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It is found that certain rigid charge distributions can oscillate without radiation even when no
forces are present, other than their own retarded fields. The periods are of the order of the time
required for light to cross the particle. The energy of these oscillations is always positive, and
there are therefore no exponentially increasing unstable motions of the type possessed by the

Dirac classical electron.

The frequencies of these oscillations are such, that when quantized, the energy of the first
excited state is of the order of the meson self-energy. Hence, it is suggested that some kinds of
mesons may be electrons in such an excited state of self-oscillation.

It is indicated that the principle of causality may have to be reformulated in terms of causal
connections over finite intervals of time if one wishes to regard the electron plus its associated

electromagnetic field as a single system.

I. INTRODUCTION

URRENT relativistic, quantum field theories
are based on the assumption that the ele-
mentary charges have no extension in space. It is
well known that this assumption leads to infinite
results in the higher approximations.'? With the
aid of the canonical transformations introduced
by Schwinger? and Tomonaga,* however, it has
been possible to classify these infinities in a
relativistically invariant way, such that the infi-
nite parts can be uniquely identified as contribu-
tions to the mass and to the renormalization of
the electronic charge, while the remaining finite
terms, which are also unique, give various small
but real effects such as the displacements of
energy levels observed by Lamb and Retherford.®
Although this procedure is very satisfactory in
that it yields many results which agree with ex-
periment, at least up to second order in €?/kc, it
is by no means certain that in higher orders one
can continue to isolate the infinite terms in a
logically consistent and unambiguous way.® It is,
in fact, widely felt that some totally new idea is
required, which will make the infinite terms finite
and unique but at the same time will leave the

1 R. Serber, Phys. Rev. 49, 545 (1936).

2 V. F. Weisskopf, Phys. Rev. 56, 72 (1939).

3 J. A. Schwinger, Pocono Conference Notes (by J. A.
‘Yg})leger); See also J. A. Schwinger, Phys. Rev. 73, 416
( 48. .Tomonaga, Progress of Theoretical Physics 1, 27
(1?%27)..!3. Lamb, Jr. and R. C. Retherford, Phys. Rev. 72,
241 (1947).

8 A. Pais, Positon Theory (Princeton University Press,
Princeton, to be published).

results of the present theory unaltered wherever
these are finite and unambiguous.

A direct way to obtain finite results has always
been open, namely, to assume that the electronic
charge has a finite extension in space. This idea,
however, has never been successfully applied be-
cause of the difficulty of specifying the charge
distribution in a way that is consistent with the
relativistic interpretation of causality. In order to
illustrate the problems involved, let us consider,
for example, the behaviour of a perfectly rigid
electron at which is directed a pulse of electro-
magnetic radiation. As soon as the pulse strikes
the edge of the charge distribution the electron as
a whole is set into motion. Thus an impulse is
transmitted across the electron instantaneously,
contradicting the relativistic law of causality.
Although it has often been suggested that the
failure of causality for very short intervals of
time may be permitted,”® a procedure more in
line with our present ideas is to take a model in
which the electron is not rigid, but transmits im-
pulses with the speed of light or less. This ap-
proach, however, presents problems of its own,
for we must then include in our theory a specifica-
tion of not only the structure of the electron, but
also of the dynamical laws governing the trans-
mission of impulses through this structure. In a
quantum theory of an extended charge the non-
rigid model leads to still another problem, this

7 J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17,
157 (1945).
8 D. Blokhinzev, J. Phys. USSR 10, 167 (1946).
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time when one tries to give a quantum descrip-
tion of the shape of the electron. In a state of
steady motion, for example, the electron is
flattened in the direction of motion because of the
Lorentz contraction. When the electron is scat-
tered, however, it undergoes an indivisible change
of momentum. What shape does it have during
the process of transition? If it may be said to
have any shape at all, that shape must be some
symmetrical function of initial and final velocities
which corresponds neither to initial nor to final
shapes. The way to deal with these problems is
certainly not yet understood.

Because the theory of an extended charge in-
volves so many difficulties and ambiguities, there
has been little impetus to develop this general line
of approach. We wish to show, however, that the
motion of a rigid, and therefore non-relativistic,
extended charge has some unexpected properties,
which suggest that the effort to develop a rela-
tivistic theory of the extended charge is worth
more intensive study. In particular, we find that
these new properties may lead to the possibility
of describing mesons and perhaps other kinds of
particles as excited states of electrons. In this
way, the same step that removes the infinities
may also reduce the number of elementary
particles.

II. SUMMARY OF PROCEDURE AND RESULTS

In this work we consider only a spinless rigid
electron with an arbitrary spherically symmetric
distribution of charge, which we assume at the
outset to be specified. The equations of motion of
the center of mass of the charge are solved,
taking into account exactly the action of the re-
tarded fields produced by the charge itself. For a
general charge distribution we make the assump-
tion that (v/c)<1, i.e., only non-relativistic
motions are considered. In the special case of a
spherical shell charge, however, we can solve the
equations exactly for arbitrary values of v/c¢ be-
tween 0 and 1, but one must remember that,
despite the appearance of arbitrary v/c, this
treatment is still not relativistically invariant be-
cause the charge is assumed to be rigid.

In agreement with Markov,? who uses a similar
treatment for the case of small v/¢, we find that

® M. Markov, J. Phys. USSR 10, 159 (1946).
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there are no “self-accelerated’” exponential mo-
tions of the type discussed by Dirac.!® Instead,
however, we find that for a certain general class
of charge distributions, an electron under the
action of no external forces, is capable of under-
going oscillatory motion. The period, 7o, depends
somewhat on the form of the charge distribution,
but it is of the general order of magnitude of the
time required for light to cross the electron. These
“self-oscillations’” consist of simple harmonic
motion of the center of mass of the particle ; they
do not represent a dynamical property of the
internal structure of the electron. Nor do they
constitute a form of instability, as does the “‘self-
acceleration’ of the Dirac classical electron, be-
cause they grow only in proportion to their
excitation by an external source of energy. The
amplitude of the oscillations, A4, is less than the
mean radius of the electron, a, for since the
charge can move in the same direction for at most
half a period, 4 ~wx(7r0/2)~(v/c)a. Oscillations
are made possible by the fact that each part of
the electron moves in a field which was produced
by other parts of the electron in the past, so that
for certain charge distributions undergoing mo-
tion with the proper period the net force can
vanish. This implies also that no radiation is
emitted,* so that the charge and its own electro-
magnetic field form a closed system.

These fairly general results were derived on the
assumption that (v/c)<1. For the special case of
a spherical shell charge, however, an exact solu-
tion can be obtained. We find that for arbitrary
periodic motion of such a charge, with period
Tro=2a/c, the electromagnetic self-force vanishes
provided that v/c<1. Thus if a spherical shell
charge possesses no non-electromagnetic mass, it
can continue to move indefinitely in such a
periodic orbit, under the action of no external
forces and without radiation once it has been set
in motion in this way. This type of charge distri-
bution has already been studied by Schott,!! who
shows that for arbitrary spinless periodic motion
with the above period there is no radiation. He
also shows!? that for uniform motion in a circular

10 P, A. M. Dirac, Proc. Roy. Soc. A167, 148 (1938).

* The self-force can be regarded as the sum of two terms,
one of which yields the rate of radiation while the other
leads to forces similar to those of inertia.

1 G. A. Schott, Phil. Mag. 15, 752 (1933).

12 G. A. Schott, Proc. Roy. Soc. A159, 570 (1937).



SELF-OSCILLATIONS

orbit the total self-force vanishes. This is a
special case of our result.

In general, for motions which are neither recti-
linear nor circular, the retarded fields will pro-
duce a couple.’® In all cases which we consider,
however, the self-torque can be shown to vanish,
a result necessary for the consistency of the as-
sumption of no spin.

III. EFFECTS OF QUANTIZATION

While we have not, as yet, quantized these self-
maintaining oscillations, one can obtain a general
idea of the effect of quantization by estimating
the energy levels corresponding to the excitation
of the first excited states. Let us do this for the
special case of the spherical shell charge. The
energy of excitation, AE, is obtained by multi-
plying the angular frequency, w, by %, giving

AE=hw=nn(hc/a),
where % is an integer. If we take

e2
a~—-
mc?
we get

c
AE~n1r—2mc2~400nm52.
e

Thus the energy of the first excited state with
n=1 is not far from the rest energy of a = meson.
By choosing different values of # we can obtain a
spectrum of masses; still other masses and
different spectra can be obtained by changing the
charge distribution.

The idea then suggests itself that perhaps some
kinds of mesons are really excited states of the
electron. The decay from one kind of meson to
another, or from meson to electron would then
correspond simply to the loss of this excitation
energy. The exact values of the energy obtained
from this crude theory are probably not very
significant, first, because they depend on the
shape assumed for the charge distribution, and
second, because the theory given thus far is not
relativistically invariant. The essential point of
this work is simply to suggest that the same step
which makes the theory finite can also bring in
the idea of unifying a whole spectrum of particles

13 G. A. Schott, Proc. Roy. Soc. A159, 548 (1937).
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into a single particle. Theories involving a range
of masses for the same particle have already been
suggested on other grounds.!4—16

One can easily see that for weakly coupled
fields, like the electromagnetic, there is little
physical significance to the non-relativistic limit
in the quantum theory.® In order to excite the
oscillation with #=1 to the first quantum state,
for example, it is necessary to give the electron
400 times its own rest energy, and therefore to
bring it into the relativistic range of velocities.
Before such a theory can be applied at all, it must
be extended to the relativistic quantum domain.
The spherical shell charge does yield a solution
for arbitrary v/c, but does not take into account
the need for a non-rigid electron which can
change its shape and transmit impulses with the
speed of light or less. One possible approach to
this problem is to try to make some relativistically
invariant assumptions about the properties that
we have discussed, and then to quantize the re-
sulting theory. On the other hand, one may
attempt to go directly to a quantum theory by
guessing a formulation which leads to finite re-
sults, being guided by the idea that such a theory
should contain the possibility of describing many
masses as different states of the same particle.
The authors are at present exploring both lines of
approach and hope to publish some results soon.

The idea that an extended charge should be
capable of self-oscillations is on a considerably
more solid footing when applied to a strong-
coupling meson theory, for the lowest quantized
state of excitation in such a theory need not
carry the particle into the relativistic region of
velocities. To see this, we note that if the coupling
constant is g, the contribution of the meson field
to the particle mass is

m~gt/act.
The ratio of the energy of the first excited state to
the self-energy of the particle at rest is then
AE/mc~m(hc/g?),

and for large g2/kc the ratio is small, so that one
need not go to a relativistic theory. Thus, in a
strong-coupling theory, even with scalar mesons

14 H. J. Bhabha, Rev. Mod. Phys. 17, 200 (1945).
18 F. Bopp, Zeits. f. Naturforschung 1, 237 (1946).
16 D, Blokhinzev, J. Phys. USSR 11, 72 (1947).
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one should be able to obtain proton isobars in
which the energy of excitation is contained in the
motion of the center of mass of the proton. If one
combines two such oscillations, which are orthog-
onal and 90° out of phase, one gets circular mo-
tion so that the particles obtain an additional
contribution to their intrinsic angular momentum
which would be some multiple of % in the
quantized theory. In this way one can obtain spin
isobars even with a scalar meson theory.

IV. REFORMULATION OF PRINCIPLE
OF CAUSALITY

We observe that after the electromagnetic field
has been eliminated the equation of motion of the
electron (10), is an integral equation which can
therefore have, in general, a greater arbitrariness
in its boundary conditions than does the usual
second order differential equation of motion of
mechanics. Let us consider, for example, a
spherical shell charge. The solution, as we have
pointed out, is an arbitrary periodic function with
period r9=2a/c. Within the basic period of time,
0, the position of the center of mass, £(t), may
therefore be given an arbitrary form. One could
do this, for example, by Fourier analyzing the
function within a region of width 7o and specifying
the amplitude of each Fourier component. The
solution of the integral equation then consists
simply in repeating the arbitrary function peri-
odically, from one basic period to the next.

One can use this result as the basis of an
interesting reformulation of the principle of
causality as applied to the motion of the electron.
Within a block of time of length 7, the behaviour
of the electron is arbitrary, i.e., it seems to follow
no causal laws. The causal laws are constituted
by the requirement that from one block of time to
the next the motion must repeat itself. (All of
this is in the absence of external fields; such fields
would cause the motion to be not quite periodic.)
As a result, time seems to take on a twofold
character. Over a block of time of length 7, it acts
just like a space-coordinate in that there are no
particular relations between the particle coordi-
nates at neighboring instants. It is only between
one block of time and the next that such causal
connections appear.

The disappearance of causal laws as applied to
the electron within a block of time is compensated
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by the appearance of new degrees of freedom,
which may be taken as the amplitudes of the
Fourier components of £. Strictly speaking, these
are not really new degrees of freedom, but are
merely a re-description in terms of the particle
coordinates of some of the arbitrariness resulting
from the old degrees of freedom, i.e., the electro-
magnetic field, which has been eliminated. When
the electromagnetic field is taken into account, of
course, the system does obey causal laws, which
involve the field quantities as well as the particle
coordinates. The apparent lack of causality over
a basic period of time, 7o, merely reflects the fact
that if we specify only the particle coordinates, it
is necessary to know the motion over the entire
length of time needed for light to cross the
electron before we can know the total field
existing over the electron at any instant, and
therefore, before we can predict the subsequent
behaviour of the electron.** The essential con-
clusion to be drawn from this fact is that if one
wishes to regard the electron plus its associated
field as a single system, one may be forced to
reformulate the principle of causality in terms of
causal connections over finite intervals of time.
In a sense, this dual property of time may be
regarded as a sort of quantization of time, since
there will now be a minimum interval which can
be involved in causal relations. Although shorter
intervals of time can exist, they have new prop-
erties. For example, no predictions of the elec-
tronic motion can be made over intervals shorter
than 7o. The arbitrariness of the Fourier com-
ponents of & within the period, 79, would in a
quantized theory, be interpreted as the possibility
of creating various kinds of mesons. Since the
amplitude of each Fourier component can be
specified only after the motion is known over the
whole period, one would be unable to give a
meaning to the problem of specifying the kind of

** It might be thought, at first sight, that the lack of
causality is connected with the assumed rigid structure of
the electron, which can transmit impulses faster than light.
We are, however, discussing here a non-relativistic theory,
within the framework of which one can postulate the
transmission of impulses with arbitrary velocity. It is only
when we make a {orentz transformation that the trans-
mission of impulses faster than light leads to a breakdown
of causality, since events which are connected by such
impulses may have future and past interchanged as a
result of the transformation. The attempt to make a
relativistic theory of a rigid electron would introduce an
element of genuine lack of causality, which could not be
explained in terms of eliminated field quantities.
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meson which exists in a time less than r,. Thus
one would obtain a new kind of complementarity
between time and the nature of the particle with
which one was dealing.

This discussion is intended merely to show how
an attempt to devise a systematic relativistic
quantum theory of extended charges might
readily lead to important revisions of some of our
concepts of causality.

V. THE EQUATION OF MOTION AND
ITS SOLUTIONS

The equation of motion of a rigid charged
particle, including the action of its own electro
magnetic field, has already been studied ex-
tensively.®*1317 For the sake of completeness
however, we include a brief derivation which,
although it repeats a certain amount of work
already existing in the literature, provides the
result in a form convenient for our purposes.

We begin by assuming a certain spherically
symmetrical charge density which we denote by

p(x, 1) =ef(|x—¥(1) )

where £(¢) is the position vector of the center of
mass and e is the total charge, so that

fdxf([xl)=1.

This, of course, is equivalent to assuming a rigid
charge distribution. The current density is then

j(x, 1) =-Zié<z>f<|x—z<t) N,

which implies that the particle has no spin, i.e.,
currents arise only from the motion of the center
of mass.

In deriving the fields produced by this charge-
current distribution, it will be convenient to

choose the gauge in which the vector potential,.

a,, is divergenceless. In this case one can easily
show that the scalar potential, ¢, satisfies the
equation

Ap= —4mp, (1)

i.e., it is not retarded. Hence the field resulting
from ¢ can produce no net force, and so far as

1" H. A. Lorentz, Theory of Electrons (B. G. Teubner,
Liepzig, 1909).
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the motion of the center of mass of the particle is
concerned, we need pay attention only to the
transverse fields arising from a,, which satisfies

1 92
(A————— a.= — 4., )
c? ot?

where j, is the divergenceless part of the current
density. The next step is to Fourier analyze this
equation. In the subsequent work we will denote
the kth Fourier component of a function, g(x, ¢),
by

1
g(t) = g(x, t) (exp —1k - x)dx,
(2m):
where
1
gx, )= fgk(t)(expik'x)dk.
(2m)}

Then ax, (¢) must satisfy
02
(62k2+——)akl=41r62jkl. 3)
ar?

The solution corresponding to the retarded po-
tential¥** is

_41rc td’ . — , .
akl(t)——k—f t'(Gx(t')) . sinck(t—1t'). (4)

—x

Now

e.

jx(8) =-&(8) fi(exp — ik - €(8)), ()

c

where
r)%fdxmxr)(exp—zk xX),
and since
kX (jx Xk)
Jk)o=—"— B Ty

the vector potentialt becomes
*** If one chooses + » for the lower limit, one obtains
the advanced potential.

It should be noted that, in general, a convergence
factor is necessary to give meaning to the integral defining
aky. This procedure, however, will always yield a unique
result with a bounded charge because when one re-Fourier
analyzes to find the potentials as functions of x and ¢, the
effect of the %k integration is to restrict the time during
which contributions are made to the ¢ integral to a short
interval.
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(.1 4me f‘ p fdkf k-t
a,(x, t)= ' | —frsinck(t—t
' 2ntd_, r
kX (E(#) XK)
Xexpik-(x—E(t'))——————  (6)
The fields are given by
10a,
g =———, H=Cur1a1, (7)
c ot

and the self-force is just
Fuir= [[dxlo(x, Dea(x, D +i(x, O XHE 0] (©)

Inserting the results of Eq. (7) into Eq. (8) and
making the substitutions {—¢ =7, £{)—E(E—7)
=s, we obtain

* dk
Fself=~41r82f de—lfkfz
0 k

kX (§(t— ) Xk)
k?

X (expik- s)[k cosckr

—isinckri(—tzx(kxé(t—r))]. 9)
C

The equation of motion for the electron is

m‘£=Fself+Fexty (10)

where F is the external force and m is the non-
electromagnetic mass.

Approximation of Small Velocities

Let us now investigate the limit in which
(v/c)<1. In this approximation the magnetic
term in Eq. (9) may be neglected in comparison
with the first term, which is of order v/c. Now
s=&(t) —&(t—r) is essentially just the distance
covered by the particle during the time 7. One
can easily see that the integrand of Eq. (9) is
large only over a time 7~2a/c, which is of the
order of that needed for light to cross the elec-
tron, so s is of the order of 2a(v/c). Retaining only
first order terms in v/¢, we can replace (expik-s)
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by unity to obtain
Foert= '—41rezf dedklfk|2 cosckr
0

. k(k-£(¢t—1))
X[i(t— ) —————————].
k2
Note that this equation is linear: small v/c leads
to a linear approximation.tt
The above expression can be put into a more
convenient form by integration by parts over .
The integrated part vanishes as r— o for any
form of fi; resulting from a bounded charge
distribution, Tt while at r=0 it vanishes because
of the appearance of sinckr as a factor. After
angular integration the self force becomes

—327%% p> .. ®
Faell‘—"-—_f dr((t—r)f dkk| fi|? sinckr.
3c 0 0

With the substitution

27t
G(n)= f dkk| fi|?sinckr  (11)
3c 0

the above expression becomes

Fself=ezf dTG(T).f.(t—T), (12)

and the equation of motion, in the absence of
external forces, is

mE=e? f drG(r)E(t—1)

—327%2 p* ..
=_— f dri(t—r1)
3c 0

xf dkk| fi|? sinckr. (13)
0

This equation is accurate for arbitrarily large
accelerations, but only for small v/c. It is essen-
tially the same equation obtained by Markov?® in
a similar way.

t1 It is readily shown that in the linear approximation
the self torque vanishes because of symmetry.

11t This may be seen, for example, by expressing fi in
terms of f(x).



SELF-OSCILLATIONS

Self-Oscillations

We shall now demonstrate that Eq. (13) pos-
sesses oscillatory solutions, and examine the con-
ditions under which these solutions exist. Insert-
ing £=A(exp—iwt) into (13), we get

— 32722

mw2=-————w2f dr(expiwT)
3c 0

Xf dkEk| fi|? sinckr
[]

=82w2f dr(exptwr)G(7), (14)

which defines the permissible frequencies of self-
oscillation, if any. Since m must be real, (14) is
equivalent to the two conditions

— 32722 p>
M.y
3¢ 0

Xf dkk| fi|® sinckr coswr, (15)
1]

0=f d‘rf dkk| fi|? sinckr sinwr. (16)
0 0

Condition (16) can be put into a more convenient
form by performing the 7 integration. Since the
integrand is an even function of 7, this condition
can be rewritten

0=f drf dkk| fi|
—o0 0

X[ cost(ck—w) —cost(ck+w)].
The integrals over r are just 6 functions, giving

Jore=0. (16")
It is readily shown that when condition (16’) is
satisfied the radiation vanishes to order v/c.
The spectrum of frequencies at which self-
oscillations can take place depends strongly on
the shape of the charge. First, in order to satisfy
condition (16’), it is necessary that at least one
Fourier component of the charge distribution
shall vanish. In addition, at this frequency, con-
dition (15) must be satisfied, but so long as the
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distribution processes at least one vanishing
Fourier component it will be possible, in general,
to choose the non-electromagnetic mass, m, in
such a way as to satisfy (15). Those distributions
with wvanishing Fourier components may be
characterized roughly as either sharply varying,
or non-monotonic. Both the spherical shell and
the uniform sphere, for example, can undergo
self-oscillations. On the other hand, smoothly
varying, monotonic distributions, such as the
Gaussian and exponential, have no vanishing
Fourier components, while a smoothly varying
but non-monotonic distribution like xe=*/* has
one.

The following are a few examples of frequencies
of self oscillation.

(a) Spherical Shell

) 5(x—a). 1
flx) = ’ f"_(zw)% ko

sinka

(17

In this case it is most convenient to use
Eq. (14) directly. We obtain from (11) and (17),

1 2a
T TS,
3a% ¢
G(r)=
2a
0, T>—
c

The condition for self oscillation (14) is

1e?

m =

[(exp2iwa/c)—1].
3wca?

Solutions are possible only when m=0. The
frequencies are w=mnwc/a, where n is an integer.

(b) Uniform Sphere

3
—————4 X x<a
fle) =% '
0, x>a (18)
3 1 [sinka
fe= [ —coska].
(27)t (ka)?L ka

Although the uniform sphere has an infinite
number of vanishing Fourier components, condi-
tion (15) limits the spectrum to a single frequency,
w?=2¢e?/ma?, For a given e and a, however, there
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are many possible ways of choosing m, given by
the solutions of

tan(2e?/mc?a) = (2e*/mc?a).

If a~e?/mc?, the largest value of m which will
permit self-oscillation is of the same order
as e?/act.

(©) flx) =

xe~*le;
247rat

1 (3—Fk2?)
“T302mn 1+k2a2)

(19)

This distribution has only one frequency,
w=V3(c/a), for which f,;. vanishes. To satisfy
condition (15) we must choose m=e?/192ac?
Since the electromagnetic mass is of the order of
e?/ac?, in this case the mechanical mass must be
much less than the electromagnetic mass.

Absence of ‘““Self-Accelerated’” Solutions

Markov® has suggested that Eq. (13) should
have no exponentially increasing solutions of the
type obtained by Dirac.!® One can obtain this
result very simply by attempting to find solutions
of the form &=A(exp(A—1wo)f) where wo and A
are real and positive, i.e., by replacing w in
Eq. (14) by we+4X. Because of the appearance of
the factor e in the integrand, the integral over 7
converges, and can be carried out first, yielding

3272 p=
m+ f k| fu]?
3 Jo

[()2—w02+62k2) +21)\w0:]
=0. (20)
()\2_w02+62k2)2+4)\2w02

There can be no solution unless the imaginary
part of the integral vanishes, but since the imagi-
nary part of the integrand is everywhere positive
this cannot happen unless either A=0 or wo=0. If
wo=0 the integrand is everywhere positive, and
there is a solution only for negative m. Peierls has
already shown that the Dirac classical electron is
equivalent to one in which an infinite negative
mass almost cancels the infinite positive contri-
bution of the point charge. The extended elec-
tron, therefore, has no motions of the ‘self-
accelerating”’ type possessed by the Dirac
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classical electron so long as the non-electromag-
netic mass is positive or zero.

Stability of Motion of Extended Electron

From the above result one can immediately
conclude that the motion of the extended electron
is stable. In order to investigate the stability of
the electron at rest, for example, we must see
whether small displacements remain small for all
time. Now, the assumption of small /¢ leads
immediately to the validity of Eq. (13). Thus if
we assume a displacement, §{=Ae*(exp—iwot),
which is small at the time ¢, it will be smaller still
throughout all the earlier time during which con-
tributions are made to Eq. (13). On the other
hand, it is inadmissible to test for the stability
with the aid of the Lorentz expansion in a series
of derivatives of £, just because the ratio
(d»+1g/dt™t1) /(d7E/dt?) may not be small, even
though £ itself is small.

Another way to investigate the stability of the
resting electron is to see whether the energy of a
moving electron is always greater than that of a
fixed electron. Remembering that the electro-
static potential is not retarded, since the electron
does not change its shape}} one can conclude that
the electrostatic energy is independent of the
velocity. It can be shown,!® furthermore, that the
total electromagnetic energy is just the sum of
the electrostatic contribution and that due to a,.
Now, a, =0 when the electron is at rest, so the
increase in energy which is due to the motion is
given by

1 1 70a,\?
w-— [ dx[—(——) +(v><a1)2], (21)
8 c2\ ot

and since a, cannot vanish everywhere for a
moving electron thisis clearly a positive quantity.
The state of rest is therefore a stable one.

1 We have seen that the instability of the Dirac classical
electron can, in fact, be traced to the assumption of an
infinite negative mechanical mass which almost cancels
the electromagnetic mass. It is this negative mass which
supplies the electromagnetic energy generated in the
exponential “‘self-accelerated” motion.

11 One assumes that the charge is rigid, which means
that the tendency of the electrostatic force to blow up
the charge is automatically counteracted by some other
force which holds the electron together. Since this force
does no work, it need not be considered in any study of
the motion of the electron.

18 W. Heitler, Quantum Theory of Radiation (Clarendon
Press, Oxford, 1936).



SELF-OSCILLATIONS

It is instructive to evaluate W for the case of
small v/c. If one expresses a, in terms of its
Fourier components one obtains

1
W=—— | dk[ |k, |2+c%k?|ak, 2], (22)
8mwc?

where ax, is given in Eq. (4). In the linear ap-
proximation we can neglect £ in the exponential,
and with this simplification one obtains

161!’262 0 @ 0
We fdff dT'f FINSIEAL
3 0 0 0

X cosck(r—7)E(L—1)-E(t—1). (23)

As an example we consider the spherical shell

charge, for which f; is given in Eq. (17). We get,
for a self-oscillation,

e2 2a/e . Mﬁ?
W=—~f dri(t—7)=—or
0 2

6a’c

(24)

where M =(2/3)(e?/ac?) is the electromagnetic
mass.

Exact Treatment for Self-Force of Spherical
Shell Charge

Let us begin with the exact Eq. (9) for the self-
force. We shall consider a typical term and show
that it vanishes for an arbitrary periodic motion
of period 2a/c.

The electric term in the self-force is

F.= ~—41re2f d‘r‘fdklfkl2
0

. k(k-¥(t—r
X (expik-s) cosck r[{ (t—1) ———(M]

k2

Integration over angles in k space yields

2T 3s .
F.= *16wze2f d‘r[{(t—f)—-—zs-f(t—r)]
0 s

© dk sinks
Xf —2]fk|"’cosckr(cosks— )
o §

ks

—161r2e2£m dr[é(t—f)—%s-'z(t—r)]

sinks
cosckr.

Xf dkk| fi]?
0

S
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Writing
> dk sinks
K(r)=f _"’fklzCOSCkT(COSkS— ), (25)
o s? ks
©dk
M(T)=f —=F| fi| 2 cosckr sinks. (26)
0 )

F. can be rewritten

Fe=— 161r282fw ar
. 3s .
x (k)| = -Zs-i0-7)]
S

. S .
+M(T)[f(t— T) ————2S-§(t— ‘r)]) 27
s

We first consider the term containing K (7). Now,
when dealing with a distribution of infinitesimal
thickness, like a spherical shell, one must define
the integrals as limits of distributions of finite
thickness. Since it is not always possible to permit
these distributions to approach zero thickness
before the results have been obtained, we shall at
the outset spread the distribution by writing

1 i\ sinka

f= 2n)t k+in ka |

(28)

which approaches a spherical shell in the limit
A— o, With this value for fi, K(7) becomes

s<cr<2a—s: K(r)=—
64m2a2s2\

X[(exp—A(2a—c1)) —2(exp—AcT)]

sinhAs
X (cosh)\s - )
As

+terms proportional to (exp —A(2a+c7=s)),

cr>2a+s: K(r)=——
6472252\

sinh\s
X (exp—A(cT—2a)) (cosh)\s - N )
s

+ terms proportional to (exp —A(cT+2a+5)).
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We first observe that the terms in K(7) pro-
portional to (exp—A\(2a+cr=s)) will make no
contribution to the integral in the limit A—> .
This follows from the fact that s= | ¥(¢) —£(t—7) |
is always less than or equal to ¢7.§ The remaining
terms make contributions only near the points at
which the arguments of the exponentials in K(7)
vanish, i.e., only near cr+s=0and 2a —cr+s=0.
The only two points satisfying these relations are
7=0, and r=2a/c. This is because, from the fact
that s <cr, and from the periodicity, one can con-
clude also that s<|2a—cr|. This means that
contributions to the 7 integral come only from the
infinitesimal regions near r=0 and 7=2a/c,
where s is small. In these regions we can therefore
expand s in powers of 7 and |r—2a/c|:

s~uv(t)r near 7=0,

2a 2a (29)
s~v(f)|r——| near T=—

c c

With these values for s,
(1/As?)[coshAs — (sinhAs) /As ]
can be replaced by A/3,79 so that K(7) becomes

9 Since s is essentially just the distance covered by the
particle in time 7, s <c follows from the fact that (v/c) <1.

99 One must let A—>» in such a way that (3/A%?)
X [coshAs — (sinhAs) /As] remains close to unity in the
region where the integrand isappreciable. Because |2a —cr|
and cr are both greater than s, the exponential factors
will then make the result small, except near =0 and
r=2a/c. The contributions of the regions where the above
factor is not unity are negligible for large A\, because the
exponential factor far more than makes up for the increase
in the cosh)s and sinhAs functions.

AND M.

WEINSTEIN

K(r)y=——
3.647%?
((exp—A(2a —cr7)) —2(exp—AcT),
< 2a
07—,
X1 ST (30)
2a
(exp—AN(cT—2a)), T>—.
c
Thus K(7) clearly approaches
K(r)=— (6(ct—2a)—d(c7)), (31)
3X32n2%a?
and since

. 3s .
f(t—1)——s - E(t—1)
32

approaches —2§[t— (2a/c)] and —2&(f) as 7 ap-
proaches zero and 2a/c respectively, we obtain
for the exact value of the force resulting from
the term containing K(7),

err. 2a .
[{(-=7) 0]

3a% c

which vanishes if £(¢) is a function with period

2a/c. It is readily verified that M(7) leads to the

same set of & functions, so that the second term in

F. also vanishes. One can treat the magnetic

term and the self-torque in the same way and
show that these are also zero.




