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According to special relativity, the mass M of a system is
related to its energy content E by E=Mc2. Therefore, many
physicists expect that the momentum P of an electromag-
netic system of energy E and center-of-energy velocity V is
given by P= �E /c2�V corresponding to the relation

p = m�v = � E

c2�v , �1�

which holds for a point mass m moving with velocity v,
where E=m�c2 and �= �1−v2 /c2�−1/2. However, the pres-
ence of external forces of constraint can frustrate this expec-
tation. The most famous example involves the classical
model of the electron for which non-electromagnetic forces
are required for stability, and the electromagnetic energy and
momentum are related by

Pem =
4

3
�Uem

c2 ��V , �2a�

Eem = ��Uem

c2 ��1 +
1

3
V2� , �2b�

where Uem is the electrostatic energy of the charge distribu-
tion in its own rest frame. The situation is sometimes re-
ferred to as the “4/3 problem” of the classical electron.1

Various examples have been given to illustrate the relation
between momentum and energy in electromagnetic systems
and to explain the departure from the expected form given in
Eq. �1�. Here we emphasize that the general connection be-
tween the energy E and momentum P of a relativistic elec-
tromagnetic system is given by2

P =
d

dt
� E

c2X� − �
i

�Fext,i · vi�
ri

c2 , �3�

where X is the system center of energy and the Fext,i are the
external �non-electromagnetic� forces acting on the particles
of mass mi at position ri and moving with velocity vi. Equa-
tion �3� follows from the generator of Lorentz transforma-
tions for classical electron theory in the presence of external
forces.

If there is no net work done by the external forces, the
system electromagnetic energy E is constant, and the time
derivative in Eq. �3� becomes d��E /c2�X� /dt= �E /c2�V,
where V=dX /dt is the velocity of the system center of en-
ergy. Thus if there is no net work done by the external forces,

Eq. �3� becomes

742 Am. J. Phys. 74 �8�, August 2006 http://aapt.org/ajp
P = � E

c2�V − �
i

�Fext,i · vi�
ri

c2 . �4�

There are several familiar cases:
�a� If no external forces are present, Fext,i=0, the summa-

tion term on the right-hand side of Eq. �4� vanishes and the
system momentum is indeed given by the expected relation
�1�. This case is discussed in Refs. 3–5 for charged particles
with purely electromagnetic interactions, but only through
order 1 /c2 because of the complications related to radiation
emission. This electromagnetic interaction between charged
particles through order 1 /c2 is described by the Darwin
Lagrangian.6 In this case, the momentum is given by

P = �
i
�mi�1 +

1

2
vi

2/c2�vi

+ �
j�i

�eiej/�2c2rij���v j + �v j · rij�rij/rij
2 �	 , �5a�

and the energy is

E = �
i
�mi�c2 +

1

2
vi

2� +
1

2�
j�i

eiej/rij	 . �5b�

�b� If external forces are present but there is no work done
by the external forces, Fext,i ·vi=0, then Eq. �4� again reduces
to the form in Eq. �1�. This case occurs when two charged
particles move side-by-side along parallel frictionless rails;
the external forces of constraint are perpendicular to the
common velocity of the particles and so the external forces
do no work. This situation is discussed in Refs. 4, 7, and 8.
In this case the momentum is P= �m1+m2+e1e2 / �c2r12���v
and the energy is E= �m1c2+m2c2+e1e2 /r12��.

�c� If two point charges are separated by a constant dis-
placement parallel to their constant velocity, then the exter-
nal forces of constraint indeed do work, but there is no net
work done by the external forces because equal amounts of
energy are introduced at one charge and removed at the
other. In this case, there is no net work done by the external
forces and thus Eq. �4� is valid. However, the energy is in-
troduced at different points ri and so the summation term in
Eq. �4� does not vanish and accordingly the energy-
momentum connection departs from the naive expectation
given in Eq. �1�. This summation term is given by
−�i=1

2 �Fext,i ·vi�ri /c2=e1e2v / ����, where � is the inter-
particle separation in the rest frame of the two charges. This

2
situation is discussed in Refs. 4 and 8 where to order 1 /c
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the momentum is P=�m1�1+ 1
2v2 /c2�+m2�1+ 1

2v2 /c2�
+2e1e2 / �c2���v; the energy is E=�m1�c2+ 1

2v2�+m2�c2

+ 1
2v2�+e1e2 /��. There is a factor-of-two discrepancy in the

electromagnetic field contributions corresponding to the
presence of the summation term in Eq. �4�.

�d� For the classical model of the electron, as in case �c�,
forces of constraint are present but do no net work so that
Eq. �4� holds. The forces are applied at points with differing
displacements ri in the direction of motion and so the sum-
mation term in Eq. �4� is non-vanishing. The term involving
the external forces gives an additional contribution so that
we find Eq. �2�, which is not in agreement with the form in
Eq. �1�. This case is discussed in Ref. 9.

The difference between the system �mechanical and elec-
tromagnetic� momentum P and the term d��E /c2�X� /dt in-
volving the system �mechanical and electromagnetic� energy
E is sometimes termed “hidden momentum.”10 We see in Eq.
�3� that this hidden momentum is given by −�i�Fext,i ·vi�ri /c2

and involves forces that are external to the electromagnetic
system. The designation of this term as hidden momentum
tells us little about the character of the non-electromagnetic
energy and momentum flow associated with the external
forces.
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In a recent paper Davis formulated the following generali-
zation of the Helmholtz theorem for a time-varying vector
field:1

F =
1

c2

�

�t
��� +

�A

�t
� + � � �� � A� , �1�

where � and A are the Lorenz gauge retarded potentials. The
purposes of this Comment are to point out that Davis’s gen-
eralization is a version of the generalization of the Helmholtz
theorem formulated some years ago by McQuistan2 and
Jefimenko,3 and more recently by the present author,4–6 and
to show that Davis’s expression for the field F is also valid
for potentials in gauges other than the Lorenz gauge.

The generalized Helmholtz theorem states that a retarded
4

F = − �
 d3x�
��� · F�

4�R
+ �
 d3x�

��� � F�
4�R

+
1

c2

�

�t

 d3x�

��F/�t�
4�R

, �2�

where the square brackets denote the retardation symbol, R
= �x−x��, and the integrals are over all space. If we define the
potentials �, A, and C by

� =
 d3x�
��� · F�

4�R
, �3a�

A = d3x�
��� � F�

, �3b�


4�R
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In a recent paper Davis, Lineweaver, and Webb make the counterintuitive assertion that a galaxy
held “tethered” at a fixed distance from our own could emit blueshifted light. This effect was derived
from the simplest Friedmann-Robertson-Walker �FRW� spacetimes and the 	M =0.3, 	
=0.7 case,
which is believed to be a good late time model of our universe. In this paper, we recover their results
in a more transparent way, revise their calculations, and propose a formulation of the tethered galaxy
problem based on radar distance rather than comoving “proper” distance. This formulation helps to
remove the coordinate-dependent nature of the tethered galaxy problem and establishes consistency
between the empty FRW model and special relativity. In the general case, we see that, although the
radar distance tethering reduces the redshift of a receding object, it does not do so sufficiently to
cause the blueshift as found by Davis, Lineweaver, and Webb. We also discuss some important
issues raised by this approach relating to the interpretation of the redshift, velocity, and distance in
relativistic cosmology. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

The homogeneous and isotropic expansion of the universe
is described by Friedmann-Robertson-Walker �FRW�
spacetimes.1 In these spacetimes, we may construct a co-
moving frame in which the spacetime manifold of general
relativity is treated as expanding, while on average matter is
at rest. If we wish to study independent dynamical objects
within an expanding universe, we would like to quantify the
effect of imposing such a cosmological background. We fol-
low Davis et al.2 by considering a galaxy endowed with a
large peculiar velocity that characterizes the velocity devia-
tion from the universal expansion or Hubble flow. The teth-
ered galaxy problem considers the physics of the extreme
case, where a galaxy is endowed with sufficient peculiar ve-
locity so as to cancel the Hubble flow and remain, in some
sense, at a fixed distance from a co-moving observer who
follows the Hubble flow. We study how light from such a
galaxy would be redshifted and propose modifications to the
previous calculations2 that suggest that a receding source
could be significantly blueshifted.

By recasting the problem in a coordinate independent
form, with the radar distance as our measure, we achieve
results that are more intuitive than previous work.2 With this
construction, tethered galaxies in the empty FRW universe
have zero redshift and the problem may be reconciled with
the notion of constant spatial separation in special relativity.

We find that the reduction in redshift is much lower than
that obtained by the previous analysis.2 The effect of impos-
ing the tether is not sufficient to cause the blueshift of an
object in an expanding universe and is only significant at
very large distances, at which we would not expect propor-
tionally large peculiar velocities.

Throughout this paper, we shall refer to the unevaluated
value of z�1 will actually correspond to a blueshift. Simi-
larly, the condition for light to be received with zero redshift
implies that it is observed at its emission frequency, that is, is
neither redshifted nor blueshifted.

In Sec. II, we review the tethered galaxy problem as posed
in Ref. 2. We remove the explicit redshift dependence from
their calculations and recover their results as a combination
of cosmic redshift and the special relativistic Doppler shift.
We are thus able to demonstrate why the peculiar velocity
required to cancel the cosmic redshift does not correspond to
that proposed to tether a galaxy against the Hubble flow.

We then discuss two problems with this approach. First,
we note that the peculiar velocities do not correspond to a
quantity we might regard as a worldline velocity except in
the special relativistic limit. In Sec. III, we construct a gen-
eral relativistic condition on the 4 velocity of a luminous
particle in order that light is received at the fixed spatial
origin without redshift. In Sec. IV, we discuss the limitations
of the distance scale used in the original formulation. Using
this measure, we show that for the Milne model under a
coordinate transformation, the problem does not—as we
might expect—agree with the analogous system in special
relativity. More details of this example appear in Appendix
A.

Motivated by this example, we propose recasting the teth-
ered galaxy problem in terms of a theoretically observable
quantity, the radar distance. We construct this new system of
observers in Sec. V and propose a method for solving the
system in terms of light signals. In Sec. VI, we compare the
phenomenological results with a physical model. We see that
the effects of the tethered galaxy problem persist although
they are comparatively small below scales of 104–105 mega-

parsec �Mpc�.
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II. THE TETHERED GALAXY PROBLEM

We consider FRW spacetimes governed by the metric

ds2 = − c2dt2 + a�t�2�d�2 + �2����d2 + sin2 d�2�� , �1�

where �=sin �, �, or sinh � when the curvature is positively
curved, flat, or negatively curved respectively. Field equa-
tions for such a universe dominated by matter and the cos-
mological constant reduce to the Friedmann equation1 for
a�t�. We express this equation in terms of the normalized
mass density 	M =8�G�M,0 /3H0

2 and the cosmological con-
stant 	
=
 /3H0

2 so that k= �	
+	M −1� characterizes the
curvature

a� =
da

dt
= H0�1 + 	M�1

a
− 1� + 	
�a2 − 1�1/2

. �2�

We follow Ref. 2 and consider radial motion in an FRW
universe. The metric �1� reduces to

ds2 = − c2dt2 + a�t�2d�2. �3�

In Ref. 2, the proper distance D=a� is defined as the metric
distance along the surfaces of homogeneity t=constant. We
henceforth refer to this measure as the co-moving distance
because it is defined in terms of the co-moving coordinate
system. Treating all galaxies as test particles, we invoke
symmetry and choose our galaxy to reside at the origin of the
co-moving radial coordinate �. Other galaxies then move at a
rate,

D� = a�� + a��, �4�

where � denotes differentiation with respect to the cosmic
time t.

A comoving galaxy whose worldline is characterized by
��=0 can thus be considered to retreat from us with velocity
vrec=a��. This recession of co-moving observers is com-
monly referred to as the Hubble flow. Davis et al.2 propose
tethering the galaxy with a peculiar velocity vteth to maintain
a constant comoving distance, that is,

D� = vrec + vteth = 0. �5�

The coordinate �� is therefore chosen to satisfy vrec=−a��.
The authors2 then suggest that we might expect light emitted
by this galaxy to arrive without a change in its wavelength,
as would be the case in Newtonian cosmology. They proceed
to rebut this conjecture by imposing a zero redshift condition
on the worldline of the galaxy and showing that this condi-
tion is not, in general, consistent with the fixed comoving
distance condition. Furthermore, they find nonlinear relations
between the peculiar velocity required to cancel the cosmic
redshift, vpec, and the velocity that acts as a tether to the
galaxy, vteth, and parametrize both as a function of the red-
shift. We now recover their results by a more direct method
and suggest alternatives to this approach.

In general relativity, the cosmological redshift is usually
viewed as an effect of the expansion of space on the wave-
length of light.1 For two co-moving observers in an FRW
universe the redshift of a light signal emitted at tem is given
by

1 + zrec =
a�tobs� . �6�

a�tem�
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We wish to endow the galaxy with a peculiar radial veloc-
ity sufficient to cancel this redshift. Davis et al.2 invoke the
special relativistic Doppler shift1 characterized by

1 + zpec = � c + vpec

c − vpec
�1/2

, �7�

and require the two effects to cancel,

�1 + zrec��1 + zpec� = 1. �8�

If we combine Eqs. �6�–�8�, we obtain

vpec = c�aem
2 − aobs

2

aem
2 + aobs

2 � . �9�

Equation �9� for vpec does not, in general, agree with
vteth=−a�� chosen to cancel vrec by Eqs. �4� and �5�. This
result appears implicitly in Ref. 2. In Appendix A, we re-
cover the relation vpec= f�vteth� analytically for the Milne cos-
mology �	M =	
=0�, flat matter �	M =1,	
=0�, and cos-
mological constant dominated �	M =0,	
=1� FRW
spacetimes.

There are two issues with the above argument. First, there
is a technical problem with applying Eq. �7� to FRW space-
times. The velocity vpec in Eq. �9� does not correspond to a
quantity we might treat as a worldline velocity. This fact can
be seen from the general relativistic argument of Sec. III.
Second, the comoving distance used here may not be the best
measure we can employ to construct the tethered galaxy
problem. In Sec. IV, we shall see that tethering a galaxy at a
fixed value of D does not coincide with what we might ex-
pect from special relativity for an empty FRW spacetime.
Hence, we suggest that this distance measure is misleading
when used in the tethering problem, and we propose a more
suitable alternative in Sec. V.

III. ZERO-REDSHIFT CONDITION

Equation �7� is derived for the Minkowski space of special
relativity1 in which vpec can be interpreted as the velocity
with respect to the inertial frame of a stationary observer. If
we employ this result in a general relativistic spacetime, we
must accept that vpec will not, except in the Minkowski limit,
correspond to the conjectured velocity vteth=−a�� in comov-
ing coordinates. Therefore this method fails to give a mean-
ingful description of zero-redshifted observers in FRW cos-
mology. We now outline the general relativistic version of
this argument from which we can recover the 4 velocity of a
zero-redshifted observer and hence the corresponding world-
line.

In this section, we employ the abstract index notation
commonly used in general relativity �see, for example Sec.
2.4 of Ref. 3�. For our purposes it is sufficient to recognize
vectors with raised indices as covariant and those with low-
ered indices as contravariant.

The frequency of a light signal with wave vector ka mea-
sured by an observer with 4 velocity ua is given by3

� = − kaua. �10�

Therefore, in order that the signal is received at its emission
frequency by a second observer whose 4 velocity is va we
require �obs=�em, and hence

kaua�tobs
= kav

a�t . �11�

em
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We again consider an FRW universe with the observer at
the origin of the co-moving coordinates, ua= �c−1 ,0 ,0 ,0�,
and a radial light signal, ka= �a−1 ,−ca−2 ,0 ,0�. Equation �11�,
with the normalization condition vava=−1, may be solved
for the radial 4 vector va= �ṫ , �̇ ,0 ,0�, where the dot denotes
differentiation with respect to an affine parameter. We thus
obtain the following equation for the gradient of the zero-
redshift worldline in comoving coordinates;

d�

dt
=

v�

vt =
c

aem
�aem

2 − aobs
2

aem
2 + aobs

2 � . �12�

For spacetimes in which the Friedmann equation �2� may
be solved analytically for a�t�, we can integrate back along
the light ray

�em = c

tem

tobs dt

a�t�
, �13�

and write tobs= tobs�tem,�em�. We may then write Eq. �12� as
an ordinary differential equation in �tem,�em� for the world-
line of the zero-redshifted observer. This differential equa-
tion for the Milne case is derived in Appendix A.

IV. DISTANCE MEASURES IN FRW COSMOLOGY

When dealing with relativistic systems, it is often useful to
think in terms of invariant quantities rather than those that
depend on some particular observer, coordinate system, or
frame of reference. The distance D=a�t�� as defined in Sec.
II is a logical choice when working with the comoving co-
ordinates �t ,��. It is used widely in cosmology and is easily
defined in terms of the FRW metric, Eq. �1�, and physically
well motivated because it relates to surfaces of homogeneity.
The following argument also gives a strong indication that it
relates to an observable quantity.

Weinberg4 appealed to a chain of comoving galaxies lying
close together on the line of sight between ourselves and a
distant galaxy in an FRW universe. If we synchronize clocks
to the cosmic time t, observers in each galaxy measure the
distance to their neighboring galaxies. The comoving dis-
tance is the limit of the sum of these distances,

D�t� = 

0

�1 �g��d� = 

0

�1

a�t�d� = �1a�t� . �14�

Rindler1 has suggested that we might view this theoretical
measurement as the realization of many tiny rulers laid down
at some instant in cosmic time. However, we should not
allow ourselves to be carried away by this image. In New-
tonian physics, the idea of laying down a ruler between a
pair of points in space makes perfect sense, regardless of
whether the scales involved make it physically practical. In
general relativity, however, we cannot typically define such
an idealized rigid body to act as a ruler �see for example Ref.
5�; neither could we hope to obtain the infinite number of
observers needed to obtain the limit in Weinberg’s gedanken
experiment. We suggest that the co-moving distance should
be regarded as a measure motivated by the coordinate choice
rather than an observable quantity.

Consider now the tethered galaxy problem in the Milne
universe. This spacetime is the empty case of FRW with zero
cosmological constant �	M =	
=0� for which a�t�=H0t / t0
�A0t. The coordinate transformation
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�T,X� = �ct cosh�A0�

c
�,ct sinh�A0�

c
�� �15�

reduces the line element to that of �1+1� Minkowski space,
ds2=−dT2+dX2. In these coordinates, geodesics take the
form of straight lines and special relativity holds at all scales.
We would expect to define a tethered galaxy here as moving
along one of the timelike geodesics X=constant. Light re-
ceived from such a galaxy would be observed with zero red-
shift. However, the family of observers defined by D�=0
follow trajectories

A0t� = �T2 − X2�1/2tanh−1�X

T
� = constant. �16�

Light from such observers is not received with zero redshift,
and the tethering condition does not correspond to the fixing
of spatial separation that we would expect from special rela-
tivity.

Another possible choice of distance scale would be to
measure metric distance along spatial geodesics. Because our
aim is to obtain a relation with the redshift of a light signal,
we choose a distance measure that is calculated from null
geodesics in the spacetime. As discussed in Sec. V, the radar
distance fulfils this criterion as well as reproducing the ex-
pected results for the tethering problem in the Milne case.

V. TETHERING WITH RADAR DISTANCE

The radar distance1 is calculated by measuring the proper
time between emission at �init and observation at �obs of a
light signal reflected from a distant object

drad =
1

2
c��obs − �init� . �17�

For a co-moving observer �̇=0 in an FRW universe, which is
considered in the tethering problem, and cosmic time t is
equivalent to proper time �. We now proceed to investigate
the dynamics of a galaxy tethered at a fixed radar distance in
the comoving coordinates.

Following Jennison and McVittie6 we consider a light sig-
nal sent from an observer at the spatial origin at time tinit,
received and immediately re-emitted by the second observer
at tem. Our first observer then receives the reflected signal at
tobs. The path of such a light ray in �t ,�� coordinates is illus-
trated in Fig. 1.

We integrate along the light path on the outward and re-
turn journey and obtain

�em = c

tinit

tem dt

a�t�
= c


tem

tobs dt

a�t�
. �18�

To tether the second observer, we require ctinit=ctobs−2drad,
where drad is the constant radar distance. Equation �18� then
provides a simultaneous equation in tem that can be solved
for given values of tobs and drad. We thus recover �em as the
solution to Eq. �18�. For spacetimes in which Eq. �2� can be
solved analytically we obtain a parametric expression for
�� , t� along the tethered worldline. Otherwise, this worldline
can be approximated by interpolating the numerical solutions

��tobs ,drad� , t�tobs ,drad� for fixed drad and variable tobs.
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VI. QUANTIFYING THE EFFECT OVER
INTERGALACTIC SCALES

We now have methods to compute the worldlines of zero-
redshift observers and those tethered by comoving and radar
distance. The next step is to address whether these worldlines
are fundamentally different and how such differences mani-
fest themselves on cosmic scales.

Our assumption in Sec. IV for preferring a radar distance
tether was that it coincides with the zero-redshift condition
for the Milne model whereas a co-moving tether does not. In
general, however, all three conditions produce distinct world-
lines. A simple example of this difference is the matter domi-
nated universe, a�t�� t2/3. We plot this case, along with the
Milne model, in Fig. 2 to show the qualitative differences
between the worldline trajectories.

Having established that there is a phenomenological dif-
ference, we now quantify this difference for the case of gal-
axies at typical astronomical distances tethered by the radar
distance. We consider a flat universe dominated by the cos-
mological constant for which a�t�=eH0�t−t0� and an observer
who receives a signal from a radially tethered galaxy at the
current time, tobs= t0. Hence aobs=a0=1 and if we set �
�aem/aobs, we deduce from Eq. �18� that

aem = �aobs = � =
c

�emH0 + c
�19�

in terms of the co-moving coordinate at emission, �em. We
then follow the method of Sec. V to obtain the worldline
�tem,�em� and hence the velocity

�̇

ṫ
=

d�

dt
=

c�� − 1�
�

. �20�

If we solve the normalization condition vava=−1 for the 4
velocity of the galaxy va= �ṫ , �̇ ,0 ,0�, we find

ṫ =
1

c
���2 − ���−1/2. �21�

Finally we combine Eq. �21� with Eq. �10� and express the
observed redshift as a function of the co-moving separation

Fig. 1. Worldline of the light signal that characterizes an object’s radar
distance.
at emission,
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�em

�obs
=

caobsṫ + aemaobs�̇

aem
, �22�

z =
�em

�obs
− 1 =

1

�� c

H0�em
+ c��2 −

c

H0�em
− c� . �23�

In Fig. 3, we plot this redshift compared to that of a par-
ticle following the Hubble flow at the same emission point.
We see that the redshift difference is comparatively small
below an initial separation of around 104 Mpc. We also note
that the difference between the tethering condition and zero
redshift �horizontal axis� becomes apparent at this scale. This
behavior is typical of the general case where we include
suitable values for the cosmological parameters. In particular
this occurs for the FRW spacetime satisfying 	M =0.3, 	


=0.7, which closely agrees with current observations for the
matter content of our universe �see, for example, Ref. 7�.
Note that in Fig. 3 the co-moving tether is coincident with

Fig. 2. Worldlines demonstrating the phenomenological differences between
the zero-redshift condition and the two notions of tethering. The cosmologi-
cal parameters c, H0, and t0 are set to unity. In the Milne model, the zero
redshift and fixed radar distance worldlines coincide.
the radar distance tether. This is a feature of the 	M =0,
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=1 spacetime and is not generic to FRW spacetimes. For
example, in the Milne case, tethered particles starting to-
gether at t0=104 Mpc would differ in their comoving posi-
tion by around 16% after 5 Gyr.

VII. SUMMARY

We have recast the tethered galaxy problem in terms of the
radar distance and a redshift derived from the 4 velocity. As
a consequence, we now obtain a result for the empty FRW
spacetime that agrees with special relativity. Because all of
our results are expressed in terms of velocities on the galactic
worldlines, we can directly relate these to the redshift effect.
We show that the act of tethering a galaxy against the expan-
sion of an FRW universe results in a greatly reduced redshift
compared to a coincident comoving source. This effect is
only apparent at large astronomical scales and thus is un-
likely to influence nearby systems for which we might expect
to observe peculiar velocities comparable to those resulting
from the Hubble flow. We should note that this formulation
of the tethered galaxy problem does not predict the blueshift
of tethered sources in a expanding FRW universe.
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APPENDIX A: ANALYTICAL EXAMPLES

The following calculations show that the conditions for
the Milne universe for an observer to move at fixed radar
distance from the origin and to emit light with zero redshift

Fig. 3. Redshift of a tethered galaxy compared to that of a galaxy following
the Hubble flow in a universe dominated by the cosmological constant.
Initial separations range from 1 Mpc to 105 Mpc; � is plotted
logarithmically.
are equivalent. This conclusion agrees with the argument of
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Sec. II, where we observed that the Milne universe may be
transformed into a subset of Minkowski space in which the
equivalence can be seen easily. We then recover the results of
Sec. III in Ref. 2. This calculation may be compared with
Appendix C of Ref. 2, where the original assertion that teth-
ered galaxies could appear significantly blueshifted arises.

1. Fixed radar distance in the Milne universe

As in Sec. IV, we consider the empty FRW spacetime in
which the scale factor may be written a�t�=H0t / t0=A0t. A
photon is emitted at tinit, reflected by the tethered galaxy at
tem, and observed at tobs. Along the null geodesics ds2=0 we
characterize the path of a photon by

� = c

tinit

tem dt

a�t�
= c


tem

tobs dt

a�t�
. �A1�

If we require the radar distance to remain fixed for all times,
then

c�tobs − tinit� = 2d . �A2�

We combine Eqs. �A1� and �A2� and obtain the relation

tem
2 = tobs�tobs −

2d

c
� , �A3�

which we substitute into the right-hand side of Eq. �A1�,

� =
c

A0
�ln�tobs� − ln�tem�� . �A4�

If we solve Eq. �A4� for tobs=e�A0/ctem and combine it with
Eq. �A3�, we find an expression t��� for the worldline for the
galaxy tethered by a constant proper distance,

tem =
2d

sinh�A0�/c�
. �A5�

The form of Eq. �A5� is expected from Eq. �15� where we
hold X constant and set 2d=X.

2. Zero redshift in the Milne universe

Equation �12� tells us that

d�

dt
=

c

A0tem
� �A0tem�2 − �A0tobs�2

�A0tem�2 + �A0tobs�2 . �A6�

Equation �13� then gives

� = c

tem

tobs dt

a�t�
=

c

A0
�ln�tobs� − ln�tem�� , �A7�

and hence

tobs = temeA0�/c. �A8�

If we combine these two relations, we find

d�

dt
=

c

A0tem

1 − e2A0�/c

1 + e2A0�/c =
c tanh�A0�/c�

A0tem
, �A9�
which agrees with what we find by differentiating Eq. �A5�.
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3. Analytic forms of vteth= f„vpec… for simple FRW
spacetimes

From Sec. II, we consider vteth=−a��=A0�. We again use
Eq. �A4� and see that

tem = tobse
vteth/c. �A10�

If we substitute Eq. �A10� into Eq. �9�, we obtain the relation

vpec = c
1 − evteth/c

1 + evteth/c = − c tanh�vteth

c
� . �A11�

The results for the flat matter-dominated and cosmological
constant-dominated universes can be recovered by the same
technique:

vpec =
1 − �1 − vteth/c�2

1 − �1 + vteth/c�2 . �A12�
and
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vpec = −
16 − �2 + vteth/c�4

16 + �2 + vteth/c�4 . �A13�
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