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Radiation Damping in Classical Electrodynamics
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Department of Physics, Los Angeles State ('ollege; Los Angeles 32, California

The problem of radiation from a charged particle in uniform acceleration is
considered. It is shown that, by transforming from an inertial frame to the
accelerated frame in which the particle is at rest, the magnetic field, and hence
the radiation, is transformed away. Exact solutions of Maxwell’s equations in
the accelerated frame are obtained.

Dirae’s elassicul equations of motion of a charged particle are rederived for
the special case of one-dimensional motion. By doing the calculation in the
permanent (noninertial) rest frame of the charged particle, it is shown that it is
not neeessary to use advanced fields as was done by Dirac. The calculation
requires no modification of the energy-momentum tensor. The theory still con-
tains a divergent term (as does Dirac’s) but in a modified form.

A simple solution for one-dimensional motion is considered. By consideration
of a case where an clectron enters from a region of no field, passes through the
region of the field and then again into a region of no field, it is shown that the
conventional power radiation formula gives the same answer for the total
power radiated as does Dirac’s equation.

Hyperbolic motion is considered as a limiting case of motion through a
finite region of spuace where there is a uniform electric field. The region where
the field is defined is then allowed to become large compared to the electron
radius.

1. INTRODUCTION

The most notable derivation of the equations of motion of a charged particle
that include the effects of radiation damping is that of Dirac (1). Dirac used both
retarded and advanced ficlds in calculating the flow of energy and momentum
in the field. In this paper, it will be shown that the equations of motion can he
obtained without the use of advanced ficlds by performing the ecaleulation in
the permanent rest frame of the particle. This is taken as an aceclerated frame
relative to which the particle is always at rest rather than an instantancous rest
frame. Since the advanced fields can be eliminated, an alternate interpretation
of the equations of motion to thatoffered by Wheeler and Feynman (2) is possible.
Due to the mathematical complications of using an accelerated frame, only one-
dimensional motion is considered.

The problem of radiation from a uniformly accelerated charge is also con-
sidered. It is commonly accepted that an accelerated charge radiates energy;
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in particular this is so when the acceleration is uniform and, indeed, Fulton and
Rohrlich (3) derive the conventional radiation formula for this special case,
There remains the question of a charged particle which is at rest in a permanent
gravitational field. It clearly does not radiate. These two situations seem para-
doxical. It is shown in this paper that radiation which is observed in an inertial
frame relative to which a particle is uniformly accelerating is completely trans-
formed away when a transformation is made to the permanent rest frame of the
particle.

1I. ACCELERATED FRAMES OF REFERENCE

In the treatment of the problem of an accelerated charged particle, 1t proves
fruitful to consider it at rest at the origin of an accelerated frame. A transfor-
mation from an inertial to an accelerated frame with especially simple properties
will be outlined. Since most of this material can be found in sections 96 and 97 of
the book by Moller (), only an outline of the results needed in this paper will
be presented. The relativistic notation used is as follows: Greck letters run from
1 to 3, Latin from 1 to 4. The metric tensor has the diagonal form (41, +1,
41, —1). The accelerated frame will be denoted by R, the inertial frame by 1.
Only one-dimensional motion of R relative to [ is considered. Generally, capital
letters are employed for coordinates in I and small letters in E. Imaginary no-
tation is not used. Thus X' = (X, ¥, Z, ¢7') and 2= (2,9, 2 ct). A dot will
always be used for differentiation with respect to the proper time of the particle
located at the origin of E.

It is convenient to introduce the function 8 defined by

tanh § = ¢ sinh ¢ = S cosh § = ———L;—;
¢’ eV = /e V(L = 1?2/e?)
where v is the velocity of the particle. Let f'(7) and f*(7), where 7 is the proper
time, denote the world line of the particle. The transformation is defined by
means of

x cosh 6 + f1(7) (2)
x sinh 6 + f'(7) (3)

with the auxiliary condition that the coordinate time ¢ in B be the same as the
proper time of the particle: ¢ = 7. Since the particle four velocity is

U' = (csinh 6, 0, 0, ¢ cosh 8) (4)

X
c¢T

l

il

we can write (2) and (3) as

t
X = acosh o+ [ ¢ sinh 0 dt (5)
Jo
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t
¢l = x sinh 6 4+ / ¢ cosh 8 dt (6)
0

The function 8 depends only on ¢ The transformation of the differentials du’
and dX" are given by ‘

dX = dr cosh 8 + cdt(1 + 28/¢) sinh @ (7
cdT = dx sinh 0 4+ edt(1 + 28/¢) cosh ¢ (8)

The inverse is
dx = cosh 8 dX — sinh 6 ¢dT (9)

cdt — — sinh @ qu cosh 8 ¢dT
1+ x6/c + 1+ x6/c (10)

The line element in R is
ds* = da* + dyt + di* — (1 4+ 28/¢)%" dt* (11)

The z?ccelera,ted frame is thus time orthogonal. The spatial geometry is Euclidean
and lnde.pendent/ of time. Such reference frames arc called rigid. The four-
acceleration of the origin of R (hercafter denoted by O) relative to I is found
from (4):
A" = (gcosh 6, 0,0, g sinh 6) (12)
where ¢ = 6c. We note that
G AA7 = ¢ (13)
where the special relativity metric has been denoted by (7;; . The four-accelera-

tion (12) can be transformed to R by use of (9) and (10):

i 3-1'1- ko .
@ = 54 =1(4000) (14)

The gravitational scalar potential in R is given by
x(x, ) = g(t)z[l + g(t)x/(2¢H] (15)

which shows that the gravitational field strength in the vieinity of O is g (4
section 92). ) B
. T'he force on the particle located at ) necessary to maintain the aceeleration
Is given by

d .
F = 77 (me sinh 8) = mg (16)
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where m is the rest mass of the particle. Hyperbolic motion, or uniformly ac-
celerated motion, is defined as that motion which is produced by the application
of a constant force to the particle. Since the time dependence of the metric
enters only through 6, we see that for hyperbolic motion, the metric in R is
independent of time. If we were to solve Maxwell’s equations for a point charge
in a frame in which there is no time dependence, we would expect to find no
radiation. That this is so is shown explicitly for the special case of the metric
(11) when 8 is a constant.

The velocity of an arbitrary fixed point of R relative to [ is found by setting
de = 0in (7) and (8) and dividing one equation by the other:

dX/(cdT) = v/¢c = tanh 6 (17
Thus the velocity of all points in R are the same provided that the measurements
of velocity are earried out simultaneously in K. These measurements are not

simultaneous in 1.
A proper time interval of an arbitrary fixed point in R is given by

drzdt<1+5(’+f>=dt<1+l;>=d7’4/1—g (18)

Note that at the origin of R, which is the location of the charged particle which
we wish to consider, dr = dt. The dot refers to differentiation with respect to ¢.
Thus the four-velocity and four-acceleration of an arbitrary fixed point of R

are given by

[ = (esinh 8, 0,0, ¢ cosh 8) (19)
. dl” g cosh 0 g sinh 6
A= o (9T g g, PN T 2
dr (l + gu/c 0, 1+ g.v/c‘~’> (20)

Application of the transformations (9) and (10) to the four-vectors (19) and
(20) gives
W =10,0,0,¢ (1 + gu/eh)] 213
f =g (1 4 g2/c",0,0,0] (22)

S
I

ITT. MAXWELL'S EQUATIONS

Maxwell’s equations stated in an arbitrary space—time metric are

aF. 8["}\-;' 81%‘1' \
el = 23
ox? T aal + gk 0 (23)
1 d ik ; u .
S (V) = = =
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::'heéf,e ll:iikl (;s the field tf)nsor and py is the charge density of the matter setting
af(, Ompfoy:drfleasured n a local rest system of inertia. Heaviside-Lorentz units
I_Togctﬁo .caset of }}yperb(?li(f motion, characterized by the metric (11) with
((I]ntr()du(:ﬁi (()I(l)r:)sft,hl(? II:O g;:;l‘lic to deduce a generalization of Poisson’s equation.

F, o= 94 _ 04,
Y dxt i (25)
into (24) gives
VX ([1 4+ gz/c'lV X A) =0 (26)
e + gx ox I+ & P (27)

'le;ﬁorehA is 3 vector denoting the three spatial components of the four potential
¢ charged matter is assumed to be at rest in R, i.e.. its f . v s giver
by (31, ~ ', Le., its four-veloeity is given

IV. HYPERBOLIC MOTION

I.t is convenient to introduce the characteristic length I = ¢*/g. With { so
dghned, th(.:, e(ll}atlon 9= bc = const. gives 8 = ct/l. The equati;)‘ns of motidn
of the particle, i.e., the origin of frame R, arc given by

X=IV1T+ T/l —1=1cosho—1 (28)
¢l = [ sinh @ (29)

The four-veloeity is
Ut = &1/, U= e(X/T+ 1) (30)

The initial conditions chosen are such that X = 0andy = 0 at 7' = 0 (Fig. 1)
. The s(.)lutmn of Maxwell’s equations for the four-potential in the inertiqi
frame 7 is the familiar result (

N .
AL = e Ly ko ko k k .
(I RO RiR 0, " =X, - X, (31)
whel."(\ P refers .t() the field point and Q is the emission point (Tig. 1) on the
partl(‘_l(,x world line. The ficlds in the inertial frame are given by Tulton and
Rohrll('h (3) who, however, use the initial conditions v = 0 and X = [,
In this paper, we are interested in obtaining the fields in the accelerated frame
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cT

L

N

Fra 1. World line of particle in hyperbolic motion
Rather than attempt the solution of (27) directly, we will transform (31) from
I to R. The integrated form of the transformation (5) and (6) is
X, = (x4 1) cosh 6, — | ' (32)
c¢T» = (x + ) sinh 6p (33)

Il

The constants of integration are chosen such that the equations of motion of the
particle (28) and (29) are obtained for x = 0. The subscript P denotes the field
point. The emission point in R is @ = 0. The inversion of (32) and (33) gives

r+l=(Xp+ 12 —cTy?, -l <<
-V (Xp + D2 — T < =1

7WC_TP__# , cosh fp = - Xe £ 1 (35)
\/(XP + 0 — Ty

(34)

Il

b V& + I - el

from which it is evident that the transformation is singular at » = —[ in R
and along the asymptotes Xp + | = =cT’e in I. Only one-quarter of the X, T
plane is covered by the transformation. From (34) we sce that if x is allowed to
vary over the range of values —! < « < =, the different points of R have tra-
jectories which are hyperbolas that cover region A (Iig. 2). The transformation

RADIATION DAMPING 329

}CT

+Z

AL, € . Ay H
F1a. 2. Region of X, T plane covered by transformation to a uniformly accelerated frame
of reference. )

.f()r r < .—Z .gives region B in which there are no fields. However, fields appear
in C, which is not covered by the transformation. These fields are not. accessible
to observers in R. 7

The transformation of the potentials from 7 to R is fairly straightforward and
leads to the result )

1 _ e 1
AR = = (36)
ANR) = el cosh(8r — 6,) N
) dr(x + 1)* sinh(6, — 6,) (37)

In order to get tl.le potentials expressed entirely in terms of the field point I
we use the causality condition R,R" = 0. The transformation of this condition
into the accelerated frame leads to

2 2 2
cosh(fp — 0y) = F+p + (0 + 1)

2w F ) (38)
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where _
=+ =0 = @+ DY (40)

The potential (37) 1s

dd U +p+ @+

AYR) = v TP AT
(R) 4t (x + 1)? (41)
The covariant component of A* is
Av=gud' = — I+ @+ D"+ (42)
ArEl

By direct substitution, we can show that (36) and (42) satisfy the differential
equations (26) and (27).
The electric and magnetic fields are to be calculated from (25):

8A, 04, dA,
Eo=Fy =2 g, 2% g 0 :
T Y 9y : 9z (43)
B.=B,=B.=0 (44)

Expressed in cylindrical coordinates, the electric field is

Ex_i%l({zr—i—l) [(x+[)‘3_zz_~pz]:_@‘§|:1_%+ } (43)

—— £ s
e 8pllx + D e p X ] ,
E= o = e Tyt (46)

The above fields provide an exact solution of Maxwell’s equations for a sta-
tionary point charge in a uniform gravitational field. I'or g = 980 e¢m/ sec’, the
characteristic length [ is about one light year. A direct tensor transformation of
the fields given by I'ulton and Rohrlich (3) leads to identical results. The
magnetic field is absent; the terms in the energy-momentum tensor which would
be associated with a flow of encrgy and momentum vanish. There is no radiation
in the accelerated frame even though radiation is observed in the inertial frame.

V. ARBITRARY MOTION IN ONE DIMENSION

Assuming an external electrie field £ in the X-direction of the inertial frame,
we will solve simultancously Maxwell’s equations and the equations of motion
of the particle. The ficlds, as well as the motion of the particle, are determined by
the single invariant funetion 6(¢). The electromagnetic field will be obtained in
the accelerated frame as an expansion in the function 6(¢), the first order terms
appearing as rf/c and second order terms as (r6/¢)® or r8/c". By caleulation of
the flow of energy and momentum from the particle, its equation of motion,

e
i

RADIATION DAMPING 331

i.e., the function 6(¢), is determined. In order for the theory to be valid, it must
be true that r6/¢c < 1 when r is much larger than the classical radius of the elec-
tron. The expressions for the fields are needed to second order. Higher order
terms give no contribution to the flow of energy and momentum in the limit
r— Q0.

In the (lis_(*ussion of hyperbolic motion, we assumed at the start a special form
for 8, viz., 8 = const. It will be shown that this condition occurs as a limiting
case when a particle is placed in a constant clectric field and the region in which
the field is defined is allowed to become infinite.

As m the case of hyperbolic motion, the vector potential can be transformed
by the four-vector transformation (9) and (10):

. sosh(8p — 8g)
—sinh (6, — 6,),0,0 cositOe — o) 7
[ sinh(fe = 6), 0,0, = g e W)

The integrated transformation equations (5) and (6) can be applied to the
field point P and the emission point Q. Tor @ = 0, these equations are

i ec

~ IxR. ‘L’S(Q)

Py

tQ
Xq = f ¢ sinh 0 di (48)
0

Q
Ty = / ¢ cosh 6 dt (49)
0

These equations represent the equations of motion of the particle. The quantity

P . . . 3 . . . . - N
R’, which represents the relative coordinates of emission point and field point
in I, is

P
R' =X, Xp = —<.1'P cosh 6, + cf sinh 6 dt> (50)
Q
. P
R =cTq — T, = —<.1'P sinh 6p - c[ cosh 6 dt> (51)
Q

Of course, ' is not a four-vector under the transformation being used here. The
causality condition R,R° = 0 can be expressed

P 2
<.l'p cosh 6 + ¢ / sinh 6 (Zi) -+ pg
Q

" ) (52)
— <:cp sinh 6p + c/ cosh 0dt> =0
Q
p2= Y2+Z2=y2+z2
For RUP(Q) we find
P
R, U°(Q) = xpcsinh(8, — 0q) + cof cosh(0 — 6q) di (53)
Q
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We define § = tp — lq . I'or retarded ficlds, § > 0. The vector potential (47) is
to be obtained as an expansion in §, which is then eliminated by use of the
causality condition (52). By means of a Taylor’s series expansion about the
point P, the following results are obtained:

sinh (8 — 8g) = 66 — 146" + Lg(6 + 6°)¢° (54)
cosh (8 — 0g) = 1 4 156°° — 1466s° (55)
Q
jk sinh 8 di = —& sinh 8 + 1468° cosh 6§ — 1£6°(6 cosh 6 + ¢ sinh 8)  (56)
Py
Q . 2 . 2
f cosh 6 di = — cosh 8 + 1465 sinh 6 — 1¢8%(4 sinh 6 4 6 cosh 6)  (57)
P
P > s .
[ coshio — 0) di = 5 + 346 (58)
Q

Since 6 and its derivatives are all evaluated at P in the above expressions, the
subscript P has been dropped. Application of (54) and (58) to (53) gives

RUQ) = o[l + (1/c)xb — (Ysc)abs + (14)6°5] (59)
The causality condition (52) can be written
P — %6t 4 L4 — webs’ 4 V4ued’d — Lics' = 0 (60)

In order to climinate § (and hence tg) from the expressions for the potentials,
it is necessary to solve (60) for 8. Approximate solutions are ¢ = =7, the posi-
tive root corresponding to retarded potentials and the negative root to advanced
potentials. To obtain a more accurate solution of (60) the approximate value
¢6 = —r can be substituted into the fourth order terms and the resulting equa-
tion solved to give

2.2 2 af 26\ ard 0'27“2:'
=l = (® _r 61
¢ T[ c+<c>+30‘-’ 12¢? (61)
320° | ard 6'27“2]
o —rl1— ! 62
@=r [1 ‘)c + 8c? + 62 24¢ (62)
1 1 0 26 ard 6 ]
R I R L AL R A 63
cd T [ + 2¢ 8c? 6c? + 24c* (63)

By use of the above equations, the retarded potentials (47) can be cxpressed
in the form

‘14:4'6—,«[ 310+ .)%0 +l%;0 3;0(?] (64)
i
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, 4 242 5 0,252

A, = e 1_0 e L)G 3rg -
S [1 T T e Tia T g (65)
v e |16 r* 1r0 dar 60 P e

‘4 - -Tﬂ' [C - 202 - + N + :l (66)
2 _ 3

A= A4"=0 (67)

The expression for A" is accurate to third order.
I-t Is convenient to express the fields in polar coordinates, 2" = (7, ¥, @, ct),
(Fig. 3). This is done by means of the vector transformation

Aul = ])uyf‘lvy :14 = ‘44,y (68)
Pl = cos ¢, P = —rsiny, Pl =0 (69)

Sin(f.e there is no dependence of the fields on ¢, the transformation has been
carried out in the plane ¢ = 0. The resulting potentials are

r_ e 6 8 e rg 5ro6f
A = ~17r|:<?_262+('c)m\‘lj_(c-—-1c cos” ¥
343
rg 2
+Fcos ¢:|

r e [(r6 e rg* 6
A, = El:(_c ~ 5o + 63>Su 1Y — <C2 — )I f)com,&smyb
) 71
7'393 o2 . ( )
-+ w5 cos” ¢ sin ¢

(70)

Fia. 3. Polar coordinates
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4, =0 (72)

e |1 6 ér -
1) = -4 |- S 3 — co ):| (73)
A 47r|:r+<)c+dc> o8 ¢+ ( S

Quantities expressed in polar coordinates will either be denoted by a prime or
the fact will be explicitly noted.
The fields are calculated by means of
!
Fo— 04 1 GAI'. (74)
Y ot ax'i
In the following expressions, all quantities are expressed in polar coordinates
and the prime is dropped. The fields are

e 6 r'e -
AN I —i—-—- cos:,psmxlx:l (75)
Fia 47 [( 2¢? + %cz> Ly
€ 20 ? 2 o« (’-6
Fiu= - |14+ 5,cosy + (('os ¢ —3) 76)
dmr? 3¢ c?
216 7?02 ] .
0y = -~ — — 08 (77)
Fa wr L"c 3¢? c? 4
Fis =0 (78)
The contravariant components are found by means of
l’”‘j = nggj"LIﬂkm - (79)
with the metric tensor given by
gn = 1, Gor = 7’2, g3z = r* sin 2¢» Gag = —(1 + 930-//@2 (80)
The result is
¢ 2.2 o= 26
= __° 1 —)6(3()\3[/—}—7' ( 2 cos’ 1,0———) ’, COS;[/] (81)
Harr? 3¢
. ) - 249
24 ¢ g g _ 20 _ 5o ¢os jl (82)
F= T T v [20 3¢ E v '
. o
mz ¢ re _ré + or 08 cos ¢ sin ¢j| (83)
F = 43 |:< 3¢ 20) i

Notice that F** and Fy, are accurate to third order. .
The expressions for the fields can be tested by substitution nto Maxwell’s
equations (24), the nontrivial components of which are
a — 2
— —qg F
5% (V=g

) + i gé (V=g F%) =0 (84)
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9 — 19 -
= (V=g F) + > (V=g F*) =0 (85)

r c ot

a ]

ar (\/— “) + a7 (\/ Y F“) =0 (86)
where

V=g = sin (1 + 26/c) (87)

The fields we have obtained do indeed satisfy Maxwell’s equations. Since differ-
entiation with respect to ¢ makes sccond order terms go to third order, we have
troubled to find F** to third order as an additional check on the method.

The accelerated particle is being driven by an external field. For motion in
one dimension, the only possible type of driving field is an eleetric field E in
the X-direction of the inertial frame 7. This field can be an arbitrary function of
X. In order to find what the external field is in the accelerated frame R, it is

necessary to make a tensor transformation of
FYI) = —E, Fu(l) = E (88)

The transformation is done by means of the coefficients found in kEqs. (7)
through (10). The result expressed in rectangular coordinates is

u _ E _ 486. N
F T Fiy = <1 =+ ?>E (89)

A further transformation to polar coordinates using the coefficients (69) yields

Fos = —r[l 4+ (r8/¢c) cos Y|F sin {90)
Fio = [l + (r6/¢) cos YL cos ¢ (91)
P F sin ¢ (92)

1+ (r8/c) cos ¢
L cos ¢

4 — Y
F = 1 + (r/c) cos ¢ (93)

The caleulation of the equation of motion requires the expression for the
energy momentum tensor. Actually, in frame R we arc not calculating the equa-
tion of motion of the particle, but rather the forces necessary to maintain it
stationary at the origin. The expression for the energy-momentum tensor is

Tj _ ﬁwjkﬁvl'k _ ,lliﬁjF/(,,,ka (94)

The fields are the sum of the fields (75) through (83) of the particle itself and
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the external ficlds (90) through (93). The following i'qrmulas for T';" are accu-
rate to second order and are expressed in polar coordinates:

T1—4E231n¢—4[ +E(05¢:|

+ l\:w ek (2 cos® ¢ — sin’ l//)]

21 8r? 4mr? (95)
1 e Y ekl (15 cos® ¥ —£>cos¢:| e
“'z‘[(rm gty — 1)+ G &
1 ¢ :|
5 12 O
7 si 3eE e
T3 = [Z%’ + FE cos \b:lr S;n‘p — [—8_2 cos ¢ sin ¢ 59 ssnuplJ
2 (5 1\1+% .
sin ¥ 3ek (5 __:l* 96)
5 ) H( v 4> ;oo
:|r25
+ [94 2 051 'y c
=0, Ti=0 ~ Ti=-T, Ti=-T; (97)
T} = :F 7;10 sin® ¢ (98)
wr? 2¢?
2
Tt = ;rrf_)ﬁ; ,mp[ + E cos ‘pjl (99)
2
Tg:%[ﬁ}fe.__{—]g'(os\p] + Ezsmyb
2| dmr
1 |:e2 cos 1// Z"
2 8=t ¢ s (100)
1 e 3
+i|:<4 ><3(os ¥ —2>+4w_<co< y{/+’>(’0 1,0]
1 & eE ]ro
+§[fzﬁ4‘ =
. 2
e {—E—,;—% sin® ¢ (101)
2 2¢
e . 102)
T = — |:4 cos tﬁ:l T g sin ¢ (102
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The caleulation of the force on the charged particle located at the origin of
R is to be based on

(U (103)
where the semicolon denotes the covariant derivative and f; is the four-force
density on the charged matter. One might try to define the four-force on the
particle by means of

F, = lim ffk av (104)

V0

where 6V is an clement of three-volume surrounding the particle. This leads to
difficulties as one cannot integrate a vector in covariant fashion in a noninertial
frame of reference. There is no such problem with the integration of invariants,
however. Suitable invariants can be construeted by forming the inner product
of Tt with some vector and taking the divergence of the resulting expression:

(T;;v' 57 Tk LU + Tkl),, (10:-))

By integration over a suitable region of space—time we find
[@itrias =~ [ Gy as + [ (rih) ax (106)

where dZ represents an element of four-volume. As vectors ¥, the four-veloeity
(21) and four-acceleration (22) of a fixed point of R can be used. The use of the
definition of the covariant derivative and the symmetry properties of 7% leads
to

aLm ] aqu m

Twh = T, it 107
R ‘|' 2 OJL'" T (107)

If the veloeity vector u* and the metric (11) are used in (107) then
Ti ok = T% (108)

. k.
whereas the acceleration veetor a* gives
4 1y 42 4z
(Ty — Ty)6 — Tié

Tids; = eI (109)
The divergence term in (106) is to be converted to a surface integral:
f(T};vk);i iz = f (Ti*) v, (110)
where dV, is the three-dimensional surface element given by
av; = %eimdvk'"" (111)
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The quantity €. is the e-tensor defined by
I ijkm l ijkm
€ijkm — \/_gaijl;m ) € - T o ’ (112)
Wy
where 8;jim and 87" are the permutation symbols. The tensor dV¥™ is con-

structed from infinitesimal four-vectors lying in the three-dimensional surface
of integration:

ik k k
a b oc
dI]I\‘m,n — am bm Cm ( 1 13 )
an bn cn

The element of four-volume is an invariant and can be expressed
=/ —gd dddat = (1 4 28/¢) dV da' (114)

where dV is the ordinary three-dimensional volume element.

The invariant surface integral in (110) is most conveniently expressed in
polar coordinates. The acceleration vector (22) expressed in polar coordinates
is

Tk e cos 6c sin .
— - 115
“ <1 + ab/c’ r(1 + ab/c)’ o 0> (115)
The use of the velocity vector (21) in (106) gives
”,177, 7/_ _ 7 7 4 11-
f141_+_ 06” ffw(hdl +[’110d2 (116)

whereas the acceleration vector (115) gives

f(T Teos p — T" sin 1,0) T 6/ dv;

T f fibe V' + f (7 = 18 + 1)

’

avdsx' o
X

1+ xé/c
where use is made of (108), (109), and (110). In (116) and (117) primed quan-

tities are in polar coordinates, unprimed in rectangular coordinates. The terms
involving the force are to be interpreted as

lim f fic dVda* = ¢ f Fydat (118)
V>0
lim fflﬁc dvdr' = ¢ [ Fié da* (119)
V>0
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where #/; and Fy are components of the four-force acting on the particle. This
agrees with the result given by Moller (4). (See equation 87, p. 306 of Moller’s
hook. Note that dV° = dV since the matter under (onslderdtlon is at rest.)

As a four-dimensional region of integration, let us take a thin tube of radius
r (Fig. 4) surrounding the world line of the particle, which is the a*-axis. The
vectors a’, b, ¢' in (113) can be chosen as

"= (0, dy, 0,0)
= (0, 0, dg, 0) (120)
"= (0, 0,0, d")

= 8
I

@
|

Trom (111) the only nonzero component of dV,; is found to be
dVy = A/ —gdpdp da* = (1 + 26/¢)r” sin ¥ dy d¢ da* (121)

By use of Eq. (101) we see that the surface integral appearing in (116) is pro-
portional to * and hence is zero in the limit  — 0. The volume integral in (116)
also vanishes giving the result that the fourth component of the four-force is
zero in the permanent rest frame of the particle as it should be. The component
7'} is the radial component of Poynting’s veetor and, as is well known, a calceu-
lation of the type indicated in Eq. (116) performed in the instantaneous (iner-
tial) rest frame of the particle leads to the conventional energy radiation rate
which, however, cannot be properly called the fourth component of the radiation

Fi¢. 4. Four-dimensional region of integration in the accelerated frame
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four-force. This is because the general form of the four-force on a particle which
conserves proper mass is of the form

: F Fv ;
= (m_ S ”> (122)
V1 — (/e eV1 — (v/e)?
where F is the ordinary three-force.

In the calculation of the surface integrals appearing in (117), only terms
which do not vanish as » — 0 need be retained. The important terms in the

integrand are

r2(T'} cos ¢ — T"% sin )
el 1{/eV CO8
"1;%(5)[‘7 ”“*“" v (123)

§* 2 3 44
2 <(,os ¥ + 2) cos ¥ ??]

T = gug"' T = ©*T"] (124)

where use has been made of

The evaluation of the surface integrals gives
14 12 1 . BC 7
/‘(Tl(i()Sw—TQ;Sln\b>dei

el
= —el + — — éc da*
[ < T (nrrc 67rc>
In evaluating the volume integrals appearing in (117) it must be remembered
that this part of the expression is in rectangular coordinates. The rectangular
components of the encrgy momentum tensor can be obtained from the polar

form (Egs. (95) through (102) represent the energy-momentum tensor in
polar coordinates) by means of the usual tensor transformation:

T = (cos’ ¢ — sin® @) T'T — 2r sin ¢ cos 1" (126)

(125)

1 . . -
T =cosy T'f — ~sin v T (127)

The important terms are

dmrr?) 2¢?

4 e 27‘9
T S = — <;—q> sin® ¢ (128)

e 3¢ sin® ¥ cos ¢

2
APl — e Al d il 4 129
4 ! sin ¢<4 r~> + 16723 ( )
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- N . . . . 45 . i ..
There is no contribution from the 7,6 term in (117). The remaining term can
be expressed

G\ 1 )
f (T = PO (1 n ﬂ’) vy — [BE s veosy L
c 8rrc

ré cos ¢ 2 .
— - 9 . dy
fsm ¥ <4 r>< . >_7rr dy dr di

whero the integral is over the volume of the tube of radius r surrounding the
a*-axis (Fig. 4). Evaluation of the integrals over ¢ yields

1 Ia )1 4
./.(']44 -7 WT(”’(].U“ = /f < ¢ ) 4 dr dat (131)

The use of (125), (119), and (131) in (117) yields the result

2 " .
) el 1601 e\, . .

_3E+;_g+«+7/,,, s 4 _ "

/( ‘ 6rre  Gme? Fl 3¢ Jo 2<47r7”2> i dr) fode =0 (132)

The term proportional to ' can be expressed

25 i oo 5
ey 46 1( e ey
Grre ~ 3, §<4w2) dmr’ dr (133)

(130)

in which form it can be formally combined with the divergent integral in (132).
We write the resulting integral as

1
/ ( ) dart dr (134)

where i, is interpreted as the electromagnetic mass of the electron. Since the
length of the tube is arbitrary, we set the integrand in (132) equal to zero
with the result

2
P (~+(,], —]41—1— m(&() (135)
The divergent term is formally independent of the surface over which the
flow of energy and momentum is computed. If the caleulation is performed in an
mertial frame, only the term proportional to r ' is obtained. See for instance
Dirae’s (1) original ealeulation. The extra term that makes this possible, spe-
cifically, the integral from 0 to r in (132), comes from terms that appear in
T4 in the noninertial frame that do not appear in an inertial frame. To see
thls note that in general
i 1 109G, e
T = 2 (Vg Ty s s

b= e et =g (136)
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IFor the particular metric under consideration, the case £ = 1 gives
3T1i (Tl - T44)€/C R -
e S e ——— = — 13
ox’ T 14 a6/c i (137)

The integral (134) is not over the coordinates of the accelerated frame; it is
a formal way of expressing the divergent terms and shows that the electro-
magnetic mass of the electron is to be computed in the accelerated frame in the
same way as in an inertial frame. Covariance problems that arise from the intro-
duction of an electron radius are thus eliminated.

The force F, is interpreted as

dul 1 agrs ro8
Fi = Mpeen | — — = 227 3" 138

L=m ‘[dt 26.vuu] (138)
where Migeen 15 the mass of nonelectromagnetic origin of the electron, and u; =
(0, 0,0, —¢) is the four-velocity of the electron relative to R. For the particular
metric under consideration, (138) gives

ﬁyl = Mmech ( 0(’) ( 139)

(This is really another way of deriving Eq. (14).) If in (135) the masses e
and #imeen are lumped together into the empirically determined rest mass m of
the electron the result is the equation of motion

2.0

Tej‘} + ¢E = mée (140)
Gmre?
Dirae’s equation is
dU" e . e [ U o
@ — FU ,V,‘ = t_ o~ /] / 41
"at T e lj+(37r63|:U & (’)] (1

where U7 is the four-velocity of the electron relative to 7. That (140) is identical
to (141) for one-dimensional motion is found by substituting the four-velocity
(4) into (141) and remembering that the only nonvanishing component of the

. . 14
external field is F* = —F.
. . 4 . .. .
In place of a tube » = const. surrounding the a’-axis, it is also possible to use

a tube 8 = const. (I'ig. 5). This surface has the property that radiation meas-
ured on it over a time interval ¢,/ — ¢ was emitted over an equal time interval
to — to. This follows from & = ¢/ — to’ = {p — to = const. Such a surface
is no longer parallel to the x'-axis and the surface elements (111) become more
complicated. A caleulation done in this manner leads to the same equation of
motion demonstrating that at least for these two cases the flow of energy and
momentum is independent of the shape of the surface used in its computation.

It is possible to write down Egs. (116) and (117) for advanced fields as well
as retarded. If this is done ane one-half the difference between (117) and the
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Fra. 5. Four-dimensional region of integration defined by § = const.

corresponding equation for advanced fields is used to caleulate the force, one
finds that all divergent terms eancel out. In other words, calculation of the flow
of energy and momentum is done by means of the vector

e 1 (T (ret) dV, — T;'(adv) dV;) (142)
1+ xb/c2 "’ ' s ' -
The same equation of motion results, and there seems little point in introducing
advanced fields.

VI. INTERPRETATION OF THE EQUATIONS OF MOTION

It is convenient to introduce into the equation of motion the characteristic
time

2
o= 5 =625 X 107 see (143)
6rmc?

which is approximately the time required for a light signal to traverse the clec-
tron. Equation (140) can then be expressed

b6 — 8/ty = —el(t)/(mety) (144)

The above equation can easily be integrated regarding F as a function of ¢:

t
b — g(0) = — © f E(De ™ (145)
ﬂlCto 0
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Rohrlich (5) has suggested the use of the asymptotic condition
lim e ""“U (1) = 0 (146)
t>o
It is convenient here to apply the condition to the gravitational field strength
measured in the rest frame of the electron:
lim e ""4(t) = 0 (147)

t>x

Application of (147) to (145) leads to

0(1) = —— ¢ | E()e " dt (148)
mcty ¢
In practice, £ is not given as a function of ¢ but rather of X. Equation (48)
allows & to be re-expressed in terms of £.
We consider the solution of (148) for the special case

E() =0 t <0
E(t) = const. 0 <t <t (149)
E(t) =0 h <t

We assume that the electron is initially moving in the positive x-direction and
that the field further accelerates it in the same direction. The solutions, along
with the expressions for §, are

el

0(t) = — ML — ) t <0 (150)
6(1) = % [1 — et 0<t<t (151)
6(t) =0 h<t (152)
i el ey —ty/ty -
g(t) = g € f1 —e i t <0 (153)
0
6(t) = —72—]; ¢ i 0<t<t (154)
1)
g(t) =0 o< i (155)

These functions are shown in Tig. 6. The phenomenon of pre-acceleration is
clearly shown. For further discussion of this point, see Rohrlich (5) and Plass
(6).

Whereas hyperbolic motion does not, strietly speaking, actually exist, we see
from (150), (151), and (152) that if &t > { , i.e., if the electron spends a longer
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FiG. 6. (a) The function 6. (b) The function 6

time in the field than it takes a light signal to cross its diameter, the motion
will be very aceurately hyperbolic in the region of the field:

¢ = eE/(me) (156)

Another point to be noted is that Rohrlich’s condition (146) and the condition
(147) are not equivalent. Rohrlich’s condition gives

—iftyr'rl —tt A, o8
e U = ¢ cosh § —> Lgfee o ttE 00 (157)

where 'the hyperbolic approximation 8 = ¢/t (me) has been employved. Thus
(146) follows from (157) provided that ‘ |

LB )

We can write

ebite _ gty gn

(mc) c ¢’ (159)
where 7y is the “el(‘(tron radius.” Tt was necessary to assume in the derivation
of (140) that gry/¢® < 1. Hence (140) is assured.

The equation of motion (140) can be ¢ xpressed in the form

(mcz cosh 0) - €ﬁ I (]GO)

elly = —
d1 Gre?

where use is made of I5q. (1) and dt = d7/cosh 6. Equation (160) is an expres-
sion of conservation of energy. Let us consider a case w here the external field is
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confined to a limited region of space such as that given by (149). If (160) is
integrated between any two limits, the result is

O ar (161)
Gmre?

[erax = sxe) - [

where use is made of vdT = dX. If both limits lie outside the region of the field
E, then 6 = 0 at both limits of integration, and the term representing radiation
loss can be integrated by parts to give

—fﬁv dT = —fﬁsinhﬁdl = +[62(f08h0dl= —}—/ég(iT (162)

The above result shows that the over-all energy loss can be accounted for either
by the conventional radiation rate ¢'6’/(6me) or the radiation four-force
¢"6/(6mc”) . Since we are considering a case where the electron always moves the
same distance X in the driving field, it emerges with less kinetic energy than it
would have if radiation were absent. Still, the motion in the region of the field
is accurately hyperbolic—i.e., the same as if radiation were neglected. The
important thing is the inclusion of the points where § comes into play, Le.,
where the electron enters and leaves the field.

VII. CONCLUSTON

Much attention has been given recently to the interpretation and solution of
the equations of motion (141). See, for example, the papers by Rohrlich (5)
and Plass (6). The present paper serves to put the basic equation on firmer
ground by demonstrating that it can be obtained in a straightforward manner
without recourse to advanced fields. The caleulation is based on the standard
form of the energy-momentum tensor (94), no modifications such as was done
by Pryce (8) being found necessary. It is found that the divergent term is
formally independent of any “‘electron radius.”

By obtaining exact expressions for the electromagnetic field in the rest frame
of a charged particle in hyperbolic motion, we have shown that there is no
radiation present in the accelerated frame. Thus the presence of radiation in
the inertial frame, but none in the accelerated frame, does not contradict the
principle of equivalence as was suggested by Bondi and Gold (7). 1t is possible
to transform the radiation away when other than Lorentz transformations are
used. This fact has also been noted by Rohrlich (9).

The problem of hyperbolic motion is best approached as a limiting case where
a uniform driving field is defined over a limited region of space which is then
allowed to become large compared to the electron. The Dirac equation gives
rise to a sensible conservation of energy equation. The total energy loss can be
accounted for cither by the radiation foree which comes into play as the electron
enters and leaves the field or by the conventional radiation rate.
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