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In this paper we explore some surprising consequences of the retardation effects of Maxwell’s
electrodynamics to a system of charged particles. The specific cases of three interacting particles
are considered in the framework of classical electrodynamics. We show that the solutions of the
equations of motion defined by the Darvin Lagrangian in some cases contradict to common sense.

PACS number(s): 03.50.De, 03.50.Kk, 31.15.Ct, 03.20.+i,05.45.+b

Darvin Lagrangian for interacting particles is an approximate one first derived by Darvin in 1920 [1]. This La-
grangian is considered to be correct to the order of 1/c2 inclusive [2], [3], [4]. To this order, we can eliminate the
radiation modes from the theory and describe the interaction of charged particles in pure action-at-a-distance terms.
Although the Darwin Lagrangian has had its most celebrated application in the quantum-mechanical context of the
Breit interaction, it has uses in the purely classical domain [3] - [5]. In this paper we explore some surprising conse-
quences of the retardation effects of Maxwell’s electrodynamics to a system of charged particles. The specific cases of
three interacting particles are considered in the framework of classical electrodynamics.

Below we will present the detailed and typical derivation of the Darvin Lagrangian and Hamiltonian for a system of
charged particles to correct some misprints made by authors. Then we will show that the solutions of the equations
of motion defined by the Darvin Lagrangian in some cases contradict to common sense.

The Lagrangian for a particle of a charge ea in the external field of an another particle of a charge eb is

La = −mac
2/γa − eaφb +

ea

c
~Ab · ~va, (1)

where ma is the mass of the particle a, c the light velocity, γa = 1/
√

1 − β2
a relativistic factor of the particle a,

βa = |~va/c|, ~va the vector of a velocity of the particle a, φb and ~Ab the scalar and vector retarded potentials produced
by the particle b.

The scalar and vector potentials of the field produced by the charge b at the position of the charge a can be expressed

in terms of the coordinates and velocities of the particle b (for φb to the terms of order (vb/c)2, and for ~Ab, to terms
(vb/c)

φb =
eb

Rab

, ~Ab =
eb[~vb + (~vb · ~Rab)~Rab/R2

ab]

2cRab

, (2)

where Rab = |~Rab|, ~Rab = ~Ra − ~Rb, ~Ra and ~Rb are the radius-vectors of the particles a, b respectively, vb = |~vb|, ~vb

the vector of a velocity of the particle b [2].
Substituting these expressions in (1), we obtain the Lagrangian La for the particle a (for a fixed motion of the other

particles b). The Lagrangian of the total system of particles is

L = Lp + Lint, (3)

where the Lagrangian of the system of free particles Lp and the Lagrangian of the interaction of particles Lint are

Lp = −
∑

a

mac2/γa ≃ −
∑

a

mac2 +
∑

a

mac2β2

2
+

∑

a

mac2β4

8
,

Lint = −
∑

a>b

eaeb

Rab

+
∑

a>b

eaeb

2Rab

~βa
~βb +

∑

a>b

eaeb

2R3

ab

(~βa
~Rab)(~βb

~Rab).

The equation of motion of a particle a is described by the equation d~Pa/dt = ∂L/∂ ~Ra, where ~Pα = ∂L/∂~va is the
canonical momentum of the particle. This equation according to (3) can be presented in the form (see Appendix A)

d~pa

dt
=

∑

a>b

eaeb

R3

ab

(1 − ~βa
~βb)~Rab +

∑

a>b

eaeb

R3

ab

(~Rab
~βa)~βb +

∑

a>b

eaeb

2R3

ab

β2

b
~Rab

1



−
∑

a>b

3eaeb

2R5

ab

(~Rab
~βb)

2 ~Rab −
∑

a>b

eaeb

2c
[

~̇βb

Rab

+
(~Rab

~̇βb)~Rab

R3

ab

]. (4)

where ~pa = maγa~va is the kinetic (non-canonical) momentum of the particle a.
The Hamiltonian of a system of charges in the same approximation must be done by the general rule for calculating

H from L (H = ~va
~Pa − L). According to (3) (see Appendix A) the value

H = Hp + Hint, (5)

where

Hp =
∑

a

mac2γa =
∑

a

√

m2
ac4 + p2

ac2 ≃
∑

a

mac2 +
∑

a

p2
a

2ma

−
∑

a

p4
a

8c2m3
a

,

Hint =
∑

a>b

eaeb

Rab

+
∑

a>b

eaeb

2c2mambRab

~pa~pb +
∑

a>b

eaeb

2c2mambR3

ab

(~pa
~Rab)(~pb

~Rab).

The constant value
∑

a mac2 in (5) can be omitted. Here we would like to note that contrary to [2] the last
two items in the term Hint of the equation (5) has the positive sign and the momentum ~pa = maγa~va includes
γ-factor of the particle (γ ≃ 1 + β2/2 + 3β4/8). The Hamiltonian expressed through the canonical momentum

has the form (5), where the ordinary momentum ~pa is replaced by the canonical one ~Pa and the signs of the last
two terms are changed [1]1. When the particles are moving in the external electromagnetic field then the term
∑

a eaφ − ea(~Pa
~A)/mac + e2

a|
~A|2/2mac

2 is included in the Hamiltonian, where φ and ~A are the external scalar and

vector potentials. In [1] the term e2
a| ~A|2/2mac

2 is omitted.
The Lagrangian (3) does not depend on time. That is why the Hamiltonian (5) is the energy of the system [1].
Further we consider a special case when particles are moving along the axis x (see Fig.1). In this case the Lagrangian

and Hamiltonian of the system of particles are described by the expressions

L = −
∑

a

mac2/γa −
∑

a>b

eaeb

Rab

(1 −
βaβb

2
), (6)

H =
∑

a

√

m2
ac4 + p2

ac2 +
∑

a>b

eaeb

Rab

(1 +
papb

c2mamb

), (7)

where βi, pi are the x-components of the particle relative velocity and kinetic momentum respectively.
The x-component of the force applied to the particle a from the particle b according to (4) in this case is dpa/dt =

eaeb/R2

abγ
2

b −eaebβ̇b/cRab. This force corresponds to the electric field strength ~Eb = −∇φb − (1/c)(∂ ~Ab/∂t) produced
by the particle b and determined by the equations (2).

As was to be expected in the case of the uniform movement of the particle b (β̇b = 0; the case mb ≫ ma) the electric
field strength produced by the particle b in the direction of its movement is γ2

b times less then in the state of rest.
Next we consider the dynamics of three particles a, b, d according to the Darvin Lagrangian and Hamiltonian. Let

particles a, b have charges ea = eb = e > 0, masses ma = mb = m and velocities va = −vb = v = cβ. The particle d
is located at the position x = 0 at rest (vd = 0) its charge and mass are q, M .

In this case the Hamiltonian is the energy of the system which according to (7) can be presented in the form

1In [2] the Hamiltonian includes small letters for momentum ~pa = ma~va that is ~pa in [2] is the kinetic momentum. It differ
from (5) because of its derivation is based on erroneous connection of small corrections to Lagrangian and Hamiltonian. If
the Lagrangian have the form L = L0 + L1 then without any approximation H = H0 + H1, where H0 =

∑

a>b
~va

~Pa0 − L0,

H1 =
∑

a>b
~va

~Pa1 − L1, ~Pa = ~Pa0 + ~Pa1, ~Pa0 = ∂L0/∂~va, ~Pa1 = ∂L1/∂~va is the extra term to the canonical (conjugate)

momentum. In [2] this connection was used but the term
∑

a>b
~va

~Pa1 was omitted. In our case this term differ from zero as
L1 depends on velocity. At the same time if we will start from the definition H = ~va∂L/∂~va − L then we will receive (5) [1].
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H = Mc2 + 2mc2γ0 = Mc2 + 2mc2γ +
e2

2Rγ2
+

2eq

R
, (8)

where γ0 is the initial relativistic factor of the particles a, b corresponding to the limit R → ∞, R = |~Ra| the distance
between the particle a and the origin of the coordinate system.

It follows from the equation (8) the dependence between the distance R and the γ-factor of the particles a, b

R =
e2/2γ2 + 2eq

2mc2(γ0 − γ)
. (9)

1. We can see that when q > −e/4γ2
0 then the turning point exist at which p = v = 0 and γ = 1. According to (8)

the minimal distance between particle a and the origin of the coordinate system

Rmin =
e2 + 4eq

4mc2(γ0 − 1)
=

e2 + 4eq

4T0

, (10)

where T0 is the initial kinetic energy of the particle a. The value eU = (e2 +4eq)/2Rmin is the potential energy of two
particles at rest at the position of the turning point. According to (10) the value Rmin > ra/2, where ra = e2/mac2

is the classical radius of the particle a.
In that case according to (10) and in conformity with the energy conservation law the potential energy of two

particles at the turning point is equal to the initial kinetic energy of the particles 2T0. Retardation does not lead to
any results which are contradict to common sense. The term in the electric field strength and in the force (4) which
is determined by the acceleration will compensate the decrease of the repulsive forces corresponding to the uniformly
moving particles.
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Fig.1. A scheme of two particle interaction.

eb ea

2. When q = −e/4γ2

0
then according to (4), (7) the particles a, b are moving uniformly (β̇ = 0, v = v0, γ = γ0). In

that case particles can reach the distance R = x = 0, which is not reachable for them under the condition of the same
energy expense 2T0 and a non-relativistic bringing closer of the particles. This conclusion is valid in the arbitrary
relativistic case as in this case there is no emission of the electromagnetic radiation. It contradicts to common sense
as the particles can be stopped at any position R to give back the kinetic energy 2T0 (in the form of heat and so on)
and moreover contrary to the energy conservation law they will produce an extra energy eU(R) under the process of
slow moving aside of these particles under conditions of repulsive forces.

3. When −e/4 < q < −e/4γ2

0 then the particles a, b will be brought closer under the condition of an acceleration
by attractive forces and ”fall in” toward each other. At the same time under such value of charge q of the particle d
in the non-relativistic case the particles a, b will repel each other such a way that the position R = x = 0 will not be
reachable for them if the same energy expense 2T0 will be used for slow bringing closer of the particles. In that case
we have the same result which contradicts to common sense as well.

4. When q = −e/4, γ0 > 1 then the particles will acquire an additional energy when bringing closer. After stop
by extraneous forces at any position R to give back the kinetic energy 2T > 2T0 the particles will not experience any
force.

5. When q < −e/4 then the particles will acquire the higher value of the energy then necessary for non-relativistic
separation of the particles. The particles can be stopped by extraneous forces at some distance between them and
then separated. Some gain of energy will take place as well.

In the cases (3), (5) the velocities of particles may be compared with the light velocity when Darwin Lagrangian
does not valid because of in that case the radiation can not be neglected. But the process of ”fall in” will be kept. In
the case (5) the unphysical solution can appear when particles will be stopped at the distance R ≪ re and the total
energy of the system at this position (new Hamiltonian) will be negative (eU(R) + Mc2 + 2mac

2 < 0). This result is
the known fact for a system of two particles of the opposite sign which is beyond of the present consideration.

This curious results are the reminiscent of the non-consistency of the classical Maxwell-Lorentz electrodynamics.
The existence of these solutions is a genuine effect of electrodynamics with retardation.

I acknowledge discussions with A.I.Lvov.
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APPENDIX A:

The canonical momentum of the particle a is

~Pa =
∂L

∂~va

= ~pa + ∆~pa, (A1)

where

∆~pa =
∑

b6=a

eaeb

2c
[

~βb

Rab

+
~Rab(~Rab

~βb)

R3

ab

].

The time derivative of the canonical momentum is

d~Pa

dt
=

d

dt

∂L

∂~va

= ~̇pa + ∆~Fa, (A2)

where ~̇pa = d~pa/dt, ∆~Fa = d(∆~pa)/dt or

∆~Fa =
∑

b6=a

eaeb

2R3

ab

[~Rab(~βa − ~βb, ~βb) + (~βa − ~βb)(~Rab
~βb)] − ~βb(~Rab, ~βa − ~βb)]

−
∑

b6=a

3eaeb

2R5

ab

(~Rab
~βb)(~Rab, ~βa − ~βb)~Rab −

∑

b6=a

eaeb

2c
[

~̇βb

Rab

+
~Rab(~Rab

~̇βb)

R3

ab

].

The directional derivative of the Lagrangian is

∂L

∂ ~Ra

=
∑

a>b

eaeb
~Rab

R3

ab

(1 −
~βa

~βb

2
) +

∑

a>b

eaeb

2R3

ab

[~βa(~Rab
~βb) + ~βb(~Rab

~βa)] −
∑

a>b

3eaeb

2R5

ab

~Rab(~Rab
~βa)(~Rab

~βb). (A3)

From the equation of motion and equations (A2),(A3) it follows the equation (4).

The value ~vk
~Pk and the Hamiltonian are equal respectively

~va
~Pa =

∑

a6=b

eaeb

2
[
~βa

~βb

~Rab

+
(~βa

~Rab)(~βb
~Rab)

P 3

ab

] + mac2γaβ2

a, (A4)

H =
∑

a

~va
~Pa − L =

∑

a

√

m2
ac4 + p2

ac2 +
∑

a>b

eaeb

Rab

[1 +
c2(~pa~pb)

2
√

m2
ac4 + c2p2

a

√

m2

bc
4 + c2p2

b

+
c2(~Rab~pa)(~Rab~pb)

2R2

ab

√

m2
ac4 + c2p2

a

√

mbc4 + c2p2

b

]. (A5)

In the approximation (1/c2) the Hamiltonian (A5) leads to (5).
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