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The classical model of the electron in a vacuum is discussed in terms of a simple pro-
cedure for its assembly. The description of the assembly in two different inertial frames
clarifies the traditional Lorentz-transformation difficulties of the model and confirms the
appropriateness of the standard definition of the electromagnetic momentum density
E=(1/4mc)EXB. Recent suggestions for alternative definitions of electromagnetic
momentum are seen to destroy the conceptual simplicity of classical electrodynamics as

revealed in the example.

The proper definition of the linear momentum in
the electromagnetic field provides one of the recur-
ring problems in physics. It appears most fre-
quently in studies of the classical electron model in
avacuum.! After more than a half century of use
of the standard electromagnetic momentum density

—( 1/4mc)E X B, several prominent textbook writ-
ers? have called for a change. I believe this change
is an error. In this paper the assembly of the clas-
sical electron is discussed in a simple example
which clarifies the traditional Lorentz-transforma-
tion difficulties of the classical electron model and
which again confirms the standard definition of
the electromagnetic momentum density as the
correct choice for classical electromagnetic theory.

The classical model of the electron consists of a
spherically symmetric distribution of electric
charge; for simplicity in this discussion, we will
specialize the distribution to a thin spherical shell
of radius a, total charge e, and mechanical mass
m. The naive discussions of the classical model of
the electron consider the mechanical and elec-
tromagnetic aspects of the model while completely
ignoring the additional nonelectromagnetic forces,
the Poincaré stresses, which stabilize the model.
We are interested in clarifying the Lorentz-trans-
formation difficulties of this naive view and hence
will define our system to include only the mechani-
cal and electromagnetic aspects; the nonelec-
tromagnetic stabilizing forces are accordingly
external to our system.

In the unprimed inertial frame S in which the
spherical shell is at rest, the system, consisting of
the shell mass and its electromagnetic fields, has a
total energy
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Utot=Umech+Uem=mcz+e/za (1)

consisting of the mechanical rest energy U pech
=mc? and the electromagnetic energy

1 3.2 2 e’
- -
Uem 2 fd r(E*+B*) 2a (2)

in the electrostatic field. The mass of the sphere is
at rest and there is no magnetic field, B=0, , SO
that the momentum vanishes: Pmt—Pmech+Pem—0
We now wish to examine this same system from
a second primed inertial frame S’ moving with
velocity —V=—iV relatlve to S so that the shell
moves with velocity +V relative to S’. If we
use the traditional definition P=myV with
y=(1—v2/¢*)~'/2 for the momentum associated
with the mechanical mass and the usual definition
g=(1/4mc)EXB for the density of momentum of
the electromagnetic field, then here the total
momentum of our system in S’ is

D D B
Ptot = Pmech +P em

=myV+(1/4mc) [ d*%'E'XB). ()
The evaluation of the integral for the electromag-
netic momentum is carried out in the Appendix
and yields

—-» -

1/41rc)fd E'xB")
=§ YUem /? @)

where U, =.ez/ 2a is the electrostatic energy in (2).
Now if we expected the energy U, and the

momentum ?em in the electromagnetic field to be a
Lorentz four-vector, then we would anticipate
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from a Lorentz transformation between S and S’
—ﬁém:VyUem/cz . (&)

Clearly the discrepancy in the factor of —:— between
the expressions of Egs. (4) and (5) frustrates this
expectation. Why is that -:— there? What is in-
volved? Should we redefine the density of elec-
tromagnetic field momentum so as to remove the
factor of —:—?

The problem of the factor of % appearing in Eq.
(4) is an old one.®> It has been approached from a
number of points of view, but apparently never
from the assembly of the classical electron which
is for me the simplest and clearest. Accordingly, a
simple example of the assembly of a charged
spherical shell as seen in two different inertial
frames is outlined below.

The assembly of the classical model of the elec-
tron is imagined in terms of a thin spherical shell
of total mechanical mass m and charge e sent
rushing inwards from spatial infinity with the ini-
tial kinetic energy mc*(y, —1) at spatial infinity
equal to the final electrostatic potential energy
U, =e%/2a. Since the shell is perfectly spherical-
ly symmetric, there is no radiation loss and all the
initial kinetic energy at spatial infinity is converted
into electrostatic potential energy when the shell
comes momentarily to rest at radius a. Just at this
instant when the spherical shell comes to rest, the
stabilizing forces are applied. These forces prevent
the reexpansion of the shell. The external forces
are applied simultaneously at zero velocity and
hence transfer neither energy nor momentum to
the spherical shell. We have thus assembled our
classical electron as a thin-shell charge of energy

Utotzmc2+e2/2a

and vanishing momentum §t°t=0.

The above description of the assembly of the
classical electron is given from the point of view of
an observer in the frame S in which the total
momentum of the electron is zero. Let us view the
same assembly process from the primed frame S’
moving with velocity —V=—{V relative to the in-
itial frame S. When the massive charged shell has
infinite radius, the electric and magnetic fields E’,
B’ vanish, and all the particle energy and momen-
tum is that associated with mechanical mass. Now
the behavior of noninteracting mechanical mass is
well known in special relativity, and the energy
and momentum transform as a Lorentz four-
vector. Hence, initially the system momentum,
which is all mechanical momentum, is given by

i:;{ot"—-i)’ ;nech(t’—"“ 00 )zvatot/CZ .

As time passes the electromagnetic fields increase
from their initial zero values and part of the
mechanical momentum is converted into elec-
tromagnetic momentum. However, since there are
no external forces on the system for times less than
some ¢, , the total momentum is conserved and

P;ot =i; ;nech + Pém
=VyU/c?, t'<th; 6)

the proper Lorentz transformation properties still
hold. The crucial change comes when the external
stabilizing forces are applied beginning at t'=t3.
In the frame S these stabilizing forces are applied
simultaneously; consequently the net external force
on the system vanishes and there is no change in
the momentum of the system. Contrastingly in the
S’ frame the external stabilizing forces are applied
at different times to different parts of the spherical
shell. Thus starting with the application of the
first force and until the moment in the S’ frame
when all the external forces have been applied,
there is a net external force on the shell, and hence
net momentum is transferred to the shell. The to-
tal momentum of the shell is thus increased from
the value

P fot =v7/Utot /c?

which held before the external forces were applied.
The change in momentum AP’ of the charge shell
as seen in the § " frame is equal to the net impluse
I’ delivered by the external stabilizing forces as
seen in the S’ frame. The net impulse 1’ can be
computed as in the Appendix with the value for
AP'=1"' given by

AP’ =5VyUy/c?. @)

But this is precisely the discrepancy associated
with the factor of % The total system momentum
P2 after all the external stabilizing forces have
been applied has been changed in the S’ frame

from the value in Eq. (6) over to
is ;g?fter)=vatot /C2+ %V'}’Uem /(,‘2
=Vym + 3VyUep/c? (8)

corresponding to the momentum of the mechanical
mass m and exactly the electromagnetic momen-
tum (4) involving the integral over the traditional
field momentum density
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g'=(1/4mc)E'XB" .

The factor of % in the electromagnetic momentum
is by no means extraneous; it is needed crucially to
maintain the validity of the force-momentum bal-
ance in the S’ frame.

A physical particle or system will in general in-
volve contributions to the total momentum from
both the electromagnetic fields and other sources.
In our example the mechanical momentum of the
shell at spatial infinity is converted into elec-
tromagnetic momentum as the shell rushes inward.
As Poincaré pointed out in 1906 only the total en-
ergy and momentum can be expected to satisfy co-
variant behavior when transformed between dif-
ferent inertial frames.

Various authors* have taken a view which is op-
posite to that expressed here and have suggested
that the factor of 4;'- above is an embarrassment
which should be removed. One method for remov-
ing the factor involves redefining the electromag-
netic momentum of the system so that it is not the
integral of the density

£=(1/4mc)EXB
as used above, but rather is’
ﬁem=(y/4#c)fd3x[EX§+V'§E+V-§§
—<V(E2+BY], (9
where
y=(1—v2/c?)~12

and V is the velocity of the inertial frame relative
to some preferred inertial frame.

This redefinition, I believe, is an error. The usu-
al ideas of force, energy, and momentum hold to-
gether properly with the traditional definition and
not with the use of the density function given in
Eq. (9) which eliminates the factor of % The ex-
ample given above is one illustration of this; if the
laws of physics are to hold for all inertial frames
in this open system in which nonelectromagnetic
external forces are applied, then the electromagnet-
ic field momentum should not transform as a
Lorentz four-vector and the factor of % is a con-
sistent reflection of this fact. My opinion is that
these other authors err in taking seriously as a
model for a point charged particle the electromag-
netic energy and momentum behavior of the classi-
cal model of the electron despite the nonelec-
tromagnetic forces required for the classical
model’s stability. The nonelectromagnetic stabiliz-

ing forces play a crucial role and the attempts to
circumvent the role played by these forces by rede-
fining the electromagnetic momentum density only
destroy the conceptual simplicity of the traditional
view of classical electrodynamics.

The typing of the manuscript for this article was
supported by The City University of New York
PSC-BHE Research Award Program, Grant No.
13430.

APPENDIX

1. Electromagnetic momentum for a spherical
charge shell

The fields E’ and B’ needed in the integrand of
Eq. (4) are easily found by Lorentz transformation®
from the electrostatic fields in the S frame. Also
if we change the variables of integration from x’,
y', 2’ at fixed time ' over to x, y, z at ¢’, and use
the spherical symmetry of the fields in S to replace
Ey2~}~E,2 by %EZ, then we have

Bin=(1/4mc) [ d**'(B'xB")
=(i/4me) [ (d*x /) (VY /e NE, +E,2)
=VYUen/c?, (A1)

where U,,, =e?/2a is the electrostatic energy in
Eq. (2).

2. Net impulse of the external forces

The external forces applied at time ¢, in the S
frame are exactly such as to balance the electro-
static forces of the sphere on itself:

feat,T)=—f4 (£,7)0(t —1,) , (A2)

where f* stands for the force density and 0(t—ty) -
is the unit step function. The electromagnetic
force density f% (¢,T) can be obtained from the
symmetric electromagnetic stress-energy-
momentum tensor’ f% = —3,0% where @ in-
volves simply the electrostatic field

E:G(r-a et /r3 .
Thus it follows that
b =(0,(e /4ma®)8(r —a)ef /2a?) . (A3)
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The force density at a space-time point is a
Lorentz four-vector which in the S’ frame has
three-components

f;xtx ZYfextx’ ftl:xty =fexty s
f:’.xtz Zfextz .

By symmetry it is clear that the net impulse &
has a component only in the x direction parallel to
the relative velocities of the frames. Thus the
resultant impluse T (t,) delivered by the external
forces to the shell as measured in the S’ frame is

(A4)

PN o -
V=i [, " dt' [ &% foslt,7).

(A5)
1

Ix Va cos@

= —fya® [ d6sin62m | %

=+ Vye?/2ac?

as required for Eq. (7).

Note added. My analysis above was written with
two aims; first to provide a simple model for the
formation of the classical electron model which I
believe sharply clarifies the famous factor of %,
and second to suggest that the example illustrates
the validity of the traditional definition for
momentum in the classical electromagnetic field
and the inappropriateness of the new definition
which is creeping into the advanced-textbook litera-
ture.®

My views are not shared by Professor F.
Rohrlich. His rebuttal to my discussion appears in
the following paper.’

It should be noted immediately that neither Pro-
fessor Rohrlich nor I now disputes the accuracy of
the other’s calculations; at least I believe this is so.
I do differ with Professor Rohrlich on two asser-
tions of his reply (following paper’) and with his
conclusion on the definition of electromagnetic
momentum providing greatest conceptual clarity.

In the abstract to his article’ Professer Rohrlich
states: “The fundamental question is whether elec-
tromagnetic interactions can be separated from
nonelectromagnetic ones in a Poincaré-invariant
way. This question is answered in the affirma-
tive.” For me this is not at all the fundamental
question. By suitable redefinitions in relatively

t=t, /y—Vr cosf/c?

T )=—fy [ rar [T dosing [” dg [

cosf

Now using the Lorentz invariance of the space-
time volume element dt'd3x'=dt d>x, the Lorentz
transformations for the coordinates, and the ex-
Eressions (A2), (A3) and (A4), the integral for

1 (¢, ) becomes

t=t, /y—Vx/c?

T(t)=—i [d dt y0(t—t,)

t=—

X8(r—a)e*x /8ma’ . (A6)

If the time ¢, is sufficiently large that all the exter-
nal forces have been applied, then the integration
becomes

dt 8(r —a )cosBe?/8mwa*

(A7)

|
moving frames, any quantity can be made Poincaré

covariant, and Professor Rohrlich does this for the
electromagnetic field momentum. I believe the
fundamental question is what definitions are physi-
cally natural and conceptually useful. This differ-
ence in perspective may be one ground for the
disagreement between Professor Rohrlich and me.

In the body of the article’ Professor Rohrlich
writes: “It must be emphasized that the separation
(7) of the momentum into an electromagnetic and
nonelectromagnetic part is not an observable
separation but serves the convenience of the theory.
It corresponds to the separation of the observed
mass into an electromagnetic and nonelectromag-
netic part.” In my view this comment is appropri-
ate for a system, such as a point charge, which
cannot be regarded as composed of constituent
pieces, but it is completely inappropriate for com-
posite systems, such as colliding point charges.

My strong impression is that Professor Rohrlich is
always writing with the former example in mind
and never from the more general perspective, and
on this account he arrives at a conclusion different
from my own.

If we look at the discussions provided by Profes-
sor Rohrlich and me, we see immediately that we
are not discussing the same model but rather dif-
ferent ones. I assemble the charged sphere by



3250 TIMOTHY H. BOYER 25

sending a massive charged shell rushing inward
from infinite radius. Before the application of the
external stabilizing forces, the total energy-
momentum P, =PH ., + P is a four-vector
where the mechanical and electromagnetic momen-
tum in any Lorentz frame have their natural def-
initions at a single time in that frame. Neither the
mechanical part nor the electromagnetic part is
separately a four-vector. This is just as in the col-
lision between point charges where the total
energy-momentum is a four-vector but we do not
expect mechanical and electromagnetic energy-
momentum to form separate four-vectors. I show
that the ideas of momentum balance fit beautifully
and naturally with the traditional definition of
momentum in the classical electromagnetic field.

In contrast Professor Rohrlich assembles his
sphere quasistatically. Thus, as he states above his
Eq. (8), for him the mechanical momentum P}, is
separated and assumed to be a four-vector by itself.
Thus Professor Rohrlich never discusses any inter-
play between mechanical momentum and elec-
tromagnetic momentum, but rather only the inter-
play between electromagnetic momentum and
nonelectromagnetic forces where the unnaturalness
of his definition of electromagnetic momentum for
composite systems is not fully exposed. I believe
the unnaturalness is easily exposed if we think in
terms of Poynting’s theorem.

Classical electromagnetism is a theory of consid-

erable detail and beauty to which Professor
Rohrlich has contributed significantly. In particu-
lar, classical electromagnetism allows the use of
nonelectromagnetic external forces and nonelec-
tromagnetic masses which are connected with the
energy and momentum of the classical electromag-
netic fields through Poynting’s theorem!® and its
momentum analog!! when using the traditional
defintions of energy and momentum. One of the
striking illustrations'? of Poynting’s theorem in-
volves charged particles passing each other with
arbitrary constant velocities, v; <c. The nonelec-
tromagnetic external forces, which are required to
balance the interparticle Lorentz forces and so
keep the particles moving with constant velocity,.
do not satisfy Newton’s third law. Rather the
work done by the external forces, the impulse sup-
plied by the external forces, and the angular im-
pulse supplied by the external forces lead exactly as
a relativistic calculation with no approximation in
every Lorentz frame to the appropriate changes of
energy, linear momentum, and angular momentum
in the electromagnetic field when the traditional
definitions are made for the energy, momentum,
and angular momentum in the electromagnetic
field. I believe the conceptual simplicity of the
traditional definitions of classical electrodynamics
is given yet another striking illustration above in
my example of the assembly of the classical model
of the electron.

IDiscussions of the electromagnetic momentum in con-
nection with the classical model of the electron appear
in the following: H. A. Lorentz, The Theory of Elec-
trons, 2nd ed. (Dover, New York, 1952), Secs. 24—28
(this is a republication of the 1915 edition); E. Fermi,
Z. Phys. 24, 340 (1922); W. Wilson, Proc. Phys. Soc.
London A48, 376 (1936); B. Kwal, J. Phys. Radium
10, 103 (1949); F. Rohrlich, Am. J. Phys. 28, 639
(1960); Phys. Today 15, 19 (1962); Am. J. Phys. 34,
987 (1966); 38, 1310 (1970); J. W. Zink, ibid. 34, 211
(1966); 36, 639 (1968); 39, 1403 (1971); J. W. Butler,
ibid. 37, 1258 (1969); R. Benumof, ibid. 39, 392
(1971).

2F. Rohrlich, Classical Charged Particles (Addison-
Wesley, Reading, Mass., 1965), Sec. 6-3; J. D. Jack-
son, Classical Electrodynamics, 2nd ed. (Wiley, New

York, 1975), Sec. 17.5
3Apparently the factor of % was found first by J. J.

Thomson in 1881. See Rohrlich’s account in Chap. 2
of the work listed in Ref. 2.

4See Ref. 2 and the articles by Rohrlich and Butler in
Ref. 1.

3See, for example, F. Rohrlich, Am. J. Phys. 38, 1310
(1970), Eq. (3.24).

6See Jackson in Ref. 2, p. 552, Eq. (11.148).

7See Jackson in Ref. 2, Section 12.10b.

8See Jackson in Ref. 2, pp. 792 —796.

9F. Rohrlich, following paper, Phys. Rev. D 25, 3251
(1982).

10See Jackson in Ref. 2, pp. 236—237.

lSee Jackson in Ref. 2, pp. 237—239.

12T, H. Boyer, Am. J. Phys. 39, 257 (1971).
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Comment on the preceding paper by T. H. Boyer

F. Rohrlich
Department of Physics, Syracuse University, Syracuse, New York 13210

It is shown that the proposed new noncovariant way of calculating the electromagnetic
energy and momentum of a classical moving charged sphere is neither conceptually
simpler nor physically acceptable. The fundamental question is whether electromagnetic
interactions can be separated from nonelectromagnetic ones in a Poincaré-invariant way.

This question is answered in the affirmative.

Theorists have been pondering the structure of
the electron long before quantum mechanics came
into existence, and in fact already in prerelativistic
times. The classical models of the electron pro-
posed by Abraham and Lorentz near the turn of
the century considered the possibility that the elec-
tron is of purely electromagnetic nature. That
hope has long since been abandoned. However,
while the lack of a full understanding of the stabil-
ity and self-energy of the electron persists to the
present day, much of it is now well understood.

The preceding paper by Boyer? raises some ques-
tions that have been settled some time ago: wheth-
er the electromagnetic energy and momentum of
the Coulomb field surrounding a charged particle
are or are not the components of a four-vector.
Since only uniformly moving charges are con-
sidered, radiation fields do not enter the discussion.
The uniformly moving charge then carries only the
(generalized) Coulomb field which is the Lorentz-
transformed static Coulomb field.

In that paper (in the following referred to as
CME) it is proposed to define the electromagnetic
energy and momentum densities of the (general-
ized) Coulomb field as (we use ¢ =1 and Gaussian
units as in CME)

U=-(E?4B? and §=-LExB (1)

8 47

in every inertial frame such that the total energy
and momentum due to that field are

Pf:fd3xU and —I;e=fd3x§. )

For Coulomb fields these do not transform as the
components of a four-vector. Equations (1) and (2)
are known to be valid for radiation fields where
they do transform as components of a four-vector;
they are also used in nonrelativistic macroscopic
Maxwell theory for open systems; and they date
from prerelativistic days.

25

Two claims are made in CME: (a) that these
equations are demanded by a consideration of the
cohesive forces that are needed to prevent a
charged sphere from expanding, and (b) that these
equations lead to a conceptually simpler theory
than the expressions that are used to define a
Jfour-vector of Coulomb energy and momentum.>*
The present paper proposes to show that both these
claims are unwarranted.

The model of this classical charged particle is a
sphere of radius a, mass m, and uniformly
distributed surface charge e. As a free object it is
a closed system that has a total energy P and
momentum P which transform as components of a
four-vector. If the entire particle were expressible
by means of a field and an associated energy tensor
®"¥ such a tensor would necessarily have to satisfy

3,0%=0 3)

since the system is closed. The momentum defined
by

Pt= [ d0,@0%(x) @

would therefore be independent of the choice of
the spacelike surface o.

The particle however is not purely electromag-
netic but contains an electromagnetic component
(the Coulomb field) and a nonelectromagnetic one.
We shall accept the usual assumption that these
two components are additive in the energy tensors,

o=04"+0,". 5

Neither of the two components of ®*" are
separately conserved,

3,0 = —3,0;+540 . 6)

This means that the decomposition of P* into P¥
and P,

3251 ©1982 The American Physical Society
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Pl f d30, 0% + f0d3aa®',f"
=pi4pl, (7)

involves two surface integrals which are not
separately independent of o. But the sum is in-
dependent of o as long as the same o is chosen in
both integrals. Of special interest will be two
choices of o

(I) o is the surface ¢ =const in the inertial sys-
tem of the observer. Each observer has his own
surface o.

(II) o is the surface tg =const in the (inertial)
rest system of the particle. All observers agree to
use that surface in (7). It must be emphasized that
the separation (7) of the momentum into an elec-
tromagnetic and nonelectromagnetic part is not an
observable separation but serves the convenience of
the theory. It corresponds to the separation of the
observed mass into an electromagnetic and a
nonelectromagnetic part.

A macroscopic charged sphere would be
described by an energy tensor only for its elec-
tromagnetic fields. The nonelectromagnetic com-
ponent would be described by a force density
f*x). In CME this component is broken up into
two parts: a “mechanical” part leading to a
momentum P and a part describing the cohesive
forces that prevent the charged sphere from ex-
panding. The part f% is just the force density
that provides the Poincaré stresses.’ It is not an
external force as stated in CME (end of its second
paragraph) and is in fact not physically separable
from the rest of the nonelectromagnetic com-
ponents in a classical macroscopic body. Without
its inclusion the physical charged particle cannot
possibly be proven to have a momentum (4) that is
a four-vector.

If the momentum P is separated and assumed
to be a four-vector by itself (as done in CME) the
local conservation law (3) is reduced to

0,02 + fEon =0 . ®)

For the sake of argument we follow the scenario of
CME where the charged sphere is produced by
contraction of an infinite sphere but apply the sta-
bilizing f* at all times, contracting adiabatically
to r =a. This ensures a closed system giving

PE=P[ +Pl+ Pl )
P#_f d Ua®ay ) Pcoh_ fV4 d coh
(10)

The integral for P4, is to be taken over a four-
dimensional volume that extends from the space-
like surface o into — 0.8 As emphasized before,
the two o in P¥ and P%; must be the same.

If one now makes the choice (I) as is proposed in
CME, one obtains for the system S in which the
particle moves with velocity V the following. The
electromagnetic momentum is as in CME

Po= [ d*xU=ym, (14377,

P*fdx—’ % ,
where’
= [ dpUp=%.
J xrU =" (12)

Thus, P} is not a four-vector. This is not surpris-
ing since each observer S chooses a different o,
and P! depends on o.

In the rest frame f*, is® (we shall drop the sub-
script coh on f%; from here on)

=0, fr=—270%8(r—a),

e

(13)

o=
4mra?
as also given in CME. The evaluation of P4 in
(10) is now done by transforming from S back to
Sg. If L is the Lorentz transformation that maps
Sk to S then we have
Pon=— [, ,d*f°

V4o

=— d“ny(fR?—V'?R)

=g
VL

In the notation P*=(P° P), therefore,

Phy = —3my(¥3¥) (D) (14)

and with (11)
+Pcoh—“'yme(1»v)=mevu . (D (15)

This is the result obtained in CME in slightly dif-
ferent form. It is argued there that the fact that
the non—four-vector of cohesive momentum thus
obtained just compensates the non —four-vector of
electromagnetic momentum and yields a sum
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which is a four-vector justifies the choice of sur-
face (I). Our presentation shows that this choice
(I) is one of the arbitrary choices one can make,
each choice giving a different unobservable separa-
tion of m,v* into P¥ and P4

We now repeat this calculation for the choice
(IT), where P¥ involves an integration over
o=Lo R:

0 3 a0 3 v-8)—
P)=[,, d0.08= [ dxprU~VS)=ym, ,
Pe"=fd3aa®$’k=f d3ny(Sk+v,®£k)=ymeu" .
Since this calculation exists only in either nonrela-
tivistic approximation’® or in a didactic context in

rather complicated form,! the details are shown in
the Appendix. They were unfortunately omitted in

Ref. 3, p. 90.
The above components lead to
Pl=m*, (II) (16)

which is a four-vector. This is also not surprising
since all observers use the same reference plane og
and integrate over it as they see it.

We next evaluate P£; using the choice (II).
With (13)

0 4, 0
P h— — f d*x
co VyLog

== [, 5zrf2—v-Tr)=0,

— —

_ 4
PCOh__fV4,LaRd .Xf
=—fV4’aR d*xr(YTh+ TR —9v/2)

=0;
the integrals vanish term by term so that

PE, =0 (17

and the cohesive forces contribute nothing to the
momentum and energy of the particle. They give
(trivially) a four-vector. The choice II permits one
to ignore them in most cases.

From this calculation one concludes that the
choice (II) is the simpler choice both conceptually
and formally. In addition there are very good
reasons to have an electromagnetic energy-
momentum four-vector (16) rather than the expres-
sions (11). These are basically that one wants to be
able to formulate a theory of electromagnetic in-
teractions in a Poincaré-invariant way. This is not
entirely possible on the classical level because of
the cohesive forces which are necessarily nonelec-
tromagnetic. But at least they do not need to spoil
the four-vector character of P¥. Indeed, both in
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the Lorentz-Dirac theory and in quantum electro-
dynamics one uses four-vector momenta. All rela-
tivistic quantum field theories also give Poincaré-
invariant separations between electromagnetic and
nonelectromagnetic interactions.

Finally, one should note that a more careful
study of P¥ on the quantum-mechanical level
shows that in the point limit @ —0, P¥ vanishes be-
cause m, vanishes.!! In that point limit therefore
P¥ is trivially a four-vector.

Note added. In a note added to his paper Pro-
fessor Boyer makes a third claim in favor of the
choice I for the specification of o in electromag-
netic momenta: the choice II “is completely inap-
propriate for composite systems, such as colliding
point charges.” I shall demonstrate in the follow-
ing that this claim is also incorrect by deriving the
covariant integral Poynting theorem.

Consider a closed system of N point charges in
mutual electromagnetic interaction. The elec-
tromagnetic energy tensor @-" satisfies

3,0 =Fraj | (18)

where j* is the sum of all point-charge current
four-vector densities

N
Hx)=3 jix),
a=1 . (19)
Hx)=eg [~ 8ulx —z,)vkdr;

z,(7) and v,(7)=2,(r) are the position and velocity
four-vectors of particle a. Equation (18) is the lo-
cal form of Poynting’s theorem.

One can integrate both sides of (18) over a four-
dimensional volume between two spacelike planes
o, and o, later than o,. Using Gauss’s theorem
(Ref. 3, p. 281),

[ ed0, 0= [ d*xFraj, .

Following the choice (I) for o one has d“*x
=d’x dt. If the surfaces o, and o, are separated
infinitesimally,

d ; —
= [ e,d%0, 0= [ d*xFrej, . (20)

Neither side of this equation is a four-vector. If,
on the other hand, one uses choice II one has the
invariant factorization d*x =d3odr where

d’o= —d30“1/5" ,
P being the unit vector in the direction of the to-

tal momentum of the closed system. One now ob-
tains
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d 3 3 .
i feod 0 OH = fd oFH%j,

. .
= e, F*(z,)v,, . (1)

a=1

Both sides of this equation are four-vectors. Both
(20) and (21) are integral forms of Poynting’s
theorem. Professor Boyer is willing to accept only
the form (20). The manifestly covariant form,
however, is (21). It is only the latter which is ap-
propriate for a manifestly covariant formulation of
the theory.

The explicit form of the left-hand sides of (20)
and (21) are as follows: (20) gives the familiar re-
sult with

d’o* =(d>x,dtd*c)
in the notation used in (14) and (15):
d
o [ %0+ [dPo,00 . (22)

The left side of (21) gives, with the covariant
separation

(PP =B 4 P°PP) ,

d’oti=d’eP* , d’ot=drd’ogP?
the less familiar covariant result

d ~
—— [ d0P0+ [ dPofPp0i . 23)

It reduces to (22) in the rest frame of the system.
(21) and (23) give the integral Poynting theorem in
covariant form.

APPENDIX

A well-krlgwn_‘Lorentz boost from the rest frame
transforms Eg, Bg =0 into
—y = - =
E“=E}£ ’ EL=7/ER ’

o w (A1)
=u, =YV XER .

The superscripts || and 1 refer to vectors parallel
and perpendicular to V. Since

EIJQ.2=ER2"_E}|{|2 ,
(VXERP=VAER*—EP),
Ef’=<Eg’,
we have
8nU=E>+B*=E|’+ YER*+ AV X Eg
=E*A(1+57).

If we define
1
me=o— [ dxpEx®, (A2)
then
[ Udxg=m (14372 (A3)
Similarly,

47S =(E} +ER)X (¥ XER )y
=yVEX—y|V|EJER .
The last term integrates to zero so that
[ Sd3xg=37Vm.V . (Ad)

Finally, using the result obtained for U, the dyadic
©® gives

470V =[EE+BB— 5 1(E*+B")]-¥

=(Ef+1ERER | V| —3VERP(14+5VY) .

The Ef; E ﬂ term integrates again to zero. The
remainder is

V[3ER>— 7ER (1 +5V))]
= —VER(sP+ 377 .
Thus,

[O-Vd3xg=—m 75 +7) . (AS)
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