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The electromagnetic fields due to a point charge can be broken into velocity fields and acceleration
fields. The acceleration fields give rise to electromagnetic waves whose penetration into ohmic
conductors is described by exponential damping with a characteristic skin depth. The velocity fields
allow a steady-current limit where the magnetic field penetrates even a good conductor. Here we
note the contrasts between velocity fields and wave fields in their interactions with conductors. We
derive a new time-integral invariant of the magnetic field in an ohmic conductor. Finally we note
the disparate analyses in the literature and suggest the following summary regarding the penetration
of the electromagnetic fields of a point charge moving parallel to a conducting su(facehe

falloff of the electromagnetic fields is algebraic, not exponential, and cannot be characterized by a
skin depth.(2) In the limit of low velocity, the magnetic field penetration is independent of
the conductivity of the materia{3) In general the penetration of the electromagnetic fields depends
upon the velocity of the particle and becomes vanishingly small for a perfect condbtdhe

time integral of the magnetic field at a fixed spatial point indideoutside an ohmic conductor

is independent of the conductivity of the material; thus as the conductivity of the material becomes
larger and the magnetic field inside becomes smaller, the time of penetration becomes longer. The
penetration of time-dependent velocity fields into conductors has become of interest largely
in connection with the Aharonov—Bohm effect. It is curious that the classical explanation for
the Aharonov—Bohm effect depends upon the time integral of the magnetic field, which is
independent of the conductivity of any ohmic shielding material.1999 American Association of Physics
Teachers.

I. INTRODUCTION
B(r,t)=AXe

(h—pB)(1- %)
. . . (1_ﬁ'ﬂ)3|r_re|2
In ohmic conductors, changing magnetic fields cause eddy Lret
currents which tend to oppose the changes in the magnetic
fields. Yet ohmic conductivity is irrelevant for time- AL X~
independent magnetostatic fields, which penetrate even ex- e
cellent conductors. This contrasting behavior between the
penetration of time-dependent and time-independent magvheref o= (r—re)/[r—r|, B=V./c, and all quantities are
netic fields suggests the possibility of significant differencesvaluated at the retarded time. The velocity fields correspond
between the penetration into conductors of electromagnetito the first bracket on the right-hand sides of Ed$.and(2);
wave fields, which do not have a time-independent limit, andhey fall off as the inverse distance squatee r | =2 from
of electromagnetic velocity fields, which do have a time-the retarded position of the charge, and depend upon the
independent limit. In this analysis we provide a consistenpositionr, and velocityv,=cg of the chargee at the re-
understanding of the contrasting views in the literature retarded time. The second bracket on the right-hand sides of
garding the penetration of electromagnetic velocity fieldsEgs.(1) and(2) gives the electromagnetic wave fields which
into conductors. fall off as the inverse distance—r.| ! from the retarded

source point, depend linearly on the particle acceleration

=cp at the retarded time, and are transverse to the displace-

ment of the field point from the retarded source point. At

IIl. VELOCITY FIELDS AND ACCELERATION large distances, the wave fields can be expressed as a super-

FIELDS OF A POINT CHARGE position of spherical wave fields, each spherical wave having
its own characteristic frequency derived from a time-spectral

The electromagnetic fields of a charged partielt posi-  analysis of the sourceThe contrast in the properties of elec-

tion r, break up naturally into the forin tromagnetic velocity and wave fields leads to contrasting in-

teractions with conductors.
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. IN CONDUCTORS
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) oy Inside an ohmic conductor characterized by conductivity
Tret o, and with u=1, e=1, the electromagnetic fields satisfy
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Maxwell's equations with curreni=cE. Any free charge limit for electromagnetic wave fields, whereas there is indeed
in the conducting material decays away exponentially; for electromagnetic velocity fields. We will use this limit as
thus no charge will appear inside the body of a conductoa touchstone in understanding the interaction of velocity
unless it is introduced by some nonelectromagnetic sourcdields and conductors.

and so one may assumeéE=0 inside a conductor. Max-

well's equations, V-E=0, V-B=0, VXE=—c 19B/dt,

- -1
VXB=(4w/c)cE+c™ “9E/ot, then lead to the wave V. THE TIME INTEGRAL OF THE MAGNETIC

equatiof} VELOCITY FIELD
, 4m 9 1 #\[E
Ve- 2% 2a2llsl T 0. ©) When a charged particle moves with constant velocity past

i i o any ohmic conductor, its magnetic field must penetrate into
An electromagnetic wave in vacuum which is incidentthe conductor. The requirement of penetration follows from
upon a conducting plane is represented by a superposition ghe existence of a magnetic field inside the conductor in the
waves of different frequencies. Each of the wa¥s,t)  steady-current limit. If the magnetic field of a single point
=Ey(r)e "o, B(r,t)=By(r)e '“o', of a given frequency charge did not penetrate, then there would be no field when
wo can be treated independently in its interaction with thethe field of many charges were superimposed to form a con-
conducting wall in Eq(3), leading to an equation of the form stant line current; yet we know that the magnetic field of a
2 line current indeed penetrates a good ohmic conductor as
V24 Amowg N @) [ Eo(f)] ~0 (4  though the conductor were not present. Although the exis-
c? c? )| Bo(r) tence of a steady-current limit assures us that the magnetic
. . . . . yelocity field must penetrate the conductor, it does not tell us
This equation corresponds to exponential spatial dampln%at the field is not modified in some fashion in time or space

characterized by a skin depth involving the length parameter - o S - E
C/(O‘wo)llz, which includes the characteristic frequenay while maintaining the superposition limit. The magnetic field

corresponding to the steady-current superposition limit for a
of the wave. P 9 Y berp

Electromagnetic velocity fields are characterized not bycharge moving with constant velociy=iv corresponds to a
any frequency but rather by the velocity of their source. Foin® chargex moving with velocityv along its length. Using
a particle moving parallel to a conducting wall with constantAmpere’s law and symmetry, the static magnetic fig(d) a
speedv, the entire pattern of electromagnetic fields mustdistancer = (y?+z2)*2from the moving line charge is found
move with constant speed Thus if the particle is moving in  to be
the x direction, the electromagnetic fields must have the

functional formE(x—vt,y,z),B(x—vt,y,z). Inside the con- B,(r)= @ﬂ, (6)
ductor, the fields satisfy Eq3) in the form cr
5 Amov d V2 32 E(x—vt,y,2) where ¢ is the unit vector in cylindrical coordinates.
ViY@ B(x—vt,y,2)| = © 5 Now in going from the magnetic fielBy(x,y,z,t) due to

a point charge moving with constant velocity=iv over to

One should notice how different this equation is from & o 5 serposition limit, we consider a succession of charges
for wave fields. The only length parameter appearing here ua spaced at equal intervals along the path of the moving

Eq' (5 is c/o, which ma"‘?s no re_fere_nce '.[0 the CharaCteris'charge. We think of the line-charge magnetic fi@ld as a
tics of the electromagnetic velocity field in free space. In-

deed, the free-space motion of the particle provides no nat UM over the field8, arising f_rom the |nd|v_|dual cha_rges. .
ral length parameter; any length in the problem must be Ince all t_he (_:harges are eqU|\_/aIgnt and dlffe_r only n their
introduced as a distance between the charge and some pR2Sitions in time, the magnetic fielBq at a fixed point

ferred spatial point, such as the distance from the particle t6*;¥,2), Which one charge produces at the instatis the
the conducting wall. same as the fiel®," another charge’ produced or will

produce at the instant when it is located at the point where
IV. EXISTENCE OF A TIME-INDEPENDENT LIMIT the particleq is at timet. Thus we can write

The contrasting characteristics of velocity and wave fields _ = ' Ax’
lead to a crucial distinction involving the existence of a time- BA(X’Y'Z):n;m q Bq| X,y z,t=n——]. @
independent limit. This limit is essential for understanding _ _
interactions of the fields with conductors. Here we have introduced a charge per unit lengthn the

Since Maxwell's equations for ohmic materials are linearlimit Ax’—0, this becomes the integral
in the electromagnetic fields and the sources, the fields cor- . , 5
r(_asponding to th_e presence of geveral charges can _bt_a found B,(r)= Ef dx’ Bq<x,y,z,t— X_) —5 )\V, ®
simply by superimposing the fields due to the individual qJ-« Y% cr
charges in the absence of the others. If a set of charged )

: : i wherer = (y2+z%)Y? and the second equality follows from

particles is arranged so as to allow the passage to the limit o¥ , ;
a steady current, then the electromagnetic fields of the steadyd- (6). However, the integral can be converted to a time
current(obtained by adding the electromagnetic fields of theintegral because of the functional forx’/v. Canceling
individual chargeshave nonvanishing contributions only for factors ofv and\ on both sides, we have finally
the velocity fields. The radiation fields of the particles give 5
no contribution in the steady-current limiiThere is no such — - <d
thing as a nonvanishing, time-independent superposition — cr
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wherer=(y?+ 2?2 Thus in order to maintain the super- would still find the independence of conductivity for the time
position limit, we find that the time integral of the magnetic integral of the magnetic field at a fixed point in space. Since
field, either inside or outside the conductor, must satisfy Eqany current induced in the ohmic material according to Fara-
(9) and is independent of the conductivity of the material. Itday’s law is oscillating and hence produces magnetic fields
is also independent of the velocity of the charge. The arguof opposite sign at different points in the period, any such
ment goes through even if there are variations in the shape surrent will not contribute to the time integral & over a

the ohmic conductors near the path. We note that@can complete period.

easily be seen to hold for the field of a constant-velocity

point charge in vacuum where the magnetic field is given bX/I. THE LITERATURE OF THE PENETRATION
vacuum__ ~ qyvr PROBLEM

Aot — P o2y —ut 21 (2732 (10)
Ly (x=vt™+ri] Although the exponential damping for electromagnetic
with y=(1—v?/c?)~ 12, wave fields in conductors is mentioned in all the textbooks
In some calculations it is convenient to consider not aand is familiar to physicists, the penetration problem for ve-
point charge moving parallel to a conducting surface, butocity fields seems to have been noticed only relatively re-
rather a line charge moving perpendicular to its length. Incently, mainly in connection with the Aharonov—Bohm
this case the superposition limit corresponds to a sheet dfffect® Here we wish to survey the literature of the velocity-
chargeS, per unit area moving with velocity=iv and so  field penetration prgblem. . _
giving a surface currenk =3v. The time integral of the In 1965 LiebowitZz noted that certain energy-conservation

. . . problems involving a charged particle passing a solenoid had
magnetic fields, , of the line charge oriented parallel to the not been discussed in connection with the Aharonov—Bohm

y axis moving perpendicular to its length along iv can be  effect. He suggested that the effect might be due to a relative
found in a fashion analogous to that for a point charge,  lag between charged particles passing on opposite sides of
the solenoid. In order to counter Liebowitz's suggestions,

Jm dt BM:1 Jw dx’' By, | x,z,t— — Kaspef undertook to show that the magnetic fields of a pass-
- ViJ-w v ing charge could not penetrate into the interior of a conduct-
\B 2\ ing solenoid. Kasper followed the reaction of many physi-

_nPs 3

==t (11) cists by analyzing the problem as a skin-depth situation with
v c a characteristic frequency parameter v/d, wherev is the

This equation can be seen to hold for the magnetic field of #article velocity andd the distance of the passing charge
line charge oriented parallel to theaxis and moving per- rom the conductor. In 1975 Kasper again tried to analyze

pendicular to its lengtv={iv in free space where the mag- Lhoen\e/ﬁlt(i);:“tg;ﬁ:)oilﬁé)enetratmg Into & conductor assuming ex-

netic field is Shief® in 1968 was apparently the first to realize that the
. 2\Vyz velocity penetration problem involved new aspects compared
By (X,z,t)= A EE A (12 to wave fields. He thought in terms of the usual exponential

damping familiar from wave fields, but noted that when the
Clearly, the idea of the invariance of the time integral of particle velocity was small and the penetration depth was
the magnetic field at a fixed spatial point due to the motiorvery large, then the velocity field penetration at distances
of a charged particle moving with constant velocity can beless than the assumed skin depth took a very different form
extended to periodic motions of charges which move arounavhich he proceeded to derive. Shier's expressions gave alge-
a circuit with constant speed. Perhaps the simplest exampleraic dependence for the electric and magnetic fields inside
involves a point charge in uniform circular motion at a con-the conductor, but these fields were understood to be sup-
stant distance from a conducting half-space. Then the ele@ressed at large distances by the exponential damping of the
tromagnetic fields are periodic in time and so can be exskin-depth behavior.
panded in a time Fourier series involving multiples of the In 1974, Boyet! and Furry? independently suggested that
fundamental frequency. The time integral of the magnetidhe usual skin-depth analysis for wave fields played no role
field over one period at a fixed spatial point must dependvhatsoever in the penetration of electromagnetic velocity
upon the charge and spatial coordinates and is independetfitids. Both authors used as the crucial criterion the fact that
of the conductivity of any materials; it corresponds to thevelocity fields could be superimposed so as to give the fields
existence of a magnetostatic limiting configuration of uni-of a steady line current, and the magnetic field of a line
formly spaced charges. A single charge in uniform circularcurrent penetrates even a good conductor. Using a first-order
motion will emit radiation which is exponentially damped in analysis in the particle velocity, they found expressions
the conductor. However, this radiation with its oscillating closely related to those which had been given by Shier six
electric and magnetic fields will not contribute to the time years earlier. Both Boyer and Furry were initially unaware of
integral of the magnetic field taken over one period. Thethe other’s work and also of Shier’s results. In contrast to
radiation emission completely disappears in the limit of aShier, Boyer emphasized that the asymptotic behavior of the
large number of uniformly spaced particles moving aroundelectromagnetic fields in the conductor was algebraic and not
the circuit with constant spe@dwhile the time-averaged exponential damping; he showed that the superposition of
magnetic field remains. Although this simplest situationthe field expressions agreed with the line-current and current-
would involve a plane conducting half-space, the circuitsheet limits. In 1996 Boyer extended his analysis to the case
might be near an arbitrary distribution of ohmic conductors.of a conducting wall of finite thickness.In the low-velocity
The time Fourier series arising from the periodic motion oflimit obtained by Boyer and by Furry, the magnetic field
the charge around the circuit would still be possible and ong@enetration into the conductor was independent of the con-
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ductivity of the wall. Both authors erroneously suggestedfor independence of the magnetic field penetration from the
that the low-velocity expressions also held in the limit of conductivity holds only in the low-velocity limit which he
perfect conductivity. Kasp&in 1975 correctly objected that actually calculated. Furry’s assertion that he is working with
the large-conductivity limit was not possible in the low- a perfectly conducting wall is inaccurate. Jones’ woxken
velocity perturbation expansion obtained by Boyer and bycorrected for the transcription erjoseems accurate and in
Furry. The low-velocity expansion analysis has also beerthe low velocity limit fits with the actual calculations of
followed by Aguirregabiria, Hernandez, and RiVAsA dif- Shier, of Boyer, and of Furry. His analysis when supple-
ferent approach to the penetration of electric fields in themented by the time-integral calculation of the present paper
low-velocity limit has been given by Tomassone andgives a consistent picture of the penetration of electromag-
Widom!® who find the same retarding force on a passingnetic velocity fields into conductors.

charge as given by Shier and by Boyer. Thus we suggest the followingl) The electric and mag-

It was Jone¥ in 1975 who undertook the most extensive netic velocity fields in a conductor fall off algebraically with
investigation of the penetration problem for velocity fields. distance; all the calculations and suggestions involving a
Jones analyzed the penetration of the magnetic velocitpenetration skin-depth seem misdirecté®) In the low-
fields of a line charge moving perpendicular to its length andvelocity limit, one recovers the expressions obtained by
parallel to a conducting wall without restriction on the speedShier, by Boyer, and by Furry which give a penetrating mag-
of the line charge or the conductivity of the wall. He con- netic field independent of the conductivity of the material.
firmed Boyer’s claim that the asymptotic falloff of the veloc- (3) For a general velocity, the penetrating magnetic velocity
ity fields was algebraic, not exponential, and he obtained th&eld depends upon the conductivity of the material and van-
same low-velocity limit as given by Boyer. However, Jonesishes in the limit of perfect conductivity4) The time of
contradicted some of Boyer’s claims. He noted that his calpenetration of the magnetic velocity field becomes longer as
culations showed that the penetrating magnetic field in genthe conductivity becomes larger, becoming infinite in the
eral depended upon the conductivity of the wall, and indeedimit of perfect conductivity, so that the time-integrated mag-
gave vanishing penetration into a perfect conductor. netic field is independent of the conductivity.

Jones’ Fourier analysis does not lead naturally to the It is curious that this last time-integral condition is pre-
steady-current limit. Indeed, Jones never discussed this limitisely what is needed to maintain the possibility of a classi-
which played such a large role in Boyer and Furry’s think-cal explanatioh'® of the Aharonov—Bohm effect despite the
ing, and Boyer largely ignored Jones’ work in his finite- presence of intervening conductors.
thickness wall calculation of 1996.In order to extend
Jones’ analysis to a full understanding of the penetration
problem, it is of interest to take the steady-current limit of ACKNOWLEDGMENT
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“IT IS WELL KNOWN THAT...”

A few years beford¢ Fermi’'s] death, in a conversation in which | complained about the many
subjects that are supposedly “well known” but in fact are just the opposite, Fermi suggested |
make a note of any such questions | came across—such as validity conditions for Born’s approxi-
mation, subtle questions of B and H in magnetism, signs in the energy expressions in thermody-
namics, innumerable questions related to phases in quantum mechanics, and so on— and that
when he retired, he would write a book giving all the explanations. Unfortunately, this did not
come to pass. It would have been the best-seller in physics. Of course, there are many other
physicists who could write such a book. | hope one of them will oblige, and write it with Fermi’s
clarity and simplicity.

Emilio Segre A Mind Always in Motion—The Autobiography of Emilio Se¢jumiversity of California Press, Berkeley,
1993, p. 231.
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