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The basic theory of a receiving antenna is presented in sufficient detail to permit the calculation of
the voltage across the load of an optimally designed TV antenna circuit. The rms load voltage is
given by ¥, = AH (30R,D)"/?, where A is the wavelength of the incident radiation, H is the rms
value of the magnetic field intensity, R, is the radiation resistance of the antenna, and D is the
directive gain. The result obtained from this formula for a typical monopole TV antenna is
compared with that obtained from a simple, intuitive approximation. The reasons for the

difference in the results are discussed.

s,

I. THE PROBLEM

Although receiving antennas are widely used, textbooks
on electricity and magnetism usually treat the receiving
antenna cursorily when discussing electromagnetic radi-
ation. Basically, the aim of this paper is to present the rel-
evant theory in sufficient detail to enable one to calculate
approximately the maximum voltage and current induced
in the load of an optimally designed TV antenna circuit.

I1. CIRCUIT REPRESENTATIONS

In view of the fact that an antenna is ordinarily coupled
to an electronic circuit, it i$ useful to represent the entire
system by means of a circuit diagram. Thus, if the antenna
is used to radiate energy into space, the Thevenin equiva-
lent circuit is the one shown in Fig. 1, where # is the im-
pressed emf, Z the equivalent impedance of the source, and
R, the radiation resistance. If the same antenna is used to
receive energy, the equivalent circuit as seen from the load
terminals is the one shown in Fig. 2, where & is the equiva-
lent of the emf induced in the antenna due to the incident
electromagnetic waves, R | the “reradiation” resistance,
and R; the load resistance. The reradiation resistance of
the receiving antenna arises from the fact that the incident
waves not only induce an emf but are also reflected or scat-
tered. Only a portion of the incident energy is absorbed by
the load. Inherent in the circuits shown in Figs. 1 and 2 is
the assumption that the lengths of the antennas are such
that at the frequency of operation the impedance of the
antennas is simply resistive. Also, we must remember that
these circuits are only the Thevenin equivalents as seen
from the load terminals. We shall now demonstrate that
the reradiation resistance R | is equal to radiation resis-
tance R, .

III. THE RERADIATION RESISTANCE

To study the reradiation resistance R, we shall first
consider a current element or Hertzian dipole of length dl.

Fig. 1. The equivalent circuit for a
R, transmitting antenna having a radi-
ation resistance R, .
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If the current in the Hertzian dipole is I = I, cos wt, the
radiated electric field intensity E and magnetic field inten-
sity H are given' in SI units by

E = — i, [6071,d! sin 8 sin(wt — 2a7r/2 )] /Ar, 1)
H = —i,[[,dlsin @ sin(wt — 27r/A)]1/24r, (2)

where r is the distance from the center of the dipole to the
field point (r,6,¢ ) and i, and i, are unit vectors, respective-
ly, in the directions of increasing & and ¢. The electric vec-
tor E is proportional to sin £ and the field radiation pattern
of the dipole consists simply of a plot of sin & vs 6.

If the dipole is used as a receiving antenna at a great
distance from the transmitter, the incoming radiation con-
sists of plane waves. Figure 3 shows the Poynting vector P
of the incident radiation at an angle @ with the axis of the
dipole and the vector E in the plane of incidence. The z
component of E is E sin 8 and the voltage induced in the
dipole is E sin @ dl. If E is normal to the plane of incidence,
the induced voltage is zero. Thus, for E with arbitrary po-
larization, the induced voltage is proportional to sin 8.
Clearly, the directional characteristics of the dipole when
used as a receiver are the same as those when used as a
transmitter. Since any antenna that is small compared to its
distance from a given field point can be decomposed into a
series of very short dipoles, we can assert that directional
reciprocity of receiver and transmitter is valid in general.

Some of the radiation incident on a receiving antenna is
reflected. Since the angle of incidence (which determines
the receiving pattern) equals the angle of reflection (which
determines the reradiation pattern), the directional charac-
teristics of the outgoing radiation are the same as those of
radiation emitted by the antenna when radiating. In fact,
we may view the reflected radiation as having been rera-
diated. The departing energy is broadcast by the antenna
Just as though the antenna were used as a transmitter. Actu-
ally, insofar as reradiated energy is concerned, we may
think of R, in Fig. 2 as simply replacing Z in Fig. 1 so that
Figs. 1 and 2 become identical provided the sources are

Fig. 2. The equivalent circuit for a
receiving antenna having a reradia-
tion resistance R | and a load resis-
tance R .
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Fig. 3. The Poynting vector of plane waves incident on a Hertzian dipole
makes an angle & with the dipole axis.

equivalent. We may therefore conclude that the reradiation
resistance R / is the same as the radiation resistance R, .

IV. A HERTZIAN DIPOLE TRANSMITTER AND A
HERTZIAN DIPOLE RECEIVER

To clarify further the concepts presented above, we shall
consider two very short dipoles of lengths d/, and d/, paral-
lel to the z axis and separated a large distance y as shown in
Fig. 4. The first dipole acts as a transmitter and the second
as a receiver. From Eq. (1) we can see that the peak value of
the electric field intensity E, provided by the first dipole at
the site of the second is

E, = 60xl, dl,/Ay. (3)

Consequently, the peak value of the induced emf &, in the
second dipole is

&, = 60ml,dl, dl,/Ay.

We now assume that the receiver operates under
matched conditions. That is, the receiving antenna is con-
nected by means of a lossless coaxial cable to the load, and
the radiation resistance R,, equals the load resistance R ,
which in turn equals the characteristic resistance of the
coaxial line. Under these conditions there is no reflected
wave in the coaxial cable, and the load receives maximum
power. Since the radiation resistance of the receiving dipole
[3w)
is

R,, =8072(dl,/A ), (4)
the total resistance of the Thevenin equivalent circuit is
16072(dl,/A )* and the peak value of the induced current in
the receiver is

_ 3y dly
27 8wy di,

d4, d4s
Y
X
Fig. 4. Two Hertzian dipoles of lengths d/, and d/, parallel to the z axis are
separated a distance y.
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and the peak value of the voltage across the load is
V,, = 3071, dl, dl,/Ay = €,/2.

The total average power absorbed by the receiver is
{I2R,, =413R,, = (4SI3/8)dl,/y)"

From Egs. (1) and (2) we can see that the time-average value
of the incident Poynting vector (P) = (EX H) at the site
of the receving antenna is given by

[(P)| = 157l §(dl,)*/A %", (3)

The latter quantity is the average incident power per unit
area. By definition, the absorption cross section 4 of the
receiving antenna is the total average power absorbed di-
vided by the average incident power per unit normal area.
Thus

%IgRLZ _ 312 (6)
[(P)| 8

Clearly, if A is large, the absorption cross section of a short

dipole may be quite large in absolute terms although 4 may

be small in comparison to the surface area over which the
power of the transmitter is distributed.

A=

V. THE RECIPROCITY THEORM

To obtain similar results for antennas of finite size, we
need to develop the reciprocity theorem. Since we are inter-
ested in antennas that transmit or receive radiation at a
particular frequency, we shall express the electric field in-
tensity as Re[E(x,y,z)e’*'] and the magnetic field intensity
as Re[H(x,y,z)e’']. Thus, for a field (E;,H,), Maxwell’s
curl equations become

VXE, = —jouH,, (7)

VXH, =jweE, + oE, + J,, (8)
where J, is the impressed current density and serves as the

source of the electromagnetic field. Similarly, for a field
(E,,H,), we have

VXE, = — jouH,, (9)
VXH, = jweE, + oE, + J.. (10)

The sources J, and J, may be zero everywhere except in
certain special regions. We now dot-multiply Eq. (7) by H,
and Eq. (10) by E, and subtract. We obtain

H,VXE, — E,-VxH,
= —jouH,H, — (0 + jwe)E,-E, — E,-J,. (11)

Similarly, dot-multiplying Eq. (8) by E, and Eq. (9) by H,
and then subtracting, we get
E,VXH, - H-VXE, = (0 + jwe)E,'E,
+ EyJ; +jopH-H,. (12)

The left-hand side of Eq. (11) may be written V-(E; X H,),
and the left-hand side of Eq. (12) may be written
V-(H, XE,). We now add Eqs. (11) and (12) and obtain

V‘(Elez) - V'(szHl) =E,J, — E;-J, (13)

We continue by integrating Eq. (13) throughout a volume V'
and apply the divergence theorem. The result is

f (Ed, — B, d)dV = 39 (E,XH, — E;xH,)4S, (14)
| 4 S

where S represents the bounding surfaces of the volume V.
Equation (14) is the reciprocity theorem.
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Fig. 5. An arbitrary antenna system that may either transmit energy to a Hertzian dipole or receive energy from the Hertzian dipole, which is oriented fc

maximum reception.

VI. LOAD VOLTAGE OF A RECEIVING ANTENNA

Figure 5 shows an arbitrary antenna which may be con-
nected by means of a lossless coaxial cable either to a cur-
rent source of density J, or to a load resistance R; , both
inside a metallic shield. The entire assembly is enclosed
within a surface.S that enters the coaxial cable as shown. At
the section where S is normal to the cable axis, .S cuts across
the entire interconductor space. At a large distance r,,
from the antenna assembly is a Hertzian dipole antenna
system oriented for maximum reception. When the arbi-
trary antenna is radiating, the field is represented by E, and
H,, and when the dipole is radiating, the field is represent-
edby E,and H,.

We now use Eq. (14), the reciprocity theorem. We con-
sider the volume ¥ to be all of space except that enclosed by
the surface S. Since J, exists only within the Hertzian di-
pole antenna and J, does not exist within the volume ¥, the
left-hand side of Eq. (14} becomes E,(r;,)I; dI, where
E,(r,,) is the peak value of E, at the site of the dipole and
1, dlis the integral of J, dV, since for maximum reception
the Hertzian dipole is oriented so that E,-J, = E,J,. If the
medium in space is not entirely lossless, the fields will de-
crease more rapidly than 1/7, and the integral over the sur-
face at infinity will be zero. We assume this to be the case.
Furthermore, since the surface S is everywhere parallel to
conducting surfaces except at a certain section within the
coaxial cable, E, Xd Sand E, X d S are zero everywhere ex-
cept at this special section. Thus

E,xH,dS= — H,E,xdS =0,
E,xHdS= —H,E,XdS =0,

and the surface integral vanishes except at one transverse
section of the cable.

If the outer radius b of the coaxial cable is small relative
to the wavelength of the radiation, only a transverse elec-
tromagnetic (TEM) wave can exist within the cable, and the
peak values of the field intensities are

Hy =L/27r, E,, =(p/e)(L/2mr),

H,, = —1,/27r, E, =(u/e)"*I,/2mv).

The negative sign for H,; results from the fact that the
TEM wave for the field (E,,H,) travels to the left. The sur-

537 Am. J. Phys., Vol. 52, No. 6, June 1984

face integral thus becomes

27 b

1,1
2 ,u) ( 2 )rdr

Jo L2(8)" Gag)res

- ()" () [ £ - (&) ()2

B T a

= 1207,1, 1n—~ =2Z. 11, (15)

where Z_ is the charactenstlc impedance of the lossless
coaxial cable. We assume that the arbitrary antenna oper-
ates under matched conditions; namely

Z.=R, =R, (16)

where we have also assumed that the impedance of the
antenna is purely resistive. The reciprocity theorem thus
yields the following result:

E\r ), dl=2Z 11,=2V,1I,, (17)

where V. is the peak value of the voltage across R, when
the arbitrary antenna is receiving.

We can rewrite Eq. (17) in more convenient terms. First,
when the dipole radiates, the peak value of the electric field
intensity at the arbitrary antenna, according to Eq. (3), is

E=060rl,dl/Ar,. (18)
Second, when the arbitrary antenna radiates, the average
total radiated power is

# =1I3R,
and the magnitude of the time-average value of the Poynt-
ing vector is given by

1 [E,(r)]? Z?D
E,XH,)| = — £V -

(B XH)| = 2 1207 i,
where, by definition, D is the directive gain of the arbitrary
antenna in the direction of the Hertzian dipole. The maxi-

mum value of the directive gain is simply called the direc-
tivity. From the last equality, we have

3

60,@1) 301 R,D
Ey(r;)1* = S
[ 2( 12)] ’%2 r%z
Eyfry,) = 22 (30R,D)". (19)
Fiz
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Substituting the value of I, d/ from Eq. (18) and the value
of E,(r,,) from Eq. (19) into Eq. (17), we find

V, = (AE /120m)(30R,D)'/2, (20)
In free space,
H=E /1207,

where H is the peak value of the magnetic field intensity at
the arbitrary antenna. Therefore

. =AH(30R,D)"> (21)

Equation (21) relates the peak voltage across the load of a
receiving antenna to the peak value of the magnetic field
intensity at the site of the antenna. This result is perfectly
general except for the assumption of matched conditions.
Equation (21) gives the rms value of ¥, if H is the rms value
of the magnetic field intensity.

We can check Eq. (21) by applying it to the situation
discussed in Sec. IV. For the case of two parallel Hertzian
dipoles separated a distance y as in Fig. 4, we have for the
dipole on the right (acting as a receiver) from Egs. (2) and (4)

M, R, = 8072 (&)2
24y A

To obtain the value of D, we consider that the dipole on the

right radiates energy. From Egs. (1) and (19) we obtain

) = 6071, dl,
Ay

_ _1});[30(80)772 (%)21)]1/2 D=15

Thus, substituting for H, R,, and D in Eq. (21), we get
Vi, =30ml,dl, dl,/ Ay,

which agrees with the value found previously for the peak
value of the voltage across the load connected to the dipole
on the right.

H\y)=H=

VIL APPLICATION TO A TV ANTENNA

We shall now apply Eq. (21) to a typical situation. A
station transmiits at a carrier frequency of 150 MHz, and
the average power flux at the site of a TV receiving set is 10
mW/m? The TV set has a monopole antenna; that is, the
lower end of the antenna is connected to the load, and the
load is connected to ground. The length of the monopole is
somewhat less than one-quarter of a wavelength so that its
radiation impedance insofar as the equivalent circuit is
concerned will be a pure resistance. The radiation imped-
ance of a half-wave dipole antenna is® 73 4 j42.5 (2, and its
directivity* is 1.642. Because the monopole has an image in
the ground, it is similar to a half-wave dipole except that
only the monopole itself and not its image receives ener-
gy.>¢ If exactly one-quarter of a wavelength long, the mon-
opole would have a radiation impedance one-half that of a
half-wave dipole antenna, namely, 36.5 +; 21.25 Q. Its
length is usually reduced 4% so that its radiation imped-
ance becomes purely resistive with a value’ of approxi-
mately 33.5 2. The problem is to find the rms value of the
voltage across a matched load connected to the monopole
antenna which is oriented for maximum reception.

To calculate the rms value of ¥V, we use Eq. (21). We
know R, and D, and, since the frequency is 1.5 10® Hz,
the wavelength A is 2 m. We can find the rms value of the
magnetic field intensity as follows:
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[{P)| = |{EXH)|, E=1207H,

where E and H now represent rms values.
EXH)| = 120rH?* =102 W/m?,
H=5.15%x10"% A/m.

Substituting the above data in Eq. (21), we obtain
V, =0418 V.

The monopole may be considered an extension of the
central conductor of a coaxial cable, thus forming the end
section of an open-circuited transmission line. The radi-
ation field causes a standing wave to be set up in the mono-
pole such that the current is zero at the open end and a
maximum at the other end. As an approximation, however,
we may consider the monopole to be the equivalent of a
concentrated voltage source (similar to a Hertzian dipole)
with an internal resistance equal to the radiation resistance
as shown in Fig. 2. Since the monopole is 0.48 m long and
the rms value of the electric field intensity at the site of the
monopole is

E=120rH =194 V/m,
the rms value of the lumped circuit induced emf is
% =(1.94 V/m){0.48 m) = 0.932 V.

If R, =R,, then the rms value of the induced voltage
across the load is 0.466 V. Evidently the result of this very
approximate calculation is reasonably close to the more
accurate result provided by Eq. (21). The difference is 11%.

VIII. SUMMARY

The main result of this paper is expressed in Eq. (21).
This equation shows that the matched load voltage of a
purely resistive receiving antenna is proportional to the
square root of the product of the radiation resistance and
the directive gain. These two characteristics are deter-
mined by the induced current distribution along the an-
tenna. In the sinusoidal steady state a standing current
wave is set up in accordance with the boundary conditions.

In contrast, in the above approximate calculation the
incoming electromagnetic waves are assumed to induce an
emf in the antenna that is simply proportional to its length.
The entire antenna acts as a concentrated voltage source
having an internal resistance equal to the radiation resis-
tance. Insofar as the load is concerned, the antenna acts as a
lumped circuit element. This approximation is very good
for antennas that are short compared to the wavelength of
the incident radiation since the variation of the antenna
current with position is unimportant for all practical pur-
poses. The approximation becomes progressively worse as
the length of the antenna increases relative to the wave-
length.
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