different positions of Q on the ellipse, when the theoretical
eight shape figure corresponding to the ellipse is obtained.
Compare this with the experimental curve.

The data processing and curve plotting for the above ex-
ercise and the main construction can be done very conve-
niently using a personal computer, especially when ellipses
for several ¢ values are examined. This was done to obtain
Fig. 4.

DISCUSSION

The simple construction discussed above helps in realizing
the full potential of the standard undergraduate experiment
on the basic types of polarization: linear, circular, and ellip-
tical. The standard experiments are confined to observing
visually and noting that as the analyzer is rotated, the light
intensity goes through a maximum and minimum for ellipti-
cally polarized light, the minimum is zero for linearly polar-
ized light. In experiments employin% a photocell the photo-
current (i) is measured and i vs cos” O is plotted for linear
polarized light. For elliptical polarization the ratio of maxi-

mum and minimum currents is measured and compared with
the square of the ratio of the major and minor axes of the
theoretical polarization ellipse. A student does not observe
the shape of the ellipse, as we do in the experiment of this
paper.
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On the basis of the solution of the Fourier transformed inhomogeneous wave equation expressed in
terms of both the charge and current density source, two basic field equations are derived, from
which the time-dependent generalized Coulomb and Biot—Savart laws are readily obtained. For the
specific case of an arbitrarily moving point charge, the use of the Fourier-transform approach makes
the derivation of two intermediate field equations, required to get the fields in both the Heaviside—
Feynman and Liénard—Wiechert form, straightforward. © 1996 American Association of Physics

Teachers.

I. INTRODUCTION

The electric and magnetic fields of a point charge in arbi-
trary motion in vacuo are traditionally obtained by making
use of the Liénard—Wiechert potentials,! whereas for arbi-
trary charge and current distributions the fields can be advan-
tageously obtained by means of the time-dependent general-
ized Coulomb and Biot—Savart laws as given by Jefimenko.>
Recently, two alternative derivations of these time-dependent
laws have been given, one based on the standard retarded
scalar and vector potentials of electrodynamics® and the
other one based on a light cone transformation.* A generali-
zation of Jefimenko’s formulas to include magnetic mono-
poles has also been considered.’

This paper gives another alternative derivation of these
formulas, using the Fourier-space description, that has no-
table advantages when compared with the traditional ap-
proach to electromagnetic theory.® Instead of the coordinate-
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space description of the more conventional treatment of
electromagnetic theory, in the Fourier-space description the
electromagnetic fields are described in terms of their Fourier
transforms in both space and time, so that they are functions
of frequency w and wave vector K, rather than of time ¢ and
position r. As a result, the inhomogeneous wave equation
obtained from Maxwell’s equations is an algebraic equation,
rather than a differential equation, whose solution, which is
straightforward in vacuo, has a singular part, the causal treat-
ment of which requires the use of a proper contour integra-
tion, as shown in Sec. II. In the more conventional approach
this corresponds to choosing the retarded solution of
d’Alembert’s equation for the potentials.

On making use of two basic field equations derived in Sec.
I1, the time-dependent generalized Coulomb and Biot—Savart
laws are readily obtained, as shown in Sec. III.

Another example where the Fourier-space description re-
veals major advantages with respect to the traditional
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Liénard—Wiechert potentials approach is the derivation,
given in Sec. IV, of two field equations needed to arrive at
the fields in both the Heaviside—Feynman and Liénard—
Wiechert form.

I1. BASIC FIELD EQUATIONS

Describing the electromagnetic field in terms of its Fourier
transform, i.e., assuming that the space-time variation of
both the electric field E(r,t) and the magnetic field B(r,t) is
of the form exp{i(k-r—wt)}, Fourier transformed Faraday’s
and Ampere~Maxwell’s laws (Gaussian units) yield, on
eliminating the magnetic field, the inhomogeneous wave
equation which relates the (Fourier transform of the) electric
field E(k,w) to the (Fourier transform of the) current density
source j(k,w).% For free space, such a wave equation has the
form’

W?E(k,0) + 2k (kXE(K,0)) = —4mioj(k o). (1)

On noting that kX (kX E)=(k-E)k—k’E and making use
of the Fourier transformed form of Poisson’s equation, i.e.,
k-E(k,0)=—47ip(k,w) with p(k,w) the Fourier transform
of the charge density source p(r,t), Eq. (1) yields at once

47
Pl—w?

E(k,0)= {wj(k,0)~c?p(k,w)K}. )
The main feature of the electric field given by Eq. (2) is
the singularity for k’c2=w?, that is, just the dispersion rela-
tion for the electromagnetic field in vacuo.®
The electric field in space and time is obtained from solu-
tion (2) by means of the inverse Fourier transform

dk
(2m)°

where the integrals are over all @ (from — to ®) and the
whole Kk space. Let us consider the k integration first. The
steps in carrying out such an integration involve: (i) express-
ing j(k,w) and p(k,w), occurring in Eq. (2), by means of their
spatial Fourier transforms; i.e.,

Bro- [ o kT oD (K ). 3

{j(k,w),p(k,w)}=fdr' e~ T {j(r',0),p(r )},
4)

the exponential factor is combined with the corresponding
one in Eq. (3) to yield exp{i(k-R)}, where R=r—r' denotes
the vector from the source point r', at which the sources j
and p are evaluated, to the field point r, at which the field is
evaluated; (ii) using spherical coordinates (k,9,¢), such that
k=k(cos ¢ sin 9,sin ¢ sin 9,cos ) and k-R=kR cos ¥, the
¢ integration is trivial, and the cos ¥ integration is carried
out by parts; (iii) an integration over k, from — to o, with
singularities connected with (simple) poles at k= = (w/c) is
carried out in the complex k plane along the closed path
shown in Fig. 1.2 The relevant two singular integrals are thus
evaluated by means of the Cauchy integral theorem, with the
result

® e'kR i w| .
[ arrr g (1’ :)6’(“”””- )

It is to be noted that the choice of the path of integration in
Fig. 1 amounts to choosing the retarded solution of
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Fig. 1. Schematic of the closed contour of integration in the complex
k-plane: the semicircle extends over the whole upper semiplane, and only
the pole k= w/c contributes to the contour integral.

d’Alembert’s equation in the more conventional approach to
electromagnetic theory.! As a result of steps (i)—(iii), the
electric field (3) reduces to

E i’ 1 dow
(r,t)= r E ﬁe

—iw(t—R/c)

iw iw 1 n
X[ ?fj(rI’w)—(?—— ﬁ)p(r,aw)R]’ (6)

where R=r—r' and R=R/R.
As for the magnetic field, from the Fourier transformed
Faraday’s law one has

B(k,0)= — kxE(k ) (7a)
4qric .
== kxj(k o), (7b)

Eq. (7b) following from (7a) on using Eq. (2). The evalua-
tion of the magnetic field as a function of space and time
proceeds along the same lines as for the evaluation of the
electric field, with the result

1 dw
= r | 2 —ie-Ri)
B(r,t) J dr R J Soe
iw 1
¢ R
The field equations (6) and (8) are the basic equations of this
paper.

X RXj(r', ). (8)

IIl. TIME-DEPENDENT GENERALIZED COULOMB
AND BIOT-SAVART LAWS

To carry out the w-integration in (6) and (8), j(r’,w) and
p(r',w) are replaced by their temporal Fourier transform; i.e.,

{j(r’,w),p(r’,w)}=f de' e {j(r' ,t"),p(r',t")},

)
where ¢’ is the time related to the source, distinct, in general,
from the time ¢ related to the field. Now, for the two terms of
Egs. (6) and (8) containing the factor iw, a straightforward
integration over ¢’ is available; the remaining  integral is

then just the integral representation of the Dirac & function,
namely,
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J‘ dw
277

with the consequence that the ¢’ integration amounts to just
taking the corresponding integrand at ¢’ =¢t—R/c; i.e.,

el ~HRIO = 54 14+ R/c),

, [r—r'|
=t P (10)

referred to as the retarded time. One thus obtains, from Eq.
(6),
[o(r',t)] ~ 1 [dp(r',t")].
E(r,: — |
(r,1)= j ( R+ cR at’ R

1 |aj(r',t")
“ R [%}) (1)

and, from Eq. (8)

B(r = f
(12)

where the square brackets mean that the quantity within is to
be evaluated at the retarded time (10). Equations (11) and
(12) express, respectively, the time-dependent generalized
Coulomb and Biot-Savart laws.>™*

[J(r t')]

aj(r’,t’ A
i( )])xR’

_QK[ o’

IV. THE FIELD OF AN ARBITRARILY MOVING
POINT CHARGE

Here, we consider the specific case in which the source of
the electromagnetic field is a point charge, but, rather than
using directly the time-dependent, generalized Coulomb and
Biot-Savart laws, i.e., Egs. (11) and (12), respectively, to
evaluate the correspondmg fields,>* we make use of Egs. (6)
and (8), for which the inverse Fourier transform with respect
to w is yet to be carried out, j(r',w) and p(r',w) being given
by (9) with

J( ) =1t )p(r',t") = qr (") 8(x' —r,(¢')),  (13)
where T (¢t')=dr,(¢t')/dt’ is the veloc1ty of the charge q,
the mstantaneous posmon of which is given by rq(t ). The
presence of the & function in Eq. (13) makes the
r'-integration in both Egs. (6) and (8) straightforward. Fur-
thermore, an integration by parts over ¢’ of the terms propor-

tional to iw is readily carried out and the remaining w inte-
gration produces the Dirac & function:

, R(t") _a(t’—t’(t))
5(t—t+ - )— TR (14a)
R(t")=[r—r,(t')|, (14b)
g(t")=1+R(t")/c=1-R(t")- B(t'), (14c)

where B(¢')=t,(t')/c and the retarded time t'(¢) is the so-
lution of the equation

r—r,(t
t’_t+ Lq—()i_z

(15)

Finally, making use of & function (14a) to carry out the ¢’
integration yields
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g(t")R*(t")
| T
Ayl

with square brackets denoting retarded values. The novel
derivation of the fields (16) and (17) given here appears
somewhat more stralghtforward than the standard one based
on the use of the Liénard—Wiechert potentials.” From Egs.
(16) and (17) one can obtain the fields both in the
Heaviside—Feynman and Liénard—Wiechert form.’

V. SUMMARY

In summary, on the basis of the solution of the Fourier
transformed inhomogeneous wave equation, two basic field
equations, namely Eqgs. (6) and (8), are obtained, which al-
low a straightforward derivation of the time-dependent gen-
eralized Coulomb and Biot—Savart laws. Also, in the context
of the derivation of the fields in both the Heaviside—
Feynman and Liénard—Wiechert form, the intermediate field
equations (16) and (17) are obtained in a more direct manner
than the standard one based on the use of the Liénard—
Wiechert potentials.
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