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A closed-form solution to the central problem of the steady linear motion of an arbitrary current
distribution past materials or constant permeability is presented. The application of the Green’s function
technique to the field equations yields integral representations of the induction, eddy currents, and

electromagnetic forces. Due to interface coupling of the boundary conditions along the surface of the
conductor, Green’s functions are shown to satisfy integral equations. In the case of a conducting slab,
explicit solutions for the Green’s functions are derived. Application to magnetic levitation and the
calculations of forces on moving coils are developed. Results are compared with experimental drag

measurements.

PACS numbers: 41.10.Fs, 89.40.+k

I. INTRODUCTION

In recent years, the constraints imposed on the develop-
ment of high-speed ground transportation systems have gen-
erated strong interest in magnetic levitation and linear in-
duction motor technologies. The basic principles being well
understood, important contributions demonstrating the fea-
sibility of those techniques were made by various research
groups,!-? the aim being to identify the most promising con-
figurations.

Along those lines, a considerable theoretical effort has
been developed in order to obtain expressions for the elec-
tromagnetic forces exerted on current loops moving past spe-
cific geometries. Pioneering studies®7 pertained to coils in
uniform motion parallel to conducting plates, whereas some
recent calculations were performed for an unsteady situation
encountered in a dynamical scaling experiment.!® On the
other hand, numerical methods have been applied to eddy-
current distributions,!! and schemes have been proposed for
the modelling of electromagnetic phenomena in general, but
with limited performance.!?2 The difficulties inherent to
those problems suggest the necessity of developing more
powerful tools of investigation. This paper is an attempt
to present a global analytical approach amenable to most ap-
plications. Moreover, the Green’s functions formalism pro-
posed here has the great advantage of providing an explicit
physical description of the nature of the interaction of fields
with moving conductors. Although restricted here for sim-
plicity to uniform motion, it can easily be generalized to
time-dependent fields. Finally, the linear properties of
Green’s functions are fully exploited since we consider con-
ducting materials of constant magnetic permeability, but we
believe that the results can serve as a base line for the study
of ferromagnetic media.

In Sec. II, the general formulation of the problem of a con-
stant permeability conductor in steady linear motion past
an arbitrary current distribution is developed in terms of a
vector induction potential starting from Maxwell’s field
equations. The solution for this potential is then required
to be uniquely defined by a convolution over the current
source density. It is subsequently shown to be sufficient to
take a scalar kernel (Green’s function) for this integral rep-
resentation: upon applying Green’s theorem and using the
coupled boundary conditions, the problem boils down to the
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search for appropriate Green’s functions solutions of certain
integral equations along the conductor’s boundary. The
magnetic induction, the eddy-current distributions, and the
electromagnetic body forces are then each given in terms of
specific surface or volume integrals.

In Sec. III, we focus on the infinite slab conductor and
solve for the Green’s functions which turn out to be elliptic
integrals with modified Bessel functions kernels. Symmetry
properties of the latter qualitatively explain the lift and drag
plots versus velocity. We then show how the essential elec-
tromagnetic variables relate to previously published results
by simple application of the “faltung theorem”, thereby con-
necting the aforementioned integral representations to Fou-
rier transforms. In Sec. IV, we discuss some calculations
performed on moving thick coils and compare with experi-
mental drag measurements recently obtained.

. FIELD SOLUTION FOR A STEADY MOVING
CONDUCTOR

A. Formulation of the problem, notation

Consider a conductor of constant conductivity s and con-
stant magnetic permeability g, occupying the domain Q-
bounded by the surface 2 and moving in steady rectilinear
motion with velocity ¢ with respect to a fixed rectangular
coordinate system O,,, (Fig. 1). The position vector of a
field point P is denoted P(x,y,z). Let Q% be the remainder
of the space with permeability uo. Inside Q*, consider a
fixed volume 7 carrying a steady current distribution with
density J,, (r).

In the fixed reference frame, Maxwell’s field equations for
the magnetic induction B together with Ohm’s law for the
currents J can be written

v-B=0, (1a)

VXB=pud, (1b)
odB

UVXJ=~— , 1
dt (1c)

Introduction of a vector potential A for the induction such
that

B=VXA (2)
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FIG.1. General configuration.

can greatly simplify Eqgs. (1). In general, this vector poten-
tial has a gradientlike longitudinal part and a transverse
part: by virtue of Eq. (2), we shall consider transverse vec-
tor potentials only. This allows us to choose a zero-diver-
gence potential A. This choice, however, corresponds to a
Coulomb gauge!? which is not relativistically invariant; it is
unimportant here because we only consider a steady-state
situation where there are no displacement currents and
where J, consequently, has zero divergence. Under these
conditions, and taking the velocity ¢ of the moving conduc-
tor along the O, direction, the equations for the vector po-
tential A(r) become

V-A=0, (3a)

0A
VA — pod — = 0. (3b)
ox

The boundary conditions for Egs. (1a), (1b), and (1¢), re-
spectively, express the vanishing of all fields at infinity, the
continuity across the interface = of the normal component of
B, and the continuity of the tangential component of the
magnetic field B/u. Let n be the unit normal on the surface
T pointing outward from the conductor into the domain Q*,
and let (+) and (=), respectively, denote conditions inside
Qt and @~. The boundary conditions determining A can
then be written

lim |A[ =0, (4a)

mnXA)Y=mXA)", (4b)

(1/uo)[n X (V X A)]* = (1/u)[n X (V X A)]~. (4c)
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In summary, the problem consists in solving the vector
equations (3) within @+ and Q~, subject to compatibility
relations across the free surface T as expressed by the
boundary conditions (4). The solution of this problem is
carried out using Green’s functions. However, since Green’s
functions are the kernel of an integral operator which serves
to transform the source density and the boundary conditions
into the solution and since the latter have a vectorial nature,
the Green’s function must be a vector operator, namely, a
dyadic function G. Finally, it remains to be shown that the
magnetic induction, eddy currents, and body forces can be
given simple representations in terms of the Green’s func-
tion itself.

B. Vector potential and fundamental solution

Consider a dyadic Green’s function G(r|ro) of field points
r(x,y,2) and source points ro{xo,yo,20) associated with the
vector potential equation (3). Such a dyadic must have the
same general properties as the usual scalar Green’s func-
tions, namely, it must satisfy a reciprocity relationship, it
will serve to generate the solution from both boundary con-
ditions and source functions, and the resulting solutions will
have discontinuities just outside the boundaries. Conse-
quently, it must satisfy the following equations: (i) inside
the domain QF,

V2A* = —pod (1), (5a)
VGt = —478(r — ro)L; (5b)

(ii) inside the conductor’s domain Q~

veA- — 20,287 g, (5¢)
ox

V3G~ - 2w ?_— = —4wé(r - ro)L (5d)
X

Here I denotes the idemfactor dyadic, whereas 6(r — rg) rep-
resents the three-dimensional generalized 4 function of
Dirac. The parameter w has the unit of a wave number and
is defined as

2w = pug?. (6)

When this wave number is multiplied by some length k char-
acteristic of the spatial variation of B, the resulting dimen-
sionless number R,, = uodh is the magnetic Reynolds num-
her associated with the problem. Finally, the vector poten-
tial equation (3) being of the diffusion type, the Green’s
function must satisfy the following reciprocity relationship
where a velocity reversal is involved by virtue of the time se-
quence demanded by causality:

G(r|rg;w) = G(ro|r;—w). (7)

In order to apply the vector Green’s theorem to Egs. (5), it
is useful to imagine the @ domains to be bounded at large
distance by regular surfaces labelled £+ and =~ and sharing
T as a common surface boundary. Upon applying Green’s
theorem,3 namely, writing Eqs. (5) in source space taking
Eq. (7) into account, contracting the vector Laplacians with
G and the dyadic Laplacians with A, subtracting, integrating
over each Q@ domain, and using Gauss’s theorem, one deduces
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o f GH(r|ro) - Im (o) do
4# T

- [ (G0 ANIGH(xIrd) - nl
= (Vo G*)(A* -ng)} dag
1
4x
+ (Vg X G*) - (ng X A*)} dag
= A+(r) if r is inside Q*

= ( if r is outside Q%; (8a)

f GH(r|rd) - [mg X (Vo X A)]
S+z+

1

-

j {(Vo - A-)(G~ - o) — (Vo G-)(A~ - no)} dog
Z+Z

1 _ _
—;£+2_{G '[no)((V()XA )]

+ (Vg X G™) - (mg X A7)} dag
2 Al -
'Z”f—aTo(A G-) d7o

= A—(r) if r is inside @~
= 0 if r is outside Q. (8b)

Here the subscript 0 refers to source variables and the super-
script s refers to points S belonging to the surface; thus, for
the surface integrals, all the functions are evaluated at r}.

Because of the vanishing of the field A at infinity [Eq.
(4a)], a similar boundary condition is imposed on the dyadic
@G, thereby discarding the surface integrals over 2* and Z—.
Furthermore, the surface integrals along 2 which involve
Vo-A(r}) identically vanish by our gauge choice [Eq. (3a)].
The Green’s theorem as written above naturally separates
the normal components of A from the tangential ones.

Since no information is supplied on the normal projection
An of the potential, it would seem natural to eliminate the
remainder of the second surface integral by choosing a
transverse dyadic. However, it is not necessary to do so be-
cause the contribution of this integral corresponds to a longi-
tudinal component of A. As a matter of fact, if we take the
cur! of Eq. (8) in order to obtain the magnetic induction B,
this troublesome longitudinal field disappears and, there-
fore, has no effect on the physical solution: in the following,
it will consequently be ignored.

On the other hand, if instead of the vector potential equa-
tion (3b), we were to consider three scalar equations for each
rectangular component of A, we would then use, in Green’s
theorem, three identical scalar equations for the same scalar
Green’s function G. Thus, inasmuch as we do not have to
separate out longitudinal and transverse parts of the dyadic
G, a spherical dyadic such as

G =Gl 9

is a perfectly acceptable Green’s dyadic in which G is to sat-
isfy

V2Gt = —475(r — ry) inside Q, (10a)
oG~
VG~ — 2w " = —4xé(r — rg) inside Q. (10b)

It remains to establish the link between G+ and G—~. This is
accomplished by imposing A* to be uniquely determined by
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the current sources J ,, (r); thus, the last surface integral over
T in Eq. (8a) is required to vanish identically. Upon denot-
ing the ratio uo/u by m, introducing the projection n, of the
normal n along the O, direction, and substituting the re-
maining boundary conditions (4b) and {4c) into Eq. (8b), the
solution for the vector potential takes the form

A+(E) = (uo/am) [ GH(ex0)dn(e0) dro, (11a)
A—(r) = (1/4r) fz {(1/m)G~(x|r8)[no X (Vo X A+)]

— VG (r|r§) X (ng X A%)

— 2un0,G~(r|r)A+} doo. (11b)

The constraint on G+ can then be easily derived by taking
the curl of A* from Eq. (11a), substituting into Eq. (11b),
and using condition (4a). The relationship takes the form of
an integral equation which serves as the boundary condition
imposed along £ on the solution G* of Eq. (10a) according to

G*(rs|xo)
1 Lo aun2Gt
_21r.£“[mG (r*]x) on’ =’lro)
oG~
on’

~ GHr'|xp) ( (rs|r’) + 2wnxG“(r3|r’))] do’. (12)
It should be understood here that the prime superscripts
refer to dummy integration variables. Finally, G~ is deter-
mined by noting that a particular solution of Eq. (10b) is the
fundamental solution denoted G; which corresponds to an
infinite domain @~ with no infinities, namely,

explw(x — xo) — w|r — ro}]
|r — rol

G (rlro) = (13)

If now Q~ is bounded by a free surface 2, and if G~ is inter-
preted as a potential solution of Eq. (10b) in the domain Q—,
then across = the boundary condition analogous to Eq. (4¢)
is, for such a potential,

oG~
on

o (14)
on

Upon solving Eq. (10b) for G~, making use of the fundamen-
tal solution G/ and the jump condition (14), it is straightfor-
ward to derive the relationship imposed on G~ along 2 as the
solution of the Fredholm equation of the second kind:

1 oG;
G—(rs|re —f G-(rs|r 2 Fate ’
(r |l'o)+21r . (r Ir)(bn’+2wn”Gf)do

2
1+m

Gf‘(r3|r5)+$j;n;(6,‘)2da’. (15)

Thus, we have demonstrated that Eqs. (11a) and (11b) do in-
deed constitute a solution of our problem with its boundary
conditions. The fact that there can be no other solution is
implicitly deduced from the uniqueness property of physical
boundary value problems.

C. Induction, forces, and eddy currents

From the vector potential A(r), one can deduce straight-
forwardly the magnetic induction. For example, taking the
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curl of Eq. (11a), one derives in the domain Q* the generali-
zation of the Biot and Savart Law:

BH(r) = (uo/d7) f VG+ X I (o) dro. (16)

The electromagnetic body forces exerted on the current
source distribution J,,(r) enclosed in 7 can then be obtained
from the usual definition as the volume integral of the cross
product of J,,(r) with B*(r). If F; is the component of the
force in the x; direction, one has the general formula for the
body force,

F=tf § Oam- m(ro)]

A similar relationship can be derived for the torque which is
then given by replacing the gradient VG'* in Eq. (17) by the
vector product ¥ X VG*.

dT drg. (17)

Induced currents are generated within the conductor and
have two causes. On one hand, the B field generated by the
current source induces eddy currents within the core of the
conductor in motion, and on the other hand, surface currents
or “polarization currents” are established along the conduc-
tor’s boundary Z in order to account for the jump in the tan-
gential component of the magnetic¢ field. Considerable care
must be taken in handling such a singular current distribu-
tion which mathematically is characterized by a é function
5(r?) of the surface £. Upon recalling the field equation
(1b) and upon using Eq. (3), one obtains the eddy currents in
terms of the vector potential A as

dA~

Jd=—ad—+ (l[nX(VXA*’)]
ox Ko

-2 x (v x A7) e, (18)
u

It is interesting to note that when the velocity is infinite, G*
has a limit denoted G*, whereas G~ vanishes identically. So
does A~, which physically expresses the fact that for such a
velocity the B field canriot diffuse inside the conductor while
the current reduces to a sheet of current density J5 given by

6(r )

J5(re) = - f % (e | 1) m(ro) dro, (19)
Consequently, there results a body force F* exerted on 7
which takes the form

* = —uo f (I (r) - I5(r%)] n dr. (20)

In summary, the main results obtained in this section con-
cern the integral representations (11a) and (11b) of the vec-
tor potential A(r). The kernels of these representations are
the Green’s functions G+ and G~ solutions of Egs. (10a) and
(10b) and determined from the boundary conditions stated
in integral equations (12) and (15), respectively; the B field
is represented by Eq. (16) so that the body forces are simply
expressed by Eq. (17). Finally, the essential feature of these
results lies in their clear physical content.

#l. INFINITE SLAB CONDUCTOR

A. Fundamental solutions

We now consider the central problem of an infinite slab
conductor in motion past an arbitrary current source en-
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closed in a volume 7 and proceed to determine explicitly the
Green’s functions. Let = be the plane z = 0. By virtue of
the vanishing of the normal projection n,, the integral equa-
tion (15) becomes

1 oG;
G‘(rs|r5)+—f G‘(rslr’)—aﬁeda’
n

=G r). 1)
Since G~ is to be a joint solution of Eq. (10b) and (21), it is
natural to introduce the mirror images ry(x9,y0,—2¢) of a
source point rq with respect to the plane z¢ = 0 and to seek
G~ in terms of a linear superposition of fundamental solu-
tions G7 (r|rg) [as given by Eq. (13)] with arguments ro and
ry. The integration thus yields

G~(r|ro) = Gf (r|ro) + [(1 = m)/(1 + m)]G7 (r|xg).
(22)

Physically, the regular part of this Green’s function can be
interpreted as being weighted by a factor expressing the “ef-
fective polarization” of the medium when the relative per-
meabilities differ. Moreover, at zero velocity, one recovers
the classical result of magnetostatics!? since the Green'’s
function then exhibits the usual 1/r dependency. Under
these conditions, the integral equation (12) determining the
condition satisfied by the upper Green’s function G* along
the plane z = 0 takes the remarkable form

g« 7Bl =
2rm J-» - o —p|

26+ @lro)
oz’
Here the polar radius p denotes the distance (x2 + y2)u2
taken in the z = 0 plane. The general solution of the har-
monic equation (10a) is sought by superposing the well-
known particular singular solution corresponding to the infi-
nite domain

G} (r|rg) = 1/[r — ro} (24)

with a harmonic function, regular in the upper half-space z
2 0 and adjusted so as to satisfy the free-surface condition
(23). Upon employing the shortened notation R = |r — rg|
and R’ = |r — rj|, it is convenient to split the solution ac-
cording to

G*(r|rg) = 1/R — 1/R’ + V(r|rg), (25)

where, for the case of identical relative permeabilities (m =
1), the solution V is given in rectangular coordinates by

Varle) = =52 f"ae {77 [

exp[t{ — t(2+ n)V2] d{dy
(s’2 +09)Y2[(x —xo— 2+ (y —yo— )2+ (z + 20)2V/2
(26)

do'. (23)
z=0

For completeness, it should be stated that the trivial deriva-
tive with respect to z and the integration with respect to ¢
have not been carried out here in order to keep V in a com-
pact form.

Equations (25) and (26) show that the fundamental solu-
tion G(r|ro), that is, the potential at point P(r) of a unit
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source located at point M (ry), may be written as the sum of
three contributions:

(i) the familiar potential 1/R of the source in the infinite
domain as if there were no free surface;

(ii) an image sink potential —1/R’ which is associated with
a slab conductor propagating infinitely fast (these two terms
represent the Green’s function of the so-called “infinite
Reynolds number approximation” in which the lines of in-
duction are rigidly transported);

(iii) a “trailing” potential V(r{r5) which characterizes the
field disturbance caused by the conductor’s motion at finite
velocity. As a matter of fact, for a unit relative permeability
conductor at rest, one recovers the infinite domain solution
as expected: the verification that in Eq. (26) the limit of V
when w approaches zero is 1/R’ and cancels out the second
contribution is left to the reader. It may be worth empha-
sizing that since Green’s functions in three-dimensional
space are homogeneous to the inverse of a length, the func-
tion V, after appropriately introducing a characteristic
length such as h mentioned in Sec. II B, up to a factor 1/h,
becomes a-universal function of the dimensionless vector (r
= ry)/h and the magnetic Reynolds number R,, = 20h,
which can conceivably be tabulated.

Finally, it is interesting to note that the nature of the
above solution is typical of problems involving a free-surface
condition whether in differential or integral form. A first
example can be taken from hydrodynamics in the theory of
steady motion of a ship where the linearized disturbance ve-
locity potential of the steady inviscid free-surface gravity
flow, the so-called Havelock source potential, is given by a
solution!® completely analogous to Eq. (25). Another exam-
ple is provided by the Sommerfeld solution® for the propa-
gation of radio signals in a homogeneous medium over a fi-
nite conductivity earth: it only difers from the above in the
basic equation which is a Helmholtz equation.

Because of the paramount importance of the Green’s func-
tion, it is extremely useful to develop alternative expressions
for V(r|rg): eigenfunction expansions in particular can
vield good insight into the physical content of the Green’s
function. Two such expansions are derived in the Appendix
and are worth mentioning. With the notations of the Ap-
pendix, the first one is

1 = o}
=—— 3 encosmy—
T m=0 0z

2
1+u > du @7

(u sinf)1/2

X {7 Sn(@Rw@n-1 (=

0 2u sinf
in which the functions @~1/2(t) are the toroidal harmonics
of the second kind and where the kernel S,,(t) is a recursive
combination of modified Bessel functions of the first kind
defined as

Sm(t) = exp(—t){Io(t) + I,(t)] + mw

+2 w T m - BLe). 9
k=1

It is worth emphasizing that @_1,2(t) and Q,/s(¢) are com-
plete elliptic integrals!? so that higher harmonics can be ob-
tained by recursion. Another useful development in terms
of well-behaved functions is the following expansion where
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Sm(t) x €{Io (0 +1,(1)] ¢ m £l To (01
t

=1
(M) I, (1)
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FIG. 2. Radial functions.

the eigenfunctions are defined by twofold integral represen-
tations, the angular part of which are precisely related to the
foregoing elliptic integrals:

cosf = * o
-2 5 e
TR’ mg() ém COS ‘p 0 0
Sn{wR'u) cosme
(1 — 2u sinf cose + u2)¥2

dude. (29)

An interesting piece of information which can be gathered
from these expansions relates to the Reynolds-number de-
pendency of G*(r|rg). As can be observed on the graph of
the “radial eigenfunctions S,, (¢)” (Fig. 2), the contribution
of higher-order harmonics is decreasing with the argument,
except perhaps in the asymptotic region. For medium-range
magnetic Reynolds numbers, the two lowest eigenfunctions
provide the essential velocity dependency and, thus, explain
qualitatively the shape of the well-known lift and drag
curves associated with magnetic levitation systems.:” This
fundamental remark is deeply rooted in the parity properties
of the regular part of the Green’s function in Eq. (25). The
starting point of the argument consists in deriving a symme-
trized formula for the body force: this is achieved by recall-
ing the result [Eq. (17)] and exchanging field points with
source points, thus obtaining

F= g f f [T (®) « I (VG + VoG*] dr dro.

(30)
Now this result is totally invariant in the coordinate ex-
change if it is simultaneously accompanied by a velocity ex-
change in the Green’s function according to the reciprocity
relationship (7). Upon decomposing the Green’s function
into a velocity-even and a velocity-odd component, it is easy
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to check that the lift is associated with the even component
only because of the symmetry of the argument (z + z¢) used
in the computation of the gradient, whereas the drag (or,
rather, all horizontal forces) is uniquely associated with the
odd component of V because of the antisymmetry of the
arguments (x — xo) and (y — yg). Thus, insofar as the high-
er harmonics are unimportant, the lift force exhibits a veloci-
ty (Reynolds number) dependency analogous to that of the
function 1 — So(wR’), while the drag forces display the veloc-
ity dependency of the function S;(wR’).

For large Reynolds numbers, the eigenfunction expansions
become less useful since all radial eigenfunctions have the
same asymptotic behavior. However, upon applying the
method of steepest descent to integral (26), one can derive
the following asymptotic expression for G+ in terms of an in-
complete elliptic integral of the first kind:

1 1 o]

1 dt
X j; (1 -6)V2[t2 -1+ RV2/(x — x0)2|1/2" 1)

This Green’s function in the “high Reynolds number ap-
proximation” displays a R;;}/? dependency analogous to the
boundary-layer flow behavior encountered in hydrodynam-
ics. This circumstance arises here because large B-field gra-
dients due to the conductor’s motion completely thwart the
field diffusion which normally prevails for sinall Reynolds
numbers: rather a convective-type correction is superposed
on the image sink Green’s function —1/R’. In a similar way,
boundary layers are introduced as a perturbation to inviscid
potential flows in hydrodynamics.

At this point, a final remark concerning the so-called “in-
finite Reynolds number approximation” can be made: from
Eq. (31), it is clear that in this limit all horizontal efforts
vanish, and the only remaining force is the maximum al-
lowed lift, usually called the “image force” and given accord-
ing to Eq. (20) by

s o Fo 2o[dm (x) - I (ro)]
Fz - 2 ‘J: J:— [(x —x0)2+ (y _y0)2+zg]3/2 dr dTO.

(32)

B. Green’s functions and Fourier transforms

A great deal of the analytical results published about mag-
netic levitation systems pertains to forces exerted on moving
coils: most computations have been performed by employ-
ing Fourier transform techniques.>-”7 Such techniques suc-
ceed chiefly because they take advantage of the nature of the
coil geometry as well as of the simplicity afforded in Fourier
space by the boundary conditions along the interface z = 0.
Green’s functions, on the other hand, provide a more general
framework encompassing all of the aforementioned results
and relying exclusively on the free-surface condition. The
crucial step is to establish a connection between the physical
space used so far and the Fourier space: this relationship is
ensured by means of the “faltung theorem”. Indeed,
Green’s functions are particularly well suited for this process
since they constitute diagonal kernels [with respect to the
field and source points by virtue of the reciprocity principle
(7)} used within the various convolutions to be carried out in
all of the integral solutions obtained in Secs. II-IIT A.
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Let k(k1,k2) be a two-dimensional wave vector, and let the
two-dimensional Fourier transform ¢(k,z) associated with
the function ¢(r) be defined as

a + +o
dlk,z) = (1/27) f_ f_ o(r) exp(—ik - p) d2p, (33)
where we denote

k%= ki + k3
k-p=k1x+k2y,

p2=x2+y?,
d2p = dx dy. (34)

In the case of Green’s functions, the arguments are (x — x)
and (y — vg). Consequently, there appears a phase factor
exp|—i(kixg + k2yo)] which, since no ambiguity can arise,
will subsequently be discarded in order to keep the resulis in
compact form: it must naturally be restored when appropri-
ate. The physical content of the faltung theorem?!8 ex-
presses the reciprocal relationship existing between the con-
volution product or “faltung” of two functions f(p) and g(p)
and the product of their respective Fourier transforms ac-
cording to

fre=rm [ fheto - ) a2

1 « >
T o j‘_: j'_: f(k)2(k) exp(ik - p) d2k. (35)

Instead of taking the transform of all the basic equations
[Egs. (5a)—(5¢) and (4a)—(4c) for the vector potential A(r)
and Eqs. (10a), (10b), (22), and (23) for the Green’s func-
tions] and solving in Fourier space, it is equivalent to apply
the faltung theorem and to “transcribe” all of the results of
Secs. II B, II C, and I1I A in Fourier variables: in particular,
integral equations such as (21) or (23) break down into prod-
ucts. For example, the vector potential A*(r) transforms
into

A*(k12) =‘21'u0 £ 6 telodntkizd dzo (36)

where the Green’s function G+ (k,z |26) is the joint solution of
the two equations

2
26t _ R2G+ = —25(z — z0), (37a)
dz?
N+
G*(k,0|zo) = 1 d6+ (k,0|20). (37b)
ma dz

These two equations are, respectively, the transform of Eq.
(10a) (omitting the cumbersome phase factor) and the solu-
tion of the integral equation (23) obtained by the faltung
theorem. Here the function « is defined as the principal
complex root of

a® = k2 4+ 2wk, (37¢)
It is left to the reader to check that 1/« is indeed the fol-
lowing Fourier transform:
1 1 f+°° f“"’ explw(x — x0) — w|p = pol]
a 2rd-e J-o [0 — pol

X expl—ithix + kay)ld2p, (38)

From Egs. (37a) and (37b), it is straightforward to deduce
the expression of the upper Green’s function G*(k,2|20):
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_exp(~k|z —z]) L kK —ma

k R+ ma

5 &Xp[=k( + 20)]
k b b

Naturally, up to a phase factor, this is the Fourier transform
of the result given for m = 1 in Egs. (25) and (26); in particu-
lar, the first term exp(—k|z — zq|)/k is the familiar trans-
form of the fundamental singular solution (24). Similarly,

the transform of the lower Green’s function (22) is just a
generalization of Eq. (38):

G*(k,z|20)

202 0. (39)

—_ - 1_
G‘(k,zlzo)=exP( alz — zo|) m
1+m
x palztzl) (40)

o

Note that at rest (a« = k) both functions coincide and repre-
sent a well-known result of magnetostatics.!4 It is clear now
that expressions (39) and (40) are the kernels of many of the
particular results already published. Obviously, all of the
investigations regarding either the singularities of the
Green’s functions or their Reynolds-number dependency are
recovered, as well as the results concerning the currents [Eq.
(18)] and, also, the body forces which, upon using Parseval’s
theorem,!8 take the following form:

® o ot G+
A 1,012 22 a2k do. (41)
2 Jo —o —® ox;

In summary, the main results obtained in Secs. III A and
III B on one hand are the analytical expressions (22) and
(25), respectijvely, for G~ (r|ro)} and G*(r|rg) and the repre-
sentation in terms of elliptic integrals with modified Bessel
functions kernels (27). On the other hand, the exceedingly
useful faltung theorem enables one to derive their Fourier
transforms (40) and (39), thereby considerably enlarging the
framework of previously published results.

C. Application to magnetic levitation

One of the simplest tests with which it is possible to com-
pare the foregoing theory against experimental data is the
calculation of forces on moving coils. In terms of potential
application to future transportation systems, it is also inter-
esting to evaluate the useful range of variation of such pa-
rameters as the velocity, the coil flight height, the guideway
width, etc., and their possible tradeoffs. The object of this
short section is to give preliminary results demonstrating
that the method presented in previous sections is well adapt-
ed to magnetic levitation engineering calculations.

1. Experimental drag measurement: thick rectangular
coil

We have performed a numerical calculation corresponding
to the drag force measured in a recent experiment!® carried
out within our laboratory. The geometrical configuration
is presented in Fig. 3 together with the experimental data
and the numerical results. The 200 X 100-mm coil has its
long dimensicn in the direction of motion; it carries a 4000-A
turn current. During the measurement, the coil is suspend-
ed at a height ¢f about 5 mm above the rim of a solid rotating
wheel. This wheel is 600 mm in diameter, 400 mm wide, and
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FIG. 3. Drag force and measurement.

can reach a maximum rim speed of about 16 m/s; it is made
out of ah aluminum alloy such that the product xo approach-
es 20 in mksA units. The drag force is measured with a con-
ventional dynamometric gauge.

Two calculations have been performed with this coil, re-
spectively with a 4-mm air gap and a 5-mm gap. The reason
stems from the great difficulty encountered during the ex-
periment in monitoring the flight height with reasonable ac-
curacy. As can be observed the agreement between experi-
mental and theoretical values fluctuates within £12%. It
should also be stated that, owing to the rather small diame-
ter of the wheel relative to the large coil length, the coil is
given some curvature for the experiment and this introduces
an extra component within the drag force which has proven
difficult to estimate. The overall experiment is in the pro-
cess of being improved and we expect to obtain more refined
data. Nevertheless, the agreement obtained so far between
theory and experiment can be qualified as reasonable.

2. Forces on a rectangular coil

Although many aspects of magnetic levitation systems can
be investigated within the framework of this theory, and
since considerable research is currently devoted to the com-
parison of design tradeoffs, we have chosen to present a non-
dimensional chart of lift and drag forces as a function of the
basic scaling parameter, namely, the magnetic Reynolds
number based on the flight height k. We consider a rectan-
gular flat coil for which the dimensionless length and width
are 2a X 2b; the forces acting on the rectangular coil are
made dimensionless after dividing by the image force [Eq.
(32)]. The parametrizing of the results in terms of the rela-

J-L Boulnois and J-L.. Giovachini 2247

Downloaded 07 Dec 2005 to 128.112.87.66. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



FLAT RECTANGULAR COIL 2ax3Zb
32350 b=1.75
M= ko /b
1 —
x
[y L
S
N
('S
w
Q m=t
x
5 |
w
- | m=0.3
W
3 . . ey s
o FIG. 4. Lift chart for magnetic levitation.

a
N msz0.1
: -
L g
=
[ | m=0.05
1)
2

.

1 1 1 J 1 1 1 I | 1 L l 1 1 1 l
10' 10° 10 ' 102 10°
MAGNETIC REYNOLDS NUMBER Rm = yovh

tive permeability ratio m = uo/u as presented on the loga-
rithmic plot (Figs. 4 and 5) is intended to simulate the possi-
ble use of ferromagnetic tracks. In fact, since saturation and
hysteresis of the material play an important role in such
cases, a nonlinear theory accounting for the bulk of these ef-
fects should be constructed. However, by arbitrarily in-
creasing the linear permeability of the material, one gets a
good qualitative idea of the physical situation. As can be
seen, the lift is attractive at low Reynolds numbers and re-
pulsive at sufficiently higher ones: this is explained by the
intense surface current [Eq. (18)] caused by the strong mag-
netization of the conductor which at a low Reynolds num-
bers overcomes the convective volume currents. For a par-

ticular flight condition, the forces in mksA units can be re-
covered after multiplying by the image force which for a rec-
tangular coil can easily be evaluated directly using Eq. (32)
and is given by the well-known formula

1
a+ b2)1/2

Fr = kol [(1 +a? + (L+ b2 + +
T (1 + a2)l/2

—( ! 4 (42)
1+ a?
IV. CONCLUSION

The scope of this paper has been the development of a
comprehensive physical theory of eddy currents and forces

1+ a2+ b2 1/2—2].
1+b2)( a*+b%)
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for conductors in steady motion past arbitrary current
sources. The overall formulation is carried out in terms of a
vector potential from which the induction, eddy currents,
and electromagnetic forces are simply derived. By requiring
this potential to be exclusively determined outside the con-
ductor in terms of the current source, it follows that the ker-
nel or Green’s function of this integral representation must
satisfy a precise integral equation along the outer surface of
the conductor because of the boundary conditions imposed
on the potential. Closed-form solutions are then derived
when the conductor is an infinite slab. The symmetries of
the foregoing Green’s function, its magnetic Reynolds-num-
ber dependency, and its asymptotic form are then fully ex-
ploited in order to analyze the coupling of the field with the
moving conductor and to predict the properties of the body
force, namely, the lift and drag such as are commonly mea-
sured on magnetic levitation systems. The connection be-
tween previously published results in Fourier space is subse-
quently established by showing that the relevant integral
representations are nothing but “faltungs” owing to the reci-
procity relationship satisfied by Green’s functions in general.
Also, some numerical calculations of drag forces performed
for the purpose of comparison are found to be in reasonable
agreement with recent experimental results obtained within
our laboratories. Because of the versatility of the theory, we
believe that many interesting engineering calculations can
now be envisioned for future applications.

APPENDIX

We seek an eigenfunction expansion of solution (26). Let
us introduce cylindrical coordinates
x—xo=X=rcosy, {=pcose,
¥ = ¥o=Y =rsiny,
z+z20=2.

= p sineg,
7 = p sing, (A1)

Then proceeding with the following expansion in terms of
the toroidal harmonics of the second kind,

[Z%2+ r? = 2pr cos(p — )]~ 1/2

Z24r2 4 p2

hd 1
= mZ=0 em cosm (e — ) W Qm-1/2 ( 207 ) (A2)

(ém is the Neumann symbol which is unity when m is zero
and takes the value 2 otherwise), we can write
- Z €m

1 w
e g
2rw bzmo

+ L3
f f f exp(tp cosy — tp)

cosm (¢ — ) (Zz+r2+p2
2pr )

o dpde.  (A3)

Qm-1/2

We first evaluate the angular integral in terms of modified
Bessel functions of the first kind,

+x
(1/27) ‘r_ exp(tpwe) cosm(e — ¢) de

= cosmyl,, (ot), (A4)
and then perform the w integration

(1/) j; exp(—pt) I,n(pt) dt = Sy (wp), (A5)
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where the “radial function” S,,(t) is obtained recursively ac-
cording to

S (t) = exp(—t)[Io(t) + I1(t)] + mg’ﬂ——t)—:dﬁ:‘l

exp(—t) ™

; Z (m = k) (t), (A6)

+2—

2
Sy =28m-1-— Spm—2+ ; BXP(—t)Im—L (A7)

We now turn to a spherical coordinate system such that

Z=Rcos#, r=Rsinf, R2=X2+Y2+2Z2 (A8)

Under these conditions, the expansion takes the form

V——— Z emcosm\lz—
T m=0
® 1+u? du
X | Sp(wRW)Qm— ( ) . (A9
J:) m(@RU)Qm—1/2 2u sind/ (u sinf)1/2 (A9)

For m = 0 and m = 1, the toroidal functions are related to
complete elliptic integrals!7; thus, higher-order harmonics
can be obtained by recursion from the general recurrence
relations of Legendre’s functions. The other expansion of
interest is deduced from the development13

(chu — cosp)~1/2 = (\/‘/W) S Qu_1/2(chy) cosn.

n=0

(A10)

Upon using the orthogonality properties of circular func-
tions, and upon carrying out the derivative with respect to Z,
it may be shown that

—; i; m cosmy

% f* f - Sm(f:Ru) cosme dude.
0o Jo (1 — 2u sind cosp + u?)3/2

(A11)
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