. Since the integrals in Eq$34), (42), and (52)
differ from that in Eq.(16) only in that their integrands re- \yhere use has been made of the fact that — sin(e
spectively contain the extra factors e,, andnxe,, they —@P)érﬁCOS(QD—ﬁDP)éQP- Here the expressions with the up-

;:l?r?ctli)sn;ewntten as integrals of the foi3) in which the per signs yield thg, and those with the lower signs tiog.
The asymptotic value of eadBg""is indeterminate on the
fi(v)=nfy, fa( V)Eé¢f0, fa(v)=nX é@fo (A31) bifurcation surfacdthe envelopg If we expand the numera-
tor of Eq.(A35) in powers of its denominator and cancel out
replace thefo(v) given by Eq.(A4). the common factorx?— 1) prior to evaluating the ratio in
If pp andqq are correspondingly replaced, in accordancethis equation, we obtain
with Egs.(A5) and(A6), by )
) GR g, =GR y— 1~ (Pk=26100)/(3c)). (A39)
Pe=2(fly=c, Tuli=—c), k=123,  (A32
This shows thaGg"{ ;-4 and G-, remain different

and even in the limit where the surfaces=¢_ and ¢, coa-
1.1 _ _ lesce. The coefficientg, that specify the strengths of the
a=2C1 (fil,- c il V=*Cl)’ k=123, (A33) discontinuities

then every step of the analysis that led from E&j) to Egs. Gl yep. G yoy ~2alcy (A40)
(A16) and(A17) would be equally applicable to the evalua- * N
tion of G. It follows, therefore, that reduce to

GI"~2¢;%(1— x?) Y9 p,cog L arcsiny) 3 . e A
o N 0= 51 (@/0)(FTp) (1577, + (2o D)8,],

—cyqsin( arcsiny)],  [x|<1,  (A34) (A41)

and p=22%w/c)(7Tp) '8, (A42)
G ~c1 (x*— 1) ¥ pysinh(3 arccoshy|) and

+caqisgrix)sinh(§ arccoshy|)],  [x>1, ds=— 2% wlc)(iTp) [ (2p—2)& —Tp&, ] (A43)

(A35) in the regime of validity of Eqs(A27) and (A28). When 0

5 5 22 1/2¢ H
constitute the uniform asymptotic approximations to the=Zc—2<(I*—1)"Tp, the expressiongA4l) and (A43)

functions G, inside and outside the bifurcation surfagee  further reduce to

envelope | x| =1. 3
Explicit expressions fop, and g, as functions of(r,z) 1= =173 (w/C)(FTp) 2Ny, as=2%%wlc)(ftp) 'ns,

may be found from Egs(8), (A19), and (A31)—(A33) 2

jointly. The result is (A44)
pl] R ) with
:271/2(w/C)Ctl/2A71/4{[(fp_i;—l)(R:f:’/Zi R—S/Z) A o A )
% ' i ! n=(F1-1)8, -~ (1-F2)Y%,,
~—1A 12/ H—32— B—3/214 ~—1,5-12, 5-124
—Irp AYqRC R +rp (RZ7“=R e A A n1n
P ATRTER G e <% ng=(1-F"3)"% _+i "¢, (A45)
+(zp—2)(R-¥=R;%98, 1, A36
(ze=2)( " )eZP} (A36) for in this case Eq(12b), with the adopted plus sign, can be
0, o used to replac&—zp by (f?—1)YF ;.
q ]zzl’z(w/c)(rrp)1011’2A1’4{(R”2i RY%&
2 APPENDIX B: ALTERNATIVE FORMS OF THE
+ [Ii: 124 é;l/z_’_ Al/Z(li: V2 é;l/z)]é%}, RADIATION INTEGRALS
(A37) In this paper we have built up the potential of an extended

source distribution by superposing the potentials of the mov-
and ing source elements that constitute it. Stated mathematically,
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we have expressed the potent{ah) as the convolution of The limits of the integration with respect toin Eq. (B1)

the source density with the Green’s function for the problemare given by the solutiong(r,®,z;rp,®p,zp;@p) of Eq.

An alternative procedure is one in which the potential of the(B2) or (5) for a point (,¢,z) on the boundary of the source
moving extended source is built up from the superposition otlistribution. Differentiating Eq(5) with respect tax, while

the potentials of a fictitious set of stationary point sourcesholding (r,¢,z) and the observation time, constant, we
This can be done by basing the analysis on the alternativéind that the derivatives of these integration limits are given
form of the retarded potential given in E(R2). For fixed by an expression

values of(xp, tp), the expression in Eq22) is the same as

that which would describe the potential of a time-

independent source with the density distributjefx,tp—|x Vp¢=r;1é¢P—{[FP—F cos o= ¢p)]&,
—Xp|/c). I
The alternative form of the scalar potential that follows +(zp—2)&, }/(Rdglde) (B3)

from Egs.(22) and (23) has an integrand that is singularity
free in the radiation zone:
whose denominator vanishes on the bifurcation surface. In
. R fact, this expression has an even stronger singularity on the
Ao(rp v(PPaZP):f rdrdz de p(r,z,¢l—,-rc)/R, cusp curve of the bifurcation surface at which its denomina-
(B1) tor both vanishes and has a vanishing derivative.

Whenever the boundary of the source distribution inter-
sects the bifurcation surface or its cusp curve, therefore, the
integral in Eq.(B1) is not differentiablglas a classical func-
lon) because the contributions from the derivatives of its
limits to the value of VoA, would appear as a two-

imensional integral whose integrand has extended singulari-
ties. If we denote the upper and lower limits of the integra-
tion with respect top by ¢~ and ¢ and the projection of
the source distribution onto the,z) plane byS,,, then the
ontributions in question would appear as

whereR is the function defined in Eq3). It may at first
seem, therefore, that the bifurcation surface, which feature
so prominently in our calculation oV A, for instance,
neither appears nor plays any role in the present formulatio
of the problem. Our objective in this appendix is to point out
that this is not so: An analysis based on Hg|l) also entails
a handling of the singularities that occur on the bifurcation
surface and ultimately results in the same valueVMeA,.

The given data in the present problem consist of the®
source density as a function of (,¢,z) and the Sommer-
feld radiation condition at infinity. The boundary of the

source distribution is known in the (¢,z) space and not in J rdrdz{[p/R],=, Vpe~—[p/R]lyzy Vpe_l,
the (r,¢,z) space over which the integration in E&1) is to Stz - =
be performed. In ther(¢,z) space, the surface at which (B4)

p(r,z,{o|t:tP_R,c) vanishes is different for different observ-

ers, or at different observation times, and is a multiple-
sheeted disconnected surface whose shape bears no dir
relationship with the shape of the actual source distribution
To find the limits of integration in EqB1), we need to use
the relationship

in which Vpe- andVpe_ are given by Eq(B3) and so
(aR}erge at the point®= ¢.. on the intersection of the bound-
ary of the source with the bifurcation surface. That is to say,
contrary to what may seem at first, the calculatiorVgiA,
from Eq. (B1) likewise requires a proper handlifgith the
aid, e.g., of the theory of generalized functiprd the ex-

¢=(¢—wt)|i=1, ric= ¢~ 0tp+[(2—2p)?+T?+F}3 tended singularities that occur on the bifurcation surface and
an 12 its cusp curve.
—ITpCoS ¢~ ¢p) ] (B2) Hannay[18] has argued that since the only singularity of

the integrand of Eq(22) is that at the poink=xp, which is

betweene and the retarded value @f that appears in the inoffensive, one can differentiate E22) under the integral
argument ofp to map the boundarie$=¢_(r,z) and ¢  sign and evaluate the resulting expressions YgiA, and
= ¢-(r,z) of the source distribution from the (¢,z) space  JdA,/dtp without any reference to the bifurcation surface.
to the (,¢,2) space. Being based on an analysis in which neither the motion of

Figure 2 depicts the relatiofB2), in its alternative form the source nor the position of the observer are specified,
(5), for fixed values of (p,¢p,Zp;r,z). Two adjacent ex- however, Hannay’s argument overlooks the specifically su-
trema of curve(@) in Fig. 2 occur on two different sheets of perluminal feature of the problem that appears in B8):
the bifurcation surface: The constant valueg,£,) of (r,z  Whereas, in the familiar subluminal regime, the contribu-
in this figure are such that the cirdte=r,, z=z, intersects tions toVpA, or dAy/dtp from the derivatives of the limits
the bifurcation surface, so that asranges over the interval of the ¢ integration in Eq(B1) are either zero or cancel each
shown in the figure the point (¢,z) enters across one sheet, other, here the corresponding contributions of those elements
traverses the interior, and leaves across another sheet of tha the boundary of the source that approach the observer
bifurcation surface. At those points on the source boundaryvith the wave speed are divergent. Leibniz’s formula for the
that lie within the bifurcation surface, therefore, the requireddifferentiation of a definite integrals a classical function
mapping ¢— ¢ of the limits of integration in Eq(B1) is is not of course applicable if there are any points at which the
multivalued. contributions from the limits of integration diverge.
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APPENDIX C: RATIO OF EMISSION TO RECEPTION dtp/dt vanishes buti?tp/dt? is nonzero, so that the Taylor
TIME INTERVALS expansions of Eq(C1) about the values. = (¢ — ¢)/w of
the retarded time on the two sheets of the bifurcation surface

The interval of retarded timet during which a set of assume the forms

waves are emitted is, in the case of the source elements th
lie adjacent to but inside the bifurcation surface, significantly
longer than the interval of observation tirdg during which
these waves are received. The components of the velocities

of such elements in the directiop—x are either just above i \which we have approximated the coefficient @t)2 by

or just below the wave speed at the two coalescing retardegk \a1ue for 0<7.—7<1, Fp>1 [see Eqs(26), (A20), and
times at which these elements make their dominant contrib A21)].

tions, so that, as in the Doppler effect, the emitted wave pqr the waves that arrive at the observer with a phase

fronts pile up along this radiation direction. differencecst, /<1, therefore, Eq(C4) yields
In this appendix we estimate the ratio of emission to re-

ception time intervals for three sets of source elements: the&/&P: T 294FF )Y 1—F2) V82— 2) YA\ wlc) 12
elements in the vicinity of the cusp curve of the bifurcation (C5)
surface and the elements adjacent to the bifurcation surface,
just inside and just outside it. These three sets of elementgjith the values ofw and\ adopted above, this is 10° for
respectively approach the observer along the radiation dire¢z source point on the bifurcation surface that lies at a dis-
tion with the wave speed and zero acceleration, with th@ancez.— z of the order of » from the cusp curvéNote that
wave speed and a nonzero acceleration, and with a spegge quadratic term in Eq(C4) dominates the cubic term in
different fromc and an acceleration different from zero.  thjs series only at distancés— Z of the order off » from the
Given the ob§ervation point §,¢p,zp) and the moving cusp curvel.
source point (,¢,z), the equation describing the wave  On the other hand, for a neighboring source point that lies
fronts [i.e., Eq.(4)] specifies the reception timg as the just outside the sheet= ¢_ (say of the bifurcation surface,

Stp=F w(2rTp) YA1-F )Y Z.— )Y 5t)%+- -,
(C4

following function of the emission time curve (a) in Fig. 2 will have the same shape but the lige
2. 2. o . 2 = ¢o Will be displaced such that it would lie just below the
tp=t+[(zp=2)"+rp+r°—2rpr coSpp——wt)]7c. minimum of g. Thus the equatiomy(¢)=¢_ has only a

(€Y single physically relevant solutiop= ¢, in this case, a

. ) L . solution that is different fromp. and so at whichvg/de
Calculating the first three derivatives tf with respect ta . ' - RSN
from Eq. (C1) and evaluating these derivatives at the cus does not vanish. The neighboring source point just inside the

. . . Shifurcation surface of course makes a contribution at the re-
curve (12) of the bifurcation surface, we find that the domi- tarded time corresponding = ¢, as well as at the two

nant term in the Taylor expansion tf about the valug, of retarded times that coalesce ortto=(¢_ — )/w. How-

Fhe fetafdeo.' time, at which an element on this curve makeéver, the component of its speed along the radiation direction
its contribution, is given by

has the limiting valuec only at the two retarded times that
1 coalesce ontd_ . At the retarded time corresponding ¢o
Stp=3y dPtp/dt] i (60)%+- - =Fw?(8t)%+- -, = @out, at Which the slope of the curve representgie) is
: different from zero(see Fig. 2, neither of the two neighbor-
(€2 ing source points approach the observer with the wave speed.
We can finde,, for a source point that lies adjacent to

(129. That is to say, the ratio of emission to reception timethe sheetp= ¢ O.f the blfurpatlon sqrface, close to th.e cusp
curve, by replacingg(¢) with the first three terms in its

intervals has the valut/ 5tp=6""%(wdtp) " for the waves Taylor expansion aboup=¢_ and by noting that the solu-
that are generated by the source elements at the cusp curve Y P U= y 9

To estimate the numerical value of this ratio, let us denotd 0 different frome=¢_, of the resulting cubic equation
the wavelength of the radiation byand consider the set of 9(e)=¢- is given by
wave fronts that arrive at the observer within the time inter- 1o 1 oma a1
val Stp=1MN/c, i.e., that are received with essentially the Pour=@-—3(3ITp) " A1=T"°)"(2,~2) (Co)
same phase. For this set of waves, the ratio in question has L R
the value for 0<z,—z<1 andrp>1. Next expanding Eq.C1) about
the corresponding valug,= (¢ — @)/ @ of t and approxi-
8t dtp=2Xx 3\ wlc) ™", (C3)  mating the coefficient of the dominant term in the resulting
Taylor series by its far-field value for©z,—z<1, we ob-
a value that could exceed unity by a large factor: kor tain
~1 cm andw~ 27 rad/s(as in the case of pulsarghis ratio
is of the order of 10. Stp=3(fTp) " H(1—T 2)YHZ,—2)6t+---. (C7)
Approaching the sheap= ¢, or ¢_ of the bifurcation
surface from inside this surface corresponds to raising oHence there is no new effect in the case of a source element
lowering a horizontal lineg=¢g=const with ¢_<d¢, that lies adjacent to but outside the bifurcation surface: The
< ¢ in Fig. 2 until it intersects curvéa) of this figure atits emission time interval is proportional to the reception time
maximum or minimum. At a source point thus approachedjnterval as in conventional emission mechanisms.

wheret, is defined by ¢.— @)/ with the ¢, given in Eq.
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Insofar as the ratiat/ 5tp is a measure of the degree of
coherence of the emission from a given source element, a
comparison of Eqs(C3) and (C7) suggests, therefore, that
the radiation effectiveness of the source elements should un-
dergo a discontinuity across the bifurcation surface. This
suggestion, which has here emerged from a consideration of
the propagation properties of the wave fronts, is in fact con-
firmed by the calculatior{in Sec. Ill) of the amplitudes of
the emitted waves from Maxwell's equations.

Hewish[19] has presented a geometrical argument whose
central result is expressioi€3) for the ratio St/ 6tp)cysp-

He contends that the coherence factor implied by this ratio
constitutes the only difference between the intensities of the
emissions that would arise from the superluminal and sublu-
minal portions of the rotating sources in pulsars. As we have
seen, however, EQC3) merely describes a single isolated
feature of the complicated emission process under discus- FIG. 7. Wave fronts emanating from the rectilinearly moving
sion. It is not until it is compared with Eq$C5) and (C7) source pointS and their envelope foBp=2 (andM<1).

that its full implications, those pointing to the discontinuity

in the radiative effectiveness of the source elements acrossgpheres of radic(tp—t) whose fixed center§xp=X, yp
the bifurcation surface, emerge. Even then, these implica=y, z,=Z+ut+ at?) depend on their emission timessee
tions of an analysis that is based on geometrical optics can #g. 7).

best be suggestive. The effect of the implied discontinuity on Introducing the natural length scale of the problém
the intensity of the radiation produced by such an unfamiliar=c2/a, we can express EGD2) in terms of dimensionless
mechanism as that involved here cannot be predicted withowtariables as

examining the relevant solution of the exact wave equation

itself. —
=3B =GB (+ 1)BP+2BpB+ (383~ 02— B+ &
APPENDIX D: RECTILINEARLY MOVING =0, (D3)
ACCELERATED SOURCES WITH SUPERLUMINAL _ ,
VELOCITIES in which
Though perhaps less interesting from a practical point of E=[(x—xp)?+ (y—yp)?1¥2I (D4)

view, the rectilinear version of the emission process we have

discussed above is simpler in its caustic geometry and Sgepresents the distanée units ofl) of the observation point

conceptually more transparent. Here we include an analysigom the path of the source, the Lagrangian coordinate
of this more elementary problem to illustrate not only the

basic principles common to different examples of the emis- (=z=zp)ll (D5)
sion process under discussion but also those of its features

that specifically arise from the finiteness of the duration ofgi5n4s for the difference between the positiGrsz— ut

the source. . . — %at? of the source point and
Consider a point sourcéan element of the propagating

distribution pattern of a volume souicthat moves parallel
to thez axis of a Cartesian coordinate system with the con-
stant acceleration, i.e., whose patkx(t) is given by

FZ‘pEZp_utp_%atlzj (D6)

of the observation point in thex(y,z) space, and the “Mach
- numbers”
x=const, y=const, z=z+ut+ 3at?, (D1)
B=(ut+at)/c, PBp=(utatp)/c (D7)
wherez and u are its position and its speed at the tithe
=0. The wave fronts that are emitted by this source in ardenote the scaled values of the emission time and the obser-
empty and unbounded space are described by&glnsert-  vation time, respectively. Figure 7 depicts the wave fronts
ing Eqg. (D1) in Eq. (2) and squaring the resulting equation, described by Eq(D3) for a fixed value of8p and a discrete
we obtain set of values of3 (<Bp).
The wave fronts for whicl8>1, i.e., the wave fronts that
Ez(t)z(xp—x)zwL(yp—y)2+(zp—~z—ut— Lat?)? are emitted when the speed of the source gxceeds the wave
speed, possess an envelope: The funatig®) is oscillatory
=c?(tp—t)?, (D2) in this regime(see Fig. 8 and so there are poinig,) at
which

in which the coordinates< ,yp ,Zp ,tp) Mmark the space-time _ 3 )
of observation points. These wave fronts are expanding d9/9B=B°—(Bp—2{+2)B+2Bp=0. (DY)
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FIG. 8. Curve representing(3) versusg for Bp=2, at a given
(& 0): (a) at (0.2, 0.9 outside the envelopéor the bifurcation
surface, (b) at (£.,¢;) on the cusp curve of the enveloger the
bifurcation surfacg (c) at (0, 0.4 inside the envelopéor the bifur-
cation surfacg and(d) at (0.085, 0.142 on the envelopdor the
bifurcation surfacg

The cubic equation(D8) has three real roots when
3%28,(B5—2¢+2)"%2<1, of which only two satisfy the
requiremen3>0. These two physically relevant solutions of
Eq. (D8) are

ﬂ+:£(32—2§+2)1/2005{;(7T+0)] (D9a)
+ ‘/3 P 3 — ’
where
o=arccof3%?Bp(B2—27+2) %2, (D9b)

The functiong() is locally maximum a3, and minimum
atp_.

Inserting 8= 8. in Eq. (D3) and solving the resulting
equation foré as a function of, we find that the envelope of

the wave fronts is an axisymmetric surface consisting of two

sheets¢=£..({) with

E-=[3(3Bp—{+1)BL =3 BpB=+ Bp— (38— 1™
(D10)

[We have used the fact that. satisfy Eq.(D8) to simplify
the above expressions fdr. . ]

The cusp of the envelopesee Fig. 7 occurs along the
circle

E=(BFP-1%%=¢, (=3B 3R H1=C0.
(D113

When ¢=¢., {={., the functiong(s), shown in Fig. 8,
curve (b), has a point of inflection and’g/dp?, as well as
dgldp andg, vanishes at

B=B=p.. (D11b)

The cusp propagates with the speeds-{3@;?%Y% and
B;l’sc in the directions perpendicular and parallel to the
source’s path, respectively, so that the coincident sheets of
the envelope at the cusp propagate normal to themselves, in
a direction making the angle arcta#i— 1)Y2 with theZp
axis, at the speed.
The tangential wave fronts that constitute the conical
sheet €= ¢, ) of the envelope are emitted during the interval

3~ B<Bp of retarded time, while those constituting the
second sheet=¢_ are emitted during & 3<pBY3. This
may be seen by noting that the intercept of ¢hesheet with
the'z axis, the cusp, and the conical apex of the sheet
occur at{=3%(Bp—1)?, ., and 0, respectively, and that,
according to Eq(D8), the values ofg at these points are
given by 1,8%3, and 8, monotonically increasing along
the envelope from thé_ intercept to the apex.

The particular set of waves that interfere constructively to
form the cusp of the envelope, therefore, is different at dif-
ferent observation times: It consists, at a given observation
time Bp, of those waves whose emission times lie close to
B=pBY3. As the observation timgp changes, so does the
emission time of the cusp and hence the identity of the in-
terfering waves in question.

If the source is short lived, then the emission tiBe
=,[>’%,’3 of a cusp that can be observed@t may or may not
fall within its life span. The envelope of the emitted waves
would be cusped in this case only during a correspondingly
short interval of observation time. Figure 9 traces the evolu-
tion in time of the relative positions of a particular set of the
propagating wave fronts, those emitted during a limited time
interval, that were earlier shown in Fig. 7: before their enve-
lope develops a cusp, during the time interval in which their
envelope possesses a cusp, and afterward.

In the case of a source whose strength is nonzero only
within the finite interval 6<t<T of retarded time, for in-
stance, the envelope of the emitted waves has a cusp during
the interval of observation time in whichB|,_,<pB%°
<p|i=7. Solving this fortp,, we obtain

M(M?—1)l/c<tp<M[M2(1+aT/u)®—1]l/c,
(D12

whereM =u/c stands for the Mach number of the source at
t=0. For aT/u<1, therefore, the life span of the caustic
3M?T is proportional to that of the source.

The distance of the caustic from the position of the source
at the retarded time, i.e.,

Rp=Rlit,ric= B8 (B2°~ 1), (D13

can be arbitrarily large even when the duration of the source
T is short. This is because there is no upper limit on the value
of the lengthl (=c?/a) that enters EqgD12) and(D13): |
tends to infinity fora—0 and is as large as ¥bcm whena
equals the acceleration of gravity. ThRg can be rendered
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®) The scalar Lienard-Wiechert potential describing the am-
plitudes of the above waves is given by the retarded solution
of the wave equatiofil4a for the source density

po(X'y' 2" ") =8(x" =x)8(y' —y)d(z' =z~ ut’
—Lat’?)6(t"). (D15)

Here the step functiod(t), which equals 1 wheb>0 and

zero whent<<0, is introduced to exclude any cases in which
© @ the velocity of the source may change direction. In the ab-
sence of boundaries, therefore, this potential has the value
— tp _
GO(XPatP)ZZCf dSX’J dt'po(x’,t")
X 8(|xp—X'|2=c%(tp—t")?) (D163
x

=2cJtpdt'5(Ez(t')—c2(tp—t')2),
0
(D16b)

)

Whereﬁ(t’) is the function defined in EqD2) (see, e.g.,
[12]).

In terms of the variables earlier introduced in E(33)—
(D7), the expression on the right-hand side of EQ16b)

S o _ . reduces to
FIG. 9. Evolution in observation timgp of the relative posi-

tions and the envelope of a set of wave fronts emitted during the — Bp _ _

retarded time interval 1.263< 1.96. The snapshots)—(f) respec- Go=2I 71[ dg s(g)=21"1 >, |aglap|

tively correspond t@Bp=2, 2.5, 3, 3.75, 4.75, and 8. These include M B=Fi

times at which the envelope has not yet developed a pag@nd (D17)

(b)], has a cusp(c)~(¢)], and has already lost its cusp. in which the B;’s are solutions ofg(8)=0 in the range
M <8< Bp. Equation(D17) shows, in conjunction with Fig.
8, that the potentiaB, of a point source is discontinuous on
the envelope of the wave fronts: If we approach the envelope
" from outside, the sum in EqD17) has only a single term

If either M or | is large, the waves emitted by a short-lived and yields a_fln_lte value fOGO,’ but if we approach this
source do not focus to such an extent as to form a cuspeﬂJiace from |n5|de,.two of thﬁi s coalesce at an extremum
envelope until they have traveled a long distance away fron®f 9 @nd Eq.(D17) yields a divergent value foB,. On the
the source. The period~(M2T) during which they then do CUSP curve of the envelope, Wh_ere. threg wave fronts meet
so can(in the case o> 1) be significantly longer than the tangentially, all three of thg;’s coincide[Fig. 8, curve(b)]
life span of the sourcéNote that this period is distinct from and the denominator of the expression in E@17)
the duration of the pulse of focused waves that would bé’Otrszanz'Shes and has a vanishing derivativig/ ¢
received by a stationary observer. The latter is of the order of 9°9/9B - 0). . — _

L/c, wherel, is the dimension of the source in the radial The uniform asymptotic approximation %8, at points
direction) close to this cusp curve can be found by the method outlined

For an observation point in the far zone, the two sheets of? Appendix A. The resulting expressions for the values
the truncated envelopes shown in Fig. 9 are essentially coirsg °" of this function inside and outside the enveldpethe
cident. In the vicinity of the cusp, the difference between thebifurcation surfacehave the same functional forms as those

dimensionless coordinatés and&_ of these two sheets at a appearing in Eq418) and(19) except thaly, c{, pg, andgg

arbitrarily large, by a suitable choice of the paraméterith-
out requiring either the duration of the sour€E or the
retarded value/eé’sc) of the speed of the source to be cor
respondingly large.

fixed ¢ is given by are respectively replaced by
£, — & =2(2)328Y3 gHB_1) 32 ; — )32 x=[9(B-)+a9(B)1[9(B-)-0(B+)], (D18
(D14) ~ _(3\UFy _ 1/3
ci=(H"9(B+)-9(B)1Y?, (D19)

[see Egs(D10) and (D11)]. As Bp and hence the distance o _ _

between the caustic and the source increases, therefore, the p0=%(fo|vzgl+fo|yz _gl), (D20
separation £, — £_)1 of the two sheets at a finite distance

|¢— ¢l from the cusp decreases lik8,23 Y2 and so and

shrinks to zero when eithe8p or | is much greater than — =17 -
unity. ] Q0=3C1 (fol =g, fol = <)), (D21)
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with

T+O vz
3

(3B2—¢+1)sing

‘c,sin
2 1

(D22)

f0| v= t?l

The variabley equals+1 on the sheet_ and —1 on the
sheeté, of the envelopdor the bifurcation surfageln the
immediate vicinity of the cusp curvéD11l), we havefB.

=B (5)Y4(¢— ) and so

X=(3)%2B 13 BE3- 1)[(BE*- 1) VA £~ )

— (L= O (L= 0 (D23
o 1/2
C1= 38 Bp (L= O, (D24)

and

_ 2 _
p023T§ |_1B;1/9, q02_3—5/3|—1ﬁ;5/9 (D25)
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FIG. 10. Cross sections with a meridional plane=(const) of
the two sheets{= £..) of the bifurcation surface of the observation
point P for Bp=2. The truncated section of this surface, which is

for the leading terms in the expansions of these quantities ifelevant to a short-lived source, is designated by heavier lines. The

powers of¢é— ¢, and{— ..

The functionG3" is indeterminate but finite on the enve-
lope[see Eq(D38)], whereast”Ldiverges ay— *1.Itcan
be seen from the expression @E‘ in the immediate vicinity
of the cusp curve,

GI~V31 "X Ze— OVABY L~ 03— (3)3(BEP-1)?
X[(BE-1) V4 e~ &) - (L— 1B Y2  (D26)

however, that both the singularity on the enveldaewhich
the quantity inside the curly brackets vanishasd the sin-
gularity at the cusp curvéat whiché— &. and{— £, vanish

are integrable singularities. Singularities persist,

perluminal source is pointlikgl,2].
Let us now consider aextendedsource that moves par-
allel to thez axis with the constant acceleratianThe den-

sity of such a source, when it has a distribution with an

unchanging pattern, is given by

p(x,y,2,0)=p(x,y,2) (1), (D27)
where the Lagrangian v_ariablé is defined by z—ut
—1at?, asin Eq.D1), andp can be any function ofxy,2)
that vanishes outside a finite volume.

If we insert this density in the expression for the retarde
potential[12] and change the variables of integration from

(x,y,z,J to (x,y,z,t), we obtain

_ t _
Ao(xp,tp):ch d3xf " dt p(x,t) 8(xp—X|2

—cA(tp—1)?) (D283

dotted region represents the volume occupied by the source.

:f dX dy az;(xuyli)ao(x_xPuy_yP ,E_Ep 1tP);
(D28h)

whereG, is the function defined in EqD17). The potential

of the extended source in question at the position
(Xp,Yp.Zp,tp) Of a fixed observer is thus given by the su-
perposition of the potentials of the moving source points
(x,y,z) that constitute it.

Because3, is invariant under the interchange of,{,z)

and p,Yp,zp) if ¢ is at the same time changed to/ [see
Egs.(D3) and(D17)], the locus of singularities dB in the

: : , in other, v 7 space of source points, i.e., the bifurcation surface of
words, only in the physically unrealizable case where a su

the observer aP, has the same shape as the envelope shown
in Fig. 7 but issues from the fixed poinkg,yp,zp) and
points in the opposite direction to the enveldpee Fig. 1D

According to Egs.(D2), (D8), and (D10), the elements
inside but adjacent to the bifurcation surface approach the
observer along the radiation directios — x with the wave
speed at the retarded time:

(D29

dThe accelerations of these elements at the retarded time

_ a(BI—Pe)
e P=(Bo—B=)

d?R
dt?

(D30)

are positive on the sheét= ¢, of the bifurcation surface and
negative oré = ¢_ [see the paragraphs following E@p11)].
Hence the source points on thasp curveof the bifurcation
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surface, for whichB,=p3_=p%°, approach the observer =¢,, and the smaller op=0 andz=Z.—3(cT)%I if the

with zero acceleration as well as with the wave speed. source has the duratioh (wherez,=zp+ .| is theZ coor-
An analysis similar to that presented in Appendix Cdinate of the cusp
shows that the ratiodt/Stp of emission to reception time The gradient of the scalar potential at such an observation
intervals for the waves that arise from the source elements opoint is given, according to EqD28b), by
the cusp curve is given by*3(82°—1)"3(astp/c) =22 De- — — —
noting the wavelength of the radiation byand considering VA= (VpA)int (VA0 out (D32
the set of waves that are received by the observer with a ,
phase differencestp /N of only 3, we find that the ratio in " Which
guestion has the value

(VPKO)in,outEJ; dVHVPEg],out:_ﬁ dVFVEg]'OUt
8t/ 8tp=2( B~ 1)¥X(1/N)?", (D31) Vin o Voo

- [ avviehon § papes
Mn,out

in,out

a value that can be exceedingly large: Ror1 cm anda
~10° cm/€, we havel/\~10' so that this ratio is of the
order of 132 even whengp is not large. Thus the dominant
contributions towards the value of the radiation field come - —
from those source elements that approach the observer, alo ddV andsV stand for the volume e!emedb( dy dzand
the radiation direction, with the wave speed and zero accef® Poundary of the vtolumv, respectively. Here we have
eration at the retarded time. used the fact thaGq"*" depend onXp,yp,Zp) in the com-
The preceding discussion applies to a source whose lifeinationsxp—X, yp—Yy, andzp—2 to rewrite VPG'(;""Ut as
span encompasses the intervak<tp. If the source is —VG‘(;“OUt and have invoked the identityVG=—GVp
short lived, the locus of singularities @, would be modi- +V(pG) and the divergence theorem to arrive at the final
fied. We have already seen that when the source has thexpression in Eq(D33).
duration 0<t<T the envelope of the wave fronts emanating \We have seen thgﬁ;g‘ diverges on the side§= ¢, and
from one of its_ elements consists, as in Eig:I)Q of only a ¢ of the boundarwvm, but that this singularity 0_31 is
truncated section pf the surface shown In Fig. 7 and POSy tegrable. Hadamard’s finite part ofVGAg), consists,
sesses a cusp during only the correspondingly finite mtervaE ¢ £ th | . | ovek. in th dli
of observation timéD12). If we incorporate the finiteness of therefore, of the volume integra OV¥k, in the second fine
. : o of Eq. (D33). (The contribution from the remaining side of
the duration of the source in the expressionGgrby replac- he boundarvéV.. that falls within the bif . ¢
ing the upper limit of integration in EqD283 with T, then the boundaryiVi, that falls within the bifurcation surface
the locus of singularities of the resulting modifiél_i) will vanishes sincg=0 on this bouEdary. —
The functionG!" decays likepy/c2=0O(Rp ¥ at points

likewise consist of only a truncated section of the full bifur- " ) .
cation surface, a section such as that designated by t{Bterior to the bifurcation surfadsee Eqs(18), (19), (D24),

heavier lines in Fig. 10. This locus likewise has a cusp onlyand(D25)] and the volumeé/;,, together with the separation

during the limited interval of timéD12). of the two sheets of the bifurcation surface, diminishes like
For a value oft, well within the interval(D12), thez  Rp2" [see Eqs(D13) and (D14)]. It therefore follows that

extent of the truncated bifurcation surface in question is othe volume integral in the expressig®33) for (VpAo)in

the order of ¢T)?/I. This can be seen by noting that Egs. decays likeRy < R5 %2 in the far zone. That is to say,

(D8) and (D11) joinly yield the following value for thel . . .

coordinat_e of the point of the e.nvelqpe to whi_ch the wave H(VpA0)int=0(Rp1), Rp/l>1, (D34)

front emitted at the retarded timg is tangential:{= ¢,

—(B-B¥IH2(3+BYYB). So, at an observation time close a result that can also be inferred from the far-field version of

to the center of intervaD12), e.g., foraY¥3=M+LcT/I, the  Ed. (D26) by explicit integration. Each component of the
difference between thé coordinates of the cusp and the volume integral in the expressidiD33) for (VpAg)e, has
boundaryB=M (or t=0) of the truncated bifurcation sur- the same structure as the expression for the potential itself
face is gc—§|B:M=§(1+%aT/u)(cT/I)Z. This expression and so decays Iiké&;l [see the paragraph containing Eq.
reduces ta2(cT/1)? whenaT/u<1. (22)]. -

In what follows we let the observation point be such that To evaluate the surface integral iV Ag) oy it is more
the cusp curve of the bifurcation surface intersects the sourcgonvenient to change the variables of integration from
distribution (as in Fig. 10 and designate the portions of the (x,y 7) to the dimensionless polar coordinat&s?,.) de-
source that fall inside and outside this surfaceMyy and  fined by Egs.(D4)—(D6) and w=arctafi(y—yp)/(X—Xp)].
Vou. Irrespective of the duration of the source, the separaThen the elements of area on the sides¢. (£) and£_({)
tion of the patches of the two sheets of the bifurcation surof the boundaryV,,; assume the forms
face that lie within the source is of the order 8§23 2
and so is vanishingly small in the far zofeee Eq.(D14)]. dSlg—, (= F1%¢du dZ V(E—£2). (D39
The boundaries of the volum¥,, for a far-field observer _
consist, therefore, of the surfacés é_, é=¢,, andp=0  The contribution from the other faces &, to the value of
if the source is long lived and of the surfacés¢_, ¢  the surface integral in EqD33) is zero, forp in the inte-

(D33
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grand of this integral vanishes on the boundary of the sourceshen it is expanded aboyt= .. [see Eqs(D14) and(D23)—
distribution. The surface integral in question can therefore béD25)]. To within the leading order in the far-field approxi-

written as mation Bp>1, therefore, Eqs.D36) and (D39) yield
_— —out _Eoutdswl(Z)S/Zé —2fy 1/2§ L"‘/(écl)d
b poids=3 =1°|_dr dul&pGE Vie-e.), - PSS 3(5) e M1, | T
MNout + Sy * ou
(D36) %
x [* itz i
in which the patches$. stand for the intersections of the vt
source distribution with the sheefs=¢.. of the bifurcation ~(2)528=28 (L= /)Y prc)e
surface, respectively. (378 L u(La/D X pas),
Using Eqs.(D8)—(D10), we obtain the following expres- (D40)
sions for the vectors normal to these two sheets of the bifur-
cation surface: wit
J— 1 A~ 1 J—
V(E—é) =135 - 2B+ 0)8— &), (D3D) (peg = fo du fo d7 peslu=pL, e 3=%- Py
(D41)

where &=[(xp—X)&+ (yp—Y)g§1/(1£) is the radial unit
vector pointing away from the path of the source andwherelL , is the length of the segment of the cusp curve that

(&.8,.&,) are the Cartesian basis vectors. falls within the source ands; is given either by th& extent
Furthermore, from Eq(D18) and an appropriate version of the intersection of the source distribution with the bifur-
of Eq. (19 we find that cation surface or by the smaller of this extent gd T)?/I;

it is given by the former if the source is infinitely long lived
G, . —GM— (DT 2C.00)/(3C2 . (D38 and by th(_a latter if the source hqs a finite life sg@an
0 1e-e. =G y-+1~(Po¥ 26,00)/(3c7),  (D38) According to Eq.(D13), the distance between the cusp
curve of the bifurcation surface and the observer at the re-
where we have removed the indeterminacy in the value Ofgrded time is Rp=gpl for large values of Bp=(u
Gy at x= +1 by expanding the numerator of EQL9) in  +atp)/c. As the timetp elapses and the distance between
powers of its denominator and canceling out the commonhe source and the observer increases, therefore, the value of
factor (x?—1)"? prior to evaluating the ratio in this equa- the above surface integral decays IiRg?3. The second

tion. This shows thaGg"l,—, andGg"|;-,, remain differ-  term in the expressiotD33) for (V pAg)eu thus dominates
ent even in the limit where the surfacésé_ and ¢, coa- the first term in this equation, which has the conventional

lesce. rate of decayRp", and so the quantity¥ pAg) o itself de-

Insertion of Egs.(D37) and (D38) in Eg. (D36) now _cays IikeR;2’3in the far zoneRp>>1.

yields the asymptotic value of the required boundary term in e gjectric current density associated with the moving
the limit where the observer is located in the far zone and th%ource we have been considering is given by

source is localized about the cusp curve of his or her bifur-
cation surface. In this limit, the two sheets of the bifurcation

surface are essentially coincident throughout the domain of
integration in Eq.(D36) [see Eq.(D14)]. So the difference i \whichcg (=u+at) is the velocity of the source pattern

between the values of the source density on these two shegfp time t. This current satisfies the continuity equation
of the bifurcation surface is negligibly small for a smoothly gpla(ct)+V -] =0 int>0 automatically.

distributed source and the funaio@ﬁi appearing in the If we insert Eq.(D42) in the expression for the retarded

integrand of Eq.(D36) may correspondingly be approxi- vector potentia[12] and change the variables of integration

mated by their common limiting valupgs(1,2) on these  from (x,y,z,} to (x,y,Z,8), as in Eq.(D28), we obtain
coalescing sheets.

Once the functiong|;  are approximated bygs(u,z) — o (e — , ,
andS. are replaced with the surface resulting from the coa- Alx ’tp)zzf d Xf,w dtj(x.) 8(xp—x|*=c*(tp—1)%)
lescence of these two patches of the bifurcation surface, Egs.

j(x,t)=cBp(x,y,2) (1)&,, (D42)

(D37) and (D39) yield an expression for the difference be- —o [ dx dv dzat ~
tween the two terms in the integrand of E@36), which =& | dxdy dzp(xy.2)
reduces to — o
XGy(X=Xp,Y=Yp,Z—Zp,tp), (D43
> FEV(E-£)GM, in which G, is given by
_ Bp _ _
=39 OV M 68— (28574 D&Y G=21"" fM dp p o(@)=21"" 2 Bliglopl ™",

(D39) (D44)
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andg and 3;’s are the same quantities as those appearing iand noting thawgl/(;tpz _C(|§)*1(962/(9§ since dgldé
Eq. (D17). Application of the method outlined in Appendix =2¢ according to Eq(D3).

A shows thatG; is described by two different functiorG}' Once the volume elementV in the above integral rep-
and G" inside and outside the bifurcation surface whoseresentation of JA/dtp is written in its polar form
asymptotic values in the neighborhood of the cusp curvé3¢ d¢ du d¢, therefore, we arrive at

have exactly the same functional forms as thos&g"",
the only difference being thaty andq in these expressions o =

are replaced by, andq; with the values dAldtp=—cl’¢, | d& du df pdGy/o¢.  (DSO)

2/9

_ 2 _ 5 B ; e ; Lol
= 1 1-182° ;= o |71I8P2/9 (D45) This splits into two terms when the observation point is such

that the bifurcation surface intersects the source distribution:

in the regimez.—z<I [see Eqgs.(18), (19), and (D18)— IRl 9tp=(9AI 3tp)int (AT Itp) ouy With

(D249)]. . ¢ -

Hence the following expression for the magnetic field ((9A/atP)in:_C|2ézf du ng +dg HaG‘znlag,
splits into two terms when the observation point is such that S §-
the bifurcation surface intersects the source distribution: (D51)

& o]
Jo <1
0 &4
If we denote the contributions towards the valueBofrom
inside and outside the bifurcation surface By and B, hereSis the projection oW~ onto the(u,?) plane ands"
then for the same reasons as those outlined in the paragrap\f*\n’ 4 GO differ f G dé"“t Wi th t th ; .|2
following Eq. (D33), it turns out thaB;, is divergent and has andt; - difier from %o andfso - only in that they ental
a Hadamard finite part that decays Iikﬁ(ﬁ)(@—g,) 2
= 0(13';2/3)_ B 52: 3 [ —1132/9( I%/3_ 1), 5223—5/3| —1[3%’/9(5[3'23/3_ 12)
Moreover, B,,; consists of a volume integral with the (D53)
same structure as the potential and a surface integral of the
form ézxgiﬂgouFG‘l’”tdS. The volume integral in this case jn place ofp, andqp.
decays likeB %" becausé is proportional to3.= 85> at the Integration by parts with respect toshows[20] that the
retarded time. However, the dominant contribution to theHadamard finite part of the integral in E@P51) consists of
nonspherically diminishing part & once again comes from
the surface integral in the expression fy;.
The evaluation of this surface integral entails precisely the

Bzvprz—ézxf dV pV5G;. (D46) (aX/atp)outz—cﬂézf du d¢ dé paGM g,
S

(D52)

— R 13 . _—
(OAIatp) i =—cl3%, | du d¢|  dé &, VoGP
3 ¢ 3 2

same procedure as that followed in E¢®35—(D40), ex- (D54)

cept thatp, andq, need to be replaced everywhere with

andq;. The outcome of the calculation is since the additional boundary term that results from this in-
_ . tegration is divergent. In the far zone, this integral has a
B~—5(3)"28p "L ,(L3/D) " )8,  (DA7)  quadrature that is proportional to p{/c2)(£.—¢.)

=0(BY? [see Egs(D14) and (D19)] and au quadrature

that is proportional td_, /(1¢;) [see Eq(D41) and the text
2/3

in which e,=¢,X&; is the unit vector associated with the

azimuthal anglg.=arctam(y—ye)/(x=xp)]. _ following it]. Its value decays, therefore, likgs <.

To find the remaining termA/dtp==8,/dV pdG,/dtp in The integration by parts with respectgof the right-hand
the expression for the electric field, we now need to calculatgjye of Eq.(D52), on the other hand, results ja0]

3Gy /dtp [see Eq(D43)]. The Green'’s functiorls; depends
on tp both throughBp and throughze and hencel. Differ- _ R
entiating the integral representation®f in Eq. (D44) with (9AIdtp)ou=Cl?&,
respect to these two variables under the integral sign and
using the chain rule, we obtain

—~out ¢
Ldu dilpGy1;"

—|ff dé du dZ & VpG™,
o Bp o 'out
96 1ite=a012 [ "B p(B-p0)5 @, (049 (055

in which use has been made also of E3). This can be whose terms are both finite. Since f8p>1 the retarded
cast into a form that is more appropriate for integration withvalue of 8p,— B8 approximately equalg; [see Eq(D11)], the
respect to the space coordinates by introducing the functiorolume integral in Eq(D55)_is of the same structure as the
expression for the potentiad [cf. Egs. (D43), (D44), and
G,=2l *fﬁpdﬁ B(Bo—B)5(9), (D49 (D49] and so decays lik@, 2. However, the surface inte-
M gral in this expression has a slower rate of decay.
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If, as in Eq.(D40), we approximatep|.; by pps(u.2),
then the relevant version of E¢D38) can be used to write
the asymptotic value of the surface integral in HJ55) as

—out .
[ du ez

L, /(&)

- 2/3
~=3(3)%7 83 A

x| dz2(z.—2) Y%ppg(p,2)
z— Lz
~=5(5)"728p ML L (Lz11) K pas),
(D56)

where use has been made of E(319), (D53), and(D41).
This decays likeRy ' whenRp>| [see Eq(D13)].

The far-field value of the contributiorvf/dtp) ou, there-
fore, consists solely of the boundary term in EQ55) and
dominatesF{(9A/dtp)i,}, Which decays likeR,?>. More-
over, the value thus implied by Eq$D51)—(D56) for

dA/dtp dominates that oV pAy, which also has the decay

rateR, %2 in the far zondsee Eq(D40) and the text follow-

ing it].
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furcation surface. We would have obtained the same results
had we simply excised the vanishingly small volume
Iimgp_,mvin from the domains of integration in EqED33),
(D46), and(D50).

The Poynting vector implied by Eq§D47) and(D57) is

S~($)2(3)%m Le(ppg)2L2(L3 /1) (Rp /1) 2%,
(D58)

In comparison, the magnitude of the Poynting vector for the
coherentdipole radiation that would be generated by a
macroscopic lump of charge, if it moved subluminally
with the constant acceleratiom, is of the order of
((p)L3)%a%/(c®R3), according to the Larmor formula,
where L® represents the volume of the source dpdl its
average density. The intensity of the present emission is
therefore greater than that of even a coherent conventional
radiation by a factor of the order of L{/L)
X(L,/L)4(I/L)*}(Rp/L)*3 a factor that can exceed unity
by many orders of magnitude.

Note, finally, that the mechanism responsible for the ef-
fect described here remains different from that which gives
rise to the @renkov effect even in the limdé—0. The elec-
tric field (and the electric potentinbwing to a rectilinearly
moving volume source of infinite duration whosenstant
phase speed exceeds the speed of liglvacuodecays non-

Thus the electric field vector of the radiation is given by spherically, but with a different rateRg 1’2) and for a differ-

E~—c LoAldtp
~— ¢ XAl 3tp) oun
~—17%, | du darpGE:-
. .
~BX&, (D57)

whereB is the magnetic field vector given in E@P47). The
direction of propagation of the radiaticﬁg is perpendicular

ent reason: The emission time interval for those elements of
this source that approach the observer with the wave speed at
the retarded time is by a factor of the orderRf% (cstp)*?
greater than the time intervatp in which the signal gener-
ated by them is received. The resulting emission would vio-
late the inverse square law in this case only if the source is
infinitely long lived. When the life span of the source in
guestion is finite, both its potential and its field decay spheri-
cally, for the contributing interval of retarded time is
bounded by the duration of the source.

The present effect, in contrast, comes into play irrespec-

to the path of the source, i.e., coincides with the far-fieldtive of whether the duration of the source is finite or infinite
limit of the normal to the envelope of wave fronts at its cuspand gives rise to a nonspherically decaying cau@icthe

[see the paragraph following E§D11)]. The polarization

distanceRp= Bpc?/a from the sourceeven in the limita

vector of the radiation lies along the direction of motion of — 0. Here it makes a difference whether we aet0 in Eq.

the sources, .

(D1) at the outset or whether we calculate the radiation field

Note that there has been no contribution toward the valuefor a nonzero acceleration and then proceed to the kmit

of E andB from inside the bifurcation surface. These quan-—0. The envelope of the wave fronts has no cusp in the
tities have arisen in the above calculation solely from theformer case, whereas there is a caustic in the latter case that
jump discontinuities in the values of the Green’s functionsmerely moves to larger distances from the sourca-as)

G", G, andG3" across the coalescing sheets of the bi-rather than disappear.
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