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We discuss the two-capacitor problem found in many introductory physics texts in which there
appears to be missing energy in an ideal, zero-resistance circuit, following the sudden charging of
one capacitor from another. The paradox of this missing energy is traditionally ascribed to
finite-resistance wires, the initial assumption of an ideal circuit and the rapid nature of the charging
notwithstanding. By treating radiative effects in the simplest approximation, we show that the
paradox is really nothing more than an inappropriately applied lumped-parameter model. In
particular, we show that in the zero-resistance circuit, radiation fully accounts for all of the energy
lost. To explore radiative effects in more realistic circuits, we also discuss numerical examples that
include a small resistance and inductance. 2@2 American Association of Physics Teachers.
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[. INTRODUCTION we shall find an expression for the radiated power. We will
then show that the radiation may be taken into account by a
The two-capacitor problem, in which an initially charged special, nonlinear resistor, permitting a lumped-parameter
ideal capacitor is suddenly connected to an initially dis-treatment with this new element to model radiative losses.
charged ideal capacitor by an ideal wisee Fig. 1 is found  That is, the KVL-violating radiation is confined to the new
in many introductory physics textsThe paradox of the element, much as a conventional inductor contains all KVL
problem centers around the missing energy. Specifically, foviolations in a simpleRLC circuit. We will then apply this
initial charges of Q,+Q,) on C; and zero orC,, we find, model to the ideal two-capacitor problem for which analyti-
after closing the switch, charg@, on C,; and chargeQ, on  cal solutions are available, as well as some more realistic
C, (with Q;/C;=Q,/C,), so that there is a missing or lost €xamples ofRLC circuits for which only numerical results

energy, are possible. In the former case we shall show that radiative
5 5 losses alone prevent instantaneous charging/discharging and
_ (QitQ? [Q1  Q; fully account for all of the missing energy. In the latter case,
Ulost_UinitiaI_UfinaI__zcl “l2c; + 2C, we will examine the point at which radiation becomes im-
) portant in circuits with small, explicit inductances and resis-
Q5 C,+C,y tances.
=5 : @ The i ized as follows. In Sec. Il i
2 C,C, paper is organized as follows. In Sec. Il we give our

treatment of radiation in the ideal two-capacitor problem. In

The customary explanation for the missing energy is that th&ec. 11l we present the more realistitat is, nonidea| nu-
wires making up the circuit are not ideal, and the energy isnerical results, and in Sec. IV we discuss our conclusions.
dissipate%gin their very small resistance. More recent
treatments® have taken into account the self-inductance of
the wires connecting the capacitors as well. Il. RADIATION IN THE IDEAL TWO-CAPACITOR

Although it is certainly true that the wires in a conven- CIRCUIT
tional circuit do have a small resistance, this explanation, To model radiation in the simplest two-capacitor circuit
which contradicts the_initial gssumption of an ideal circuit, aS(Fig. 1), in which the resistance and self-inductance of the
well as more recent discussiohdoes not really answer the ircyit are neglected, we treat the radiating circuit as a mag-
underlying question, for they all neglect radiation. Radiationnegic dipole? but leave the time dependence of the current
is crucial to this problem because Kirchoff's voltage law ,nspecified(instead of assuming a sinusoidal forrive do
(KVL), on which a lumped-parameter circuit description isyqt consider electric dipole radiation because to do so would
basedcannothold at high frequencies where it clearly con- pecessitate delving into the details of the nature of the ca-
tradicts Faraday’s law. Without some lumped-parameter elésaitors. We want to show that even with ideal capacitors,

ment included to model radiation, the circuit of Fig. 1 doeSyraateq as lumped-parameter elements, there must still be a
not correctly represent the physical process of dischargingqver joss due to radiation. Instead of including these de-

and charging capacitors. This inadequacy should be immedijis e concentrate on the fundamental physics and there-
ately apparent, for the lumped-parameter description of Fige,re a1s0 assume that the current is a function of time only
1 implies instantaneous charging/discharging, for which(and not the spatial coordinajesAs shown in Fig. 2, we
KVL cannot hold. After all, radiation does dissipate energy. odel our radiating circuit as a current loop of radiusen-

From a_pedagogical pergpective, an investigation of radiati\:fered at the origin. We measure the fields at p&ira dis-
losses in the two-capacitor problem is therefore useful andgcer from the origin and assume the loop to be small.

: Shat is, we take Zb/c<r, wherec is the speed of light and
pagers and cellular telephones, timely. )

Our approach will be to treat the radiating circuit in the 7 IS the characteristic time scale of the curremf)
simplest possible manner, as a magnetic dipole, from which-1(t)/7, 1(t)~1(t)/7?, etc., and we work in the far-field
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Fig. 1. The ideal two-capacitor circuit. Initiallg, is charged an, dis-

charged, and the switch is closedtat0. The wires connecting the capaci-

tors have zero resistance.

region, 7<<r/c. For a 5 cmloop the assumption of uniform
current implies that our treatment will be good for switching

frequencies, s=7 1,

~10° s t=1(ny L.

considerably less thanc/(2wb)

Here we sketch our derivation; further details are given in

Fig. 3. Two-capacitor circuit with an equivalent lumped-parameter element,
X, to model power loss due to radiation. The wires are still assumed to have
zero resistance, 9is the only dissipative element in the circuit. The switch

is closed at=0.
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Appendix A. In the expression for the retarded vector|f we integrate the Poynting vect@= (EX B)/u, over the

potential?

po (27I(t—<lc)
A(r,t)=ﬁf0 ———[~sin(e")e,
s=r—r'|

+cog ¢’ )g]bde’, )

at field pointr and source point’, we expand the current to

first-order inb/r,

ACHEE

b sin( .
+ S:I’;( )Coigo—qo’)l(t—g), 3
where
r=r cog ¢)sin(6)e+r sin(¢)sin(d)e,+r cog b)e,,
4
r'=bcog¢’)e+bsin(¢’)e,. (5)

From Eq.(2) we obtain the far-field expressions farandB
in spherical coordinates:

Fig. 2. Radiating loop of radiub (see text The loop is located at the
origin, far from the field pointpP.
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spherical shell at, we find the radiated power,
B wb* . r\]2
rad— 68005 c
Equation(8) allows us to define an equivalent, nonlinear,
lumped-parameter element that we shall ¢§llhaving the
same power dissipation as the radiation:
P 2 wh*
Vx: rad: - _ .
| | 680C
We may then use this element in a lumped-parameter circuit
to account for radiatioriFig. 3). We first write KVL for this
circuit,
(Vo—V1)+Vx=0, (10
and then note that the two capacitors may be combined into
an equivalent series capacitan€g, by expressing each ca-
pacitor voltage in integral form via(t)=—C;V;=C,V,,

P | (8

©

VCZ(VZ—Vl)z—Vlo—i—iftl(t’)dt’, (113
0" cJo
which implies that
(1)=CVy, Com 222 (11b
C,+C,

for an initial voltageV, o on C;. Using Egs.(9) and(11) to
rewrite Eqg.(10) in termsV,, the equivalent series capacitor
voltage, we obtain the nonlinear differential equation,

V24 K_CSVCVC: 0 (12
which, rather surprisingly, has an analytical solution
V =Ae", (133
where the eigenvalue equation
5.4 _
S| s KC. 0 (13b)

is found by substituting Eq13a into Eq.(12). If we ignore
the trivial case $=0), we have the nontrivial solutions,

1 1/5.
s= ) e@ntims  (1=0,1,2,3,9. (14)

KCs
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Observe that Eq.12) is a nonlinear equation so that a linear

L + Vx -
combination of its solutions iaot generally a solutior{see / R
Appendix B. We must therefore choosmeof the solutions, . O MW (YYY\ i X }— .
Eq. (14), of which n=2 is the only physically admissible . T .
one, because the others gigemplexcapacitor voltages. Y1___ C1 C____W»
Thus, if we enforce the initial condition from Egll), we ~
obtain
V(t)=—V; OeSt, (15a Fig. 4. A more realistilRLC circuit whereL models the self-inductance of
. ' the loop andk models the resistance of all nonideal eleménitises, induc-
with tor, or capacitors The switch is closed at=0.
1 1/5
=— . 1
° (KCS) (15D
i inite i L R
We emphasize that Eq15) demonstrates the finite time St — 24 st 0. 21)

scale of the charging/discharging process. Contrary to the K K KCS:
lumped-parameter description without radiation, the

charging/discharging isot instantaneous, but rather is lim- . - . . .
ging ging before, we omit the trivial casse=0. In our discussions it

ited by the radiation resistance. ; T Lo i
Using Eq. (15 we can readily show that the radiation WI|| be useful to distinguish some limiting cases: tR&C

All quantities have the same meanings as in Sec. Il and as

accounts for all of the missing energy. From E€E5) and ~ Circuit,
(12), we find the current, which, with Ed8), gives the ra- - . 1
diated power. If we integrate the power crossing the spherical LV +RV.+ C—Vs= 0, (229
shell atr from t=r/c (the arrival time of the switching sig- s
nal) to infinity, we have , R 1
- =) 1 1\ SISt e~ (22b)
_ _ 2y/2
Wrag= ,,Cpraddt KLC( KCS) CSV”’( KCS) the nonlinear, radiation-limite®L circuit,
L\ V24 SVe=0 (239
XeX[{-Z(KCS) (t—E”dt, (16 ¢ K VeVeT Y
1 1 CiC, s b
Wradzzcsvi 0o C,+C, Vio- (17) s K 0. (239
On the other hand, from the initial and final states of the@nd the simple&RC circuit,
circuit, ) 1
V2 B Q1+Q2 2_ ) 1 . 1 2_ ) C1+C2 2 VC+R_CSVc:01 (248)
1,0 Cl T2 Cl Cz _QZ C]_CZ ’ 1
18 _=
(18) st c 0, (24b)

so that from Eq(1),
2 CiC, 2 CtCp
Hence, even in the simplest treatment, radiation accounts f

all of the lost energy and the paradox is explaimgthout
invoking finite-resistance wires.

where the characteristic polynomial E@3b) again omits
the trivial s=0 case. We shall also find useful the concept of
equivalent radiation resistancéy=R,,J. Because the ex-
&onential solutions are as in E4.39), Eq. (9) indicates that

In the (generalizedlfrequency domain, the physically mean-
ingful definition is

Riag= Ks*. (25)

Observe that this form is the same as for the radiation resis-
ll. RLC CIRCUIT: NUMERICAL EXAMPLES tance of a sinusoidially driven magnetic dipol®,.q
~(kb)*, wherek is the wave numbé.Finally, note that
because the characteristic polynomial, E{), is fifth order,
only numerical solutions are generally availaflmlike the

(19

It is instructive to consider a more realistic, nonideal, cir-
cuit having in addition to the two capacitors and radiation

resistance, a real resistét, and a real self-inductance,(see simple, trivially factorable, fifth-order polynomial of Sec).ll
Fig. 4. Collapsing the two capacitors into a single series As a first case, consider a simplified version of Fig. 4, a

equivalent so thal(t) = CsV, and applying KVL around the - radiatingRC circuit, with characteristic polynomial given by
loop with Vy given by Eq.(9), we find the nonlinear differ- Eq. (21) with L=0. The loop radius is taken to be 5 cm and

ential equation the series capacitance is 108. In Fig. 5 we plot both the
L R. 1 decay constans, and the ratio of radiation resistance to real
V§+ RVCVCJF Kv§+ K_CSVCVC:O’ (20 resistancdgwhich also is the ratio of radiated power to resis-

tor powe) versus the real resistand®, Observe that foR
which has exponential solutions as in E3a yielding a =0.00X2, s=~—1/RC, that is, the usuaRC decay. In this
corresponding characteristic polynomial limit the decay rate is so slow that the nonlind#rat is,
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000 gy Another interesting case is that of a 10 cm loop WRh

! =10 uQ, L=1nH, C=1 uF, for which the roots are
* e s={—0.743-6.22< 10 5+i3.16x 10 2,
0.372+i0.643 (n9 L. (27

As before we see the inadmissible, complex solution pair,

and the real root from the radiation-limité&L circuit. Here,

B while the circuit is again highly underdampéte oscillation
1/JLC largely determines), the radiation and real resis-
tances are comparabl®;~K(1/\/LC)*~2.44x10 © Q,
so that the decay constant is given by(R+R,9)/(2L).
(Note the very small values d® and L needed to achieve
comparable radiation and real resistancdsin this same
loop we instead us®=10(Q), L=1nH, C=1 uF, we re-
cover the usuaRC circuit, Eq.(24), because the roots are

s={—-1.00x10 4,—1.01+i0.955,1.01-i1.08 (n9) I,
(28)

-0.05 [

s[ns)™

0.15 Lol Lol Lol
10° 10° 10"

RIQ]
Fig. 5. Plot of the decay constast(linear scalg and the ratio of radiation where we see that the real solution corresponds auite closel
resistance to real resistanleg scale versus the real resistandg, for an o 8 ,p a .. y
RC circuit; the loop radius is 5 cm and the series capacitance isuf00 {0 1/RC. (The radiation resistance here is truly negligible

Arrows indicate the vertical axis which is to be read for each plot. Note thatand the conventional lumped-parameter treatment is fully ad-
the resistance ratio is also the ratio of radiated power to power dissipated bgquate).

the real resistor. For largdt the circuit becomes essentially a conventional

RC circuit, while for smallerR the radiation limits the decay rate.

IV. CONCLUSIONS

radiative term of Eq.(20) or Eq. (21) contributes little. At Motivated by the realization that a conventional, lumped-
the opposite extreme, fa®<1 xQ, the decay saturates out parameter description is inadequate for any circuit Wlth_ rap-
at its radiation-limited values~ —0.14(ns)~*. [For our pur- idly varying currents and voltages, we have added a simpli-

pose of discerning qualitative behavidg is sufficiently fl(regblgria:‘torumtinor;zarr?dliﬁttlgéunges htc;ictggnévgé%?r%ﬁgot
smaller thanc/(2wb)~1 (ns)~ ! so that our approximations P y y phy 9

hold 1 Perh th ti ant litative feat fth netism texts. With our model we have shown that power loss
old.] Perhaps the most important qualitative feature of they o 5 radiation prevents instantaneous charging/discharging
graph in Fig. 5 is that it shows that the switching does NoL, 4 in fact accounts for all of the missing energy in the

happen instantaneously, because including the radiativfextbook problem, thus resolving the paraduixhoutinvok-

po_\ll_v:zr Iossthresqltts In 6t1' nonline&C cwclmt. diatRbC o ing nonideal, finite-resistance wires. Finally, we have also
Three other interesting cases involve radiatRgC cir- investigated some more realistic circuits having small resis-
cuits, for which the roots of the characteristic equation thems, <o "2 1 self-inductances along with the radiative equiva-

s_elves are of the most importance. It is eSpeC.'a"y |nf(_)rma]ent circuit element, and have recovered the correct lumped-
tive to see how the solutions of E@1) can exhibit behavior aparameten(that is, low-frequencylimits

characteristic of simpler circuits. Consider first the case of
5 cm loop withR=0,L=1 uH, C=1 uF; the roots of Eq.

(21) are
s={—18.712-7.63x 10 ¥'+i0.001,
9.36+i116.2¢G (ns) 1. (26)
The large-magnitude complex-conjugate pair and the larg
ear, radiation-limitedRL circuit, Eq. (23). The complex-

conjugate pair is physically inadmissibleach solution is
compleX because Eq(23) is nonlinear. The approximate

APPENDIX A: DETAILED DERIVATION OF THE
RADIATED POWER

We begin with the expression for the retarded vector

Jotential
magnitude real root are approximate solutions of the nonlin-

Mo

2m | (t—~/cC
g2 [P0

[ —sin(¢")e,

+code')glbde’, ~=|r—r’| (A1)

real solution is not excited in our examples because we con- ) ] ]
sider the case with nonzero initial capacitor voltage and zer@t field pointr and source point’. Next, we find the expan-
initial inductor current. The small-magnitude complex- sions for-and 1/ to first-order inb/r using Eqs(4) and(5):
conjugate pair is simply the solution for a conventioR&lC P \/W
circuit with a resistance given bR,q=Ks*~K(1/\/LC)%.
2
=r \/1— Tbsin(H)COE(@—(p')-i-bz

In other words, because the resulting circuit is severely un-
derdamped, the largégeneralizeg frequency is the oscilla-
tion, not the decay of the envelope, and the larger oscillation

determines the radiation resistance. Because even the fastest ~r—bsin(§)cog¢o—¢’), (A2)
phenomenorihere the oscillationis rather slow, the nonlin-

ear term is negligible, and we recover the limit of the simple E% } i Rsin( f)cos o— @) (A3)
RLC circuit, Eq.(22). sor o r? ’
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so that to first order ifb/r,

1 ( A1 ( r) b sin( 4)
t— |~ t—=|+
C r C rc

t— g) sin(f)cogo—o¢').

COS(<p—¢’)i(t—g)

—1
e

(Ad)

+bl
r2

In the far-field region the propagation delay to the field point

is much longer than the switching time, that is, I(t)
~I(t)/7 with 7<<r/c. The last term of Eq(A4) is negligible
compared to the second, because its siz®/i¢ and that of
the second i®/(rc7); thus their ratio ic7/r<<1. If we drop
the last term and substitute EgA4) into Eq. (A1), we have
in spherical coordinates
wo b?sin(6). r

A(r,t)~TTI t—E eq,. (A5)
Equations(6) and(7) follow directly from using Eq(A5) in
E=—0A/dt andB=V XA, retaining only the slowly decay-

ing terms of order X/ From these equations we obtain the

Poynting vector

S(r,t)=iE(r,t)><B(r,t)
o
b4 . r\12
= T6e, 150 S‘””)'(“e” &,

which, when integrated over the spherical shell at radjus
yields the poweradiated by the loop
. r
-3
c

(A7)

We emphasize that EA7) refers to the poweradiated (by
the loop, while the usual expression

P=- fj; S-da
AV

refers to the poweabsorbedby the charges within a volume
V bounded by the closed surfadd/).

(AB)

4

27 (@ 5 . b 2
Prad™ JO fo S-er S|n(0)d0dgo—?005

(A8)

APPENDIX B: NONLINEAR EQUATIONS AND
COMPLEX-CONJUGATE PAIR SOLUTIONS

Our nonlinear homogeneous differential equations all have
real coefficients so it follows that their solutions are either

real functions or complex-conjugate pairs, becausé i$ a
solution so isV*. Although asingle complex solution is
obviously inadmissible aseal capacitor voltage, it might be

argued that aeal linear combination of complex-conjugate
solutions could be taken as a solution of a nonlinear differ-

The solutions of Eq(12) are

1 1/5 -
_ i(2n+1)@/5 _
Sh (KCS> e (n=0,1,2,3,4

with complex-conjugate pains=0,4 andn=1,3. The solu-
tions of Eq.(23) are

L 1/3
Sp= R

gi(2m+1)m/3
with complex-conjugate pain=0,2. The pairings follow by
shifting phases by 2

(B2)

(n=0,1,2) (B3)

ei 9m/5_ e i 7T/5ei 107/5_ e i W/SeiZ’IT: e i 71'/5, (B4)
ei77T/5: efi377/5, (BS)
ei5'n'/3: e—i'n'/3. (BG)

An arbitrary complex solutioV..(t) of Eq. (12) or (233
therefore has the form

V. (t)=Ae "Pexgs.t], V_(t)=V*(t), (B7)

(B8)

where the constant8, B, o, and w are real ands, is, re-
spectively, given by Eq(B2) with n=0, 1 or Eqg.(B3) with
n=0.

We next construct a general real candidate solution from
Eq. (B7) by taking a linear combination:

Ve() =V () +V_(1), (€)

where the generality follows from the fact thatand 8 are
arbitrary. It is useful to write the derivatives of E@B9) in
two different forms

ngC dnv+ ng n * \ N\ 7%
= e = (52)™VA (D4 (S)VE (1),

dat" = dt"
(B10)
Using this expression, we find for the first term of either Eq.
(12) or Eq. (233
V2=V2 +V2+2V V_=V2 +V2 +2A%"s, |5,
(B11)
If we substitute Eqs(B8)—(B11) into Eq.(12), we find

si=¢*iw, S_=s%,

V24

VAV LN Y
KCS cVec ++KCS +V+

V_V_

+\72+1
- KC

1
+ 2,20t
Ae (KCJ

s
1/5

X|2 +s,+s%|. (B12)

KC,

ential equation(Were this the case, it would imply that the Now becausev, and V_ are separately solutions of Eq.

real and imaginary parts of a complex solution weepa-
rately solutions of the nonlinear differential equatipilere

(12), it follows that the terms in curly braces above are each
zero. Further simplifying Eq(B12), we conclude that a real

we show for the two nonlinear equations which admit anadinear combination of complex-conjugate solutions of Eqg.

lytical solutions, Egs(12) and (233, this isnot the case, so
that complex solutions must be discarded altogether.

Direct substitution shows that Eg€l2) and (233 admit
analytical solutions of the form

V. (t)=Aexgst]. (B1)
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(12) is not itself a solution because

1 6/5]
<c)

(n=0,1).

2n+1
1+co 5 T

1.
V24 e VeVe= 2A%e?7
S

|

+0 (B13)
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Therefore only the real solutiom=2 in Eq. (B2), is al- o Lo 5 oot L 2
lowed. Similarly, following the procedures above for Eq. Vet o VeVe=3A%™| ] #0. (B1YH
(239 leads to

Thus, only the real solutiom=1 in Eq. (B3), is allowed.
L
K

L

V24—V V= Vi+KV+V+

+ [ V2 + EV_V_} ISee, for example, D. Halliday, R. Resnick, and J. Walkendamentals of
- K Physics 4th ed.(Wiley, New York, 1993, p. 750.
5 2R. A. Powell, “Two capacitor problem: A more realistic view,” Am. J.
2 oot Phys.47, 460—462(1979.
+3A‘e K (B14) 3K. Mita and M. Boufaida, “Ideal capacitor circuits and energy conserva-
tion,” Am. J. Phys.67, 737—739(1999.

. h . v b 4D. J. Griffiths, Introduction to Electrodynamics2nd ed. (Prentice-Hall,
where once again the terms In curly braces are zero. ASEnglewood Cliffs, NJ, 1989 pp. 396—399, 407-411Griffiths assigns

abO}/e, we see that. a r¢a| linear Cmeination of complex- the general magnetic dipole derived here as Problem 9.14 but does not
conjugate solutions isot itself a solution because treat it in the tex.
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