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We discuss the two-capacitor problem found in many introductory physics texts in which there
appears to be missing energy in an ideal, zero-resistance circuit, following the sudden charging of
one capacitor from another. The paradox of this missing energy is traditionally ascribed to
finite-resistance wires, the initial assumption of an ideal circuit and the rapid nature of the charging
notwithstanding. By treating radiative effects in the simplest approximation, we show that the
paradox is really nothing more than an inappropriately applied lumped-parameter model. In
particular, we show that in the zero-resistance circuit, radiation fully accounts for all of the energy
lost. To explore radiative effects in more realistic circuits, we also discuss numerical examples that
include a small resistance and inductance. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

The two-capacitor problem, in which an initially charge
ideal capacitor is suddenly connected to an initially d
charged ideal capacitor by an ideal wire~see Fig. 1!, is found
in many introductory physics texts.1 The paradox of the
problem centers around the missing energy. Specifically,
initial charges of (Q11Q2) on C1 and zero onC2 , we find,
after closing the switch, chargeQ1 on C1 and chargeQ2 on
C2 ~with Q1 /C15Q2 /C2!, so that there is a missing or los
energy,

U lost5U initial2Ufinal5
~Q11Q2!2

2C1
2S Q1

2

2C1
1

Q2
2

2C2
D

5
Q2

2

2

C11C2

C1C2
. ~1!

The customary explanation for the missing energy is that
wires making up the circuit are not ideal, and the energy
dissipated in their very small resistance. More rec
treatments2,3 have taken into account the self-inductance
the wires connecting the capacitors as well.

Although it is certainly true that the wires in a conve
tional circuit do have a small resistance, this explanati
which contradicts the initial assumption of an ideal circuit,
well as more recent discussions,2,3 does not really answer th
underlying question, for they all neglect radiation. Radiat
is crucial to this problem because Kirchoff’s voltage la
~KVL !, on which a lumped-parameter circuit description
based,cannothold at high frequencies where it clearly co
tradicts Faraday’s law. Without some lumped-parameter
ment included to model radiation, the circuit of Fig. 1 do
not correctly represent the physical process of discharg
and charging capacitors. This inadequacy should be imm
ately apparent, for the lumped-parameter description of
1 implies instantaneous charging/discharging, for wh
KVL cannot hold. After all, radiation does dissipate ener
From a pedagogical perspective, an investigation of radia
losses in the two-capacitor problem is therefore useful a
given the recent proliferation of wireless devices such
pagers and cellular telephones, timely.

Our approach will be to treat the radiating circuit in th
simplest possible manner, as a magnetic dipole, from wh
415 Am. J. Phys.70 ~4!, April 2002 http://ojps.aip.org/aj
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we shall find an expression for the radiated power. We w
then show that the radiation may be taken into account b
special, nonlinear resistor, permitting a lumped-parame
treatment with this new element to model radiative loss
That is, the KVL-violating radiation is confined to the ne
element, much as a conventional inductor contains all K
violations in a simpleRLC circuit. We will then apply this
model to the ideal two-capacitor problem for which analy
cal solutions are available, as well as some more reali
examples ofRLC circuits for which only numerical results
are possible. In the former case we shall show that radia
losses alone prevent instantaneous charging/discharging
fully account for all of the missing energy. In the latter cas
we will examine the point at which radiation becomes im
portant in circuits with small, explicit inductances and res
tances.

The paper is organized as follows. In Sec. II we give o
treatment of radiation in the ideal two-capacitor problem.
Sec. III we present the more realistic~that is, nonideal!, nu-
merical results, and in Sec. IV we discuss our conclusion

II. RADIATION IN THE IDEAL TWO-CAPACITOR
CIRCUIT

To model radiation in the simplest two-capacitor circu
~Fig. 1!, in which the resistance and self-inductance of t
circuit are neglected, we treat the radiating circuit as a m
netic dipole,4 but leave the time dependence of the curre
unspecified~instead of assuming a sinusoidal form!. We do
not consider electric dipole radiation because to do so wo
necessitate delving into the details of the nature of the
pacitors. We want to show that even with ideal capacito
treated as lumped-parameter elements, there must still
power loss due to radiation. Instead of including these
tails, we concentrate on the fundamental physics and th
fore also assume that the current is a function of time o
~and not the spatial coordinates!. As shown in Fig. 2, we
model our radiating circuit as a current loop of radiusb cen-
tered at the origin. We measure the fields at pointP ~a dis-
tancer from the origin! and assume the loop to be sma
That is, we take 2pb/c!t, wherec is the speed of light and

t is the characteristic time scale of the current,İ (t)

;I (t)/t, Ï (t);I (t)/t2, etc., and we work in the far-field
415p/ © 2002 American Association of Physics Teachers
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region,t!r /c. For a 5 cmloop the assumption of uniform
current implies that our treatment will be good for switchi
frequencies, s5t21, considerably less thanc/(2pb)
'109 s2151 ~ns!21.

Here we sketch our derivation; further details are given
Appendix A. In the expression for the retarded vec
potential,4

A~r ,t !5
m0

4p E
0

2p I ~ t2r /c!

r
@2sin~w8!ex

1cos~w8!ey#b dw8, r 5ur2r 8u ~2!

at field pointr and source pointr 8, we expand the current to
first-order inb/r ,

1

r
I S t2

r

cD'
1

r
I S t2

r

cD
1

b sin~u!

rc
cos~w2w8! İ S t2

r

cD , ~3!

where

r5r cos~w!sin~u!ex1r sin~w!sin~u!ey1r cos~u!ez ,
~4!

r 85b cos~w8!ex1b sin~w8!ey . ~5!

From Eq.~2! we obtain the far-field expressions forE andB
in spherical coordinates:

Fig. 1. The ideal two-capacitor circuit. InitiallyC1 is charged andC2 dis-
charged, and the switch is closed att50. The wires connecting the capac
tors have zero resistance.

Fig. 2. Radiating loop of radiusb ~see text!. The loop is located at the
origin, far from the field point,P.
416 Am. J. Phys., Vol. 70, No. 4, April 2002
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r

E~r ,t !'2
m0

4

b2 sin~u!

rc
Ï S t2

r

cDew , ~6!

B~r ,t !'
m0

4

b2 sin~u!

rc2 Ï S t2
r

cDeu . ~7!

If we integrate the Poynting vectorS5(E3B)/m0 over the
spherical shell atr, we find the radiated power,

Prad5
pb4

6«0c5 F Ï S t2
r

cD G2

. ~8!

Equation~8! allows us to define an equivalent, nonlinea
lumped-parameter element that we shall callX, having the
same power dissipation as the radiation:

VX5
Prad

I
5K

Ï 2

I
, K5

pb4

6«0c5 . ~9!

We may then use this element in a lumped-parameter cir
to account for radiation~Fig. 3!. We first write KVL for this
circuit,

~V22V1!1VX50, ~10!

and then note that the two capacitors may be combined
an equivalent series capacitance,Cs , by expressing each ca

pacitor voltage in integral form viaI (t)52C1V̇15C2V̇2 ,

Vc5~V22V1!52V1,01
1

Cs
E

0

t

I ~ t8!dt8, ~11a!

which implies that

I ~ t !5CsV̇s , Cs5
C1C2

C11C2
~11b!

for an initial voltageV1,0 on C1 . Using Eqs.~9! and ~11! to
rewrite Eq.~10! in termsVc , the equivalent series capacito
voltage, we obtain the nonlinear differential equation,

V̈c
21

1

KCs
V̇cVc50 ~12!

which, rather surprisingly, has an analytical solution

Vc5Aest, ~13a!

where the eigenvalue equation

sFs51
1

KCs
G50 ~13b!

is found by substituting Eq.~13a! into Eq.~12!. If we ignore
the trivial case (s50), we have the nontrivial solutions,

s5S 1

KCs
D 1/5

ei ~2n11!p/5 ~n50,1,2,3,4!. ~14!

Fig. 3. Two-capacitor circuit with an equivalent lumped-parameter elem
X, to model power loss due to radiation. The wires are still assumed to h
zero resistance, soX is the only dissipative element in the circuit. The switc
is closed att50.
416Boykin, Hite, and Singh
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Observe that Eq.~12! is a nonlinear equation so that a line
combination of its solutions isnot generally a solution~see
Appendix B!. We must therefore chooseoneof the solutions,
Eq. ~14!, of which n52 is the only physically admissible
one, because the others givecomplex capacitor voltages
Thus, if we enforce the initial condition from Eq.~11!, we
obtain

Vc~ t !52V1,0e
st, ~15a!

with

s52S 1

KCs
D 1/5

. ~15b!

We emphasize that Eq.~15! demonstrates the finite tim
scale of the charging/discharging process. Contrary to
lumped-parameter description without radiation, t
charging/discharging isnot instantaneous, but rather is lim
ited by the radiation resistance.

Using Eq. ~15! we can readily show that the radiatio
accounts for all of the missing energy. From Eqs.~15! and
~11!, we find the current, which, with Eq.~8!, gives the ra-
diated power. If we integrate the power crossing the spher
shell atr from t5r /c ~the arrival time of the switching sig
nal! to infinity, we have

Wrad5E
r /c

`

Praddt5KE
r /c

` S 1

KCs
DCs

2V1,0
2 S 1

KCs
D 1/5

3expF22S 1

KCs
D 1/5S t2

r

cD Gdt, ~16!

Wrad5
1

2
CsV1,0

2 5
1

2

C1C2

C11C2
V1,0

2 . ~17!

On the other hand, from the initial and final states of t
circuit,

V1,0
2 5S Q11Q2

C1
D 2

5Q2
2S 1

C1
1

1

C2
D 2

5Q2
2S C11C2

C1C2
D 2

,

~18!

so that from Eq.~1!,

U lost5
Q2

2

2

C11C2

C1C2
5

V1,0
2

2

C1C2

C11C2
5Wrad. ~19!

Hence, even in the simplest treatment, radiation accounts
all of the lost energy and the paradox is explainedwithout
invoking finite-resistance wires.

III. RLC CIRCUIT: NUMERICAL EXAMPLES

It is instructive to consider a more realistic, nonideal, c
cuit having in addition to the two capacitors and radiati
resistance, a real resistor,R, and a real self-inductance,L ~see
Fig. 4!. Collapsing the two capacitors into a single ser
equivalent so thatI (t)5CsV̇c and applying KVL around the
loop with VX given by Eq.~9!, we find the nonlinear differ-
ential equation

V̂c
21

L

K
V̈cV̇c1

R

K
V̇c

21
1

KCs
V̇cVc50, ~20!

which has exponential solutions as in Eq.~13a! yielding a
corresponding characteristic polynomial
417 Am. J. Phys., Vol. 70, No. 4, April 2002
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s51
L

K
s21

R

K
s1

1

KCs
50. ~21!

All quantities have the same meanings as in Sec. II and
before, we omit the trivial cases50. In our discussions it
will be useful to distinguish some limiting cases: theRLC
circuit,

LV̈c1RV̇c1
1

Cs
Vs50, ~22a!

s21
R

L
s1

1

LCs
50, ~22b!

the nonlinear, radiation-limitedRL circuit,

V̂c
21

L

K
V̈cV̇c50, ~23a!

s31
L

K
50, ~23b!

and the simpleRC circuit,

V̇c1
1

RCs
Vc50, ~24a!

s1
1

RCs
50, ~24b!

where the characteristic polynomial Eq.~23b! again omits
the trivial s50 case. We shall also find useful the concept
equivalent radiation resistance,VX5RradI . Because the ex-
ponential solutions are as in Eq.~13a!, Eq. ~9! indicates that
in the ~generalized! frequency domain, the physically mean
ingful definition is

Rrad5Ks4. ~25!

Observe that this form is the same as for the radiation re
tance of a sinusoidially driven magnetic dipole,Rrad

;(kb)4, where k is the wave number.4 Finally, note that
because the characteristic polynomial, Eq.~21!, is fifth order,
only numerical solutions are generally available~unlike the
simple, trivially factorable, fifth-order polynomial of Sec. II!.

As a first case, consider a simplified version of Fig. 4
radiatingRCcircuit, with characteristic polynomial given b
Eq. ~21! with L50. The loop radius is taken to be 5 cm an
the series capacitance is 100mF. In Fig. 5 we plot both the
decay constant,s, and the ratio of radiation resistance to re
resistance~which also is the ratio of radiated power to res
tor power! versus the real resistance,R. Observe that forR
>0.001V, s'21/RC, that is, the usualRC decay. In this
limit the decay rate is so slow that the nonlinear~that is,

Fig. 4. A more realisticRLC circuit whereL models the self-inductance o
the loop andR models the resistance of all nonideal elements~wires, induc-
tor, or capacitors!. The switch is closed att50.
417Boykin, Hite, and Singh
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radiative! term of Eq.~20! or Eq. ~21! contributes little. At
the opposite extreme, forR<1 mV, the decay saturates ou
at its radiation-limited value,s'20.14~ns!21. @For our pur-
pose of discerning qualitative behavior,usu is sufficiently
smaller thanc/(2pb)'1 ~ns!21 so that our approximation
hold.# Perhaps the most important qualitative feature of
graph in Fig. 5 is that it shows that the switching does
happen instantaneously, because including the radia
power loss results in a nonlinearRC circuit.

Three other interesting cases involve radiatingRLC cir-
cuits, for which the roots of the characteristic equation the
selves are of the most importance. It is especially inform
tive to see how the solutions of Eq.~21! can exhibit behavior
characteristic of simpler circuits. Consider first the case o
5 cm loop withR50, L51 mH, C51 mF; the roots of Eq.
~21! are

s5$218.712,27.633102176 i0.001,

9.366 i16.20% ~ns!21. ~26!

The large-magnitude complex-conjugate pair and the la
magnitude real root are approximate solutions of the non
ear, radiation-limitedRL circuit, Eq. ~23!. The complex-
conjugate pair is physically inadmissible~each solution is
complex! because Eq.~23! is nonlinear. The approximat
real solution is not excited in our examples because we c
sider the case with nonzero initial capacitor voltage and z
initial inductor current. The small-magnitude comple
conjugate pair is simply the solution for a conventionalRLC
circuit with a resistance given byRrad5Ks4'K(1/ALC)4.
In other words, because the resulting circuit is severely
derdamped, the larger~generalized! frequency is the oscilla-
tion, not the decay of the envelope, and the larger oscilla
determines the radiation resistance. Because even the fa
phenomenon~here the oscillation! is rather slow, the nonlin-
ear term is negligible, and we recover the limit of the simp
RLC circuit, Eq. ~22!.

Fig. 5. Plot of the decay constant,s ~linear scale!, and the ratio of radiation
resistance to real resistance~log scale! versus the real resistance,R, for an
RC circuit; the loop radius is 5 cm and the series capacitance is 100mF.
Arrows indicate the vertical axis which is to be read for each plot. Note
the resistance ratio is also the ratio of radiated power to power dissipate
the real resistor. For largerR the circuit becomes essentially a convention
RC circuit, while for smallerR the radiation limits the decay rate.
418 Am. J. Phys., Vol. 70, No. 4, April 2002
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Another interesting case is that of a 10 cm loop withR
510 mV, L51 nH, C51 mF, for which the roots are

s5$20.743,26.22310266 i3.1631022,

0.3726 i0.643% ~ns!21. ~27!

As before we see the inadmissible, complex solution p
and the real root from the radiation-limitedRL circuit. Here,
while the circuit is again highly underdamped~the oscillation
1/ALC largely determiness!, the radiation and real resis
tances are comparable,Rrad'K(1/ALC)4'2.4431026 V,
so that the decay constant is given by2(R1Rrad)/(2L).
~Note the very small values ofR and L needed to achieve
comparable radiation and real resistances.! If in this same
loop we instead useR510 V, L51 nH, C51 mF, we re-
cover the usualRC circuit, Eq. ~24!, because the roots are

s5$21.0031024,21.016 i0.955,1.016 i1.06% ~ns!21,
~28!

where we see that the real solution corresponds quite clo
to 1/RC. ~The radiation resistance here is truly negligib
and the conventional lumped-parameter treatment is fully
equate.!

IV. CONCLUSIONS

Motivated by the realization that a conventional, lumpe
parameter description is inadequate for any circuit with r
idly varying currents and voltages, we have added a sim
fied treatment of radiation losses to the two-capac
problem found in many introductory physics and electrom
netism texts. With our model we have shown that power l
due to radiation prevents instantaneous charging/dischar
and in fact accounts for all of the missing energy in t
textbook problem, thus resolving the paradoxwithout invok-
ing nonideal, finite-resistance wires. Finally, we have a
investigated some more realistic circuits having small re
tances and self-inductances along with the radiative equ
lent circuit element, and have recovered the correct lump
parameter~that is, low-frequency! limits.

APPENDIX A: DETAILED DERIVATION OF THE
RADIATED POWER

We begin with the expression for the retarded vec
potential,4

A~r ,t !5
m0

4p E
0

2p I ~ t2r /c!

r
@2sin~w8!ex

1cos~w8!ey#b dw8, r 5ur2r 8u ~A1!

at field pointr and source pointr 8. Next, we find the expan-
sions forr and 1/r to first-order inb/r using Eqs.~4! and~5!:

r5Ar 222r•r 82r 82

5rA12
2b

r
sin~u!cos~w2w8!1b2

'r 2b sin~u!cos~w2w8!, ~A2!

1

r
'

1

r
1

b

r 2 sin~u!cos~w2w8!, ~A3!

t
by
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so that to first order inb/r ,

1

r
I S t2

r

cD'
1

r
I S t2

r

cD1
b sin~u!

rc
cos~w2w8! İ S t2

r

cD
1

b

r 2 I S t2
r

cD sin~u!cos~w2w8!. ~A4!

In the far-field region the propagation delay to the field po
is much longer than the switching time,t, that is, İ (t)
;I (t)/t with t!r /c. The last term of Eq.~A4! is negligible
compared to the second, because its size isb/r 2 and that of
the second isb/(rct); thus their ratio isct/r !1. If we drop
the last term and substitute Eq.~A4! into Eq. ~A1!, we have
in spherical coordinates

A~r ,t !'
m0

4

b2 sin~u!

rc
İ S t2

r

cDew . ~A5!

Equations~6! and~7! follow directly from using Eq.~A5! in
E52]A/]t andB5“3A, retaining only the slowly decay
ing terms of order 1/r . From these equations we obtain th
Poynting vector

S~r ,t !5
1

m0
E~r ,t !3B~r ,t !

5
1

16«0

b4

r 2c5 Fsin~u! Ï S t2
r

cD G2

er , ~A6!

which, when integrated over the spherical shell at radiur,
yields the powerradiatedby the loop

Prad5E
0

2pE
0

p

S•er r
2 sin~u!du dw5

pb4

6«0c5 F Ï S t2
r

cD G2

.

~A7!

We emphasize that Eq.~A7! refers to the powerradiated~by
the loop!, while the usual expression

P52 R
DV

S•da ~A8!

refers to the powerabsorbed~by the charges within a volum
V bounded by the closed surfaceDV!.

APPENDIX B: NONLINEAR EQUATIONS AND
COMPLEX-CONJUGATE PAIR SOLUTIONS

Our nonlinear homogeneous differential equations all h
real coefficients so it follows that their solutions are eith
real functions or complex-conjugate pairs, because ifV is a
solution so isV* . Although a single complex solution is
obviously inadmissible asreal capacitor voltage, it might be
argued that areal linear combination of complex-conjugat
solutions could be taken as a solution of a nonlinear diff
ential equation.~Were this the case, it would imply that th
real and imaginary parts of a complex solution weresepa-
rately solutions of the nonlinear differential equation.! Here
we show for the two nonlinear equations which admit a
lytical solutions, Eqs.~12! and~23a!, this isnot the case, so
that complex solutions must be discarded altogether.

Direct substitution shows that Eqs.~12! and ~23a! admit
analytical solutions of the form

Vc~ t !5A exp@snt#. ~B1!
419 Am. J. Phys., Vol. 70, No. 4, April 2002
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The solutions of Eq.~12! are

sn5S 1

KCs
D 1/5

ei ~2n11!p/5 ~n50,1,2,3,4! ~B2!

with complex-conjugate pairsn50,4 andn51,3. The solu-
tions of Eq.~23! are

sn5S L

K D 1/3

ei ~2p11!p/3 ~n50,1,2! ~B3!

with complex-conjugate pairn50,2. The pairings follow by
shifting phases by 2p:

ei9p/55e2 ip/5ei10p/55e2 ip/5ei2p5e2 ip/5, ~B4!

ei7p/55e2 i3p/5, ~B5!

ei5p/35e2 ip/3. ~B6!

An arbitrary complex solutionV6(t) of Eq. ~12! or ~23a!
therefore has the form

V6~ t !5Ae6 ib exp@s6t#, V2~ t !5V1* ~ t !, ~B7!

s65w6 iv, s25s1* , ~B8!

where the constantsA, b, s, and v are real ands1 is, re-
spectively, given by Eq.~B2! with n50, 1 or Eq.~B3! with
n50.

We next construct a general real candidate solution fr
Eq. ~B7! by taking a linear combination:

Vc~ t !5V1~ t !1V2~ t !, ~9!

where the generality follows from the fact thatA andb are
arbitrary. It is useful to write the derivatives of Eq.~B9! in
two different forms

dnVc

dtn
5

dnV1

dtn
1

dnV

dtn
5~s1!nV1~ t !1~s1* !nV1* ~ t !.

~B10!

Using this expression, we find for the first term of either E
~12! or Eq. ~23a!

V̂c
25V̂1

2 1V̂2
2 12V̂1V̂25V̂1

2 1V̂2
2 12A2estus1u6.

~B11!

If we substitute Eqs.~B8!–~B11! into Eq. ~12!, we find

V̂c
21

1

KCs
V̇cVc5H V̂1

2 1
1

KCs
V̇1V1J

1H V̂2
2 1

1

KCs
V̇2V2J 1A2e2stS 1

KCs
D

3F2S 1

KCs
D 1/5

1s11s1* G . ~B12!

Now becauseV1 and V2 are separately solutions of Eq
~12!, it follows that the terms in curly braces above are ea
zero. Further simplifying Eq.~B12!, we conclude that a rea
linear combination of complex-conjugate solutions of E
~12! is not itself a solution because

V̂c
21

1

KCs
V̇cVc52A2e2stS 1

KCs
D 6/5F11cosS 2n11

5
p D G

Þ0 ~n50,1!. ~B13!
419Boykin, Hite, and Singh
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Therefore only the real solution,n52 in Eq. ~B2!, is al-
lowed. Similarly, following the procedures above for E
~23a! leads to

V̂c
21

L

K
V̈cV̇c5H V̂1

2 1
L

K
V̈1V̇1J 1H V̂2

2 1
L

K
V̈2V̇2J

13A2e2stS L

K D 2

, ~B14!

where once again the terms in curly braces are zero.
above, we see that a real linear combination of compl
conjugate solutions isnot itself a solution because
420 Am. J. Phys., Vol. 70, No. 4, April 2002
s
-

V̂c
21

L

K
V̈cV̇c53A2e2stS L

K D 2

Þ0. ~B15!

Thus, only the real solution,n51 in Eq. ~B3!, is allowed.
1See, for example, D. Halliday, R. Resnick, and J. Walker,Fundamentals of
Physics, 4th ed.~Wiley, New York, 1993!, p. 750.

2R. A. Powell, ‘‘Two capacitor problem: A more realistic view,’’ Am. J
Phys.47, 460–462~1979!.

3K. Mita and M. Boufaida, ‘‘Ideal capacitor circuits and energy conserv
tion,’’ Am. J. Phys.67, 737–739~1999!.

4D. J. Griffiths, Introduction to Electrodynamics, 2nd ed.~Prentice-Hall,
Englewood Cliffs, NJ, 1989!, pp. 396–399, 407–411.~Griffiths assigns
the general magnetic dipole derived here as Problem 9.14 but does
treat it in the text.!
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