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Fluids in electric and magnetic fields: Pressure variation and stability
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The variation of the hydrostatic pressure with position in a dielectric or magnetic fluid acted upon by electric or magnetic
forces may be somewhat delicate. For instance, the dominant role played by the striction forces in fluids having positive
susceptibility is a physical phenomenon whose importance does not seem to be sufficiently well-known. Closely related to the
pressure balance is the thermodynamic stability problem. In this paper two examples are analysed in detail in order to elucidate
the pressure variation and thermodynamic stability for dielectric, paramagnetic, and diamagnetic liquids.

La variation de la pression hydrostatique avec la position, dans un fluide diélectrique ou magnétique soumis a des forces
électriques ou magnétiques peut donner lieu a des problémes assez délicats. Par exemple, le rdle dominant joué par les forces
de striction dans les fluides ayant une susceptibilité positive est un phénomene physique dont I'importance ne semble pas
suffisamment bien connue. Le probleme de la stabilité thermodynamique est étroitement relié a I’équilibre de pression. Dans
cet article. on analyse deux exemples en détail, dans le but de clarifier la variation de pression et la stabilité thermodynamique

pour les liquides diélectriques, paramagnétiques et diamagnétiques.
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I. Introduction

Consider a homogeneous dielectric fluid acted upon
by electric forces in an electrostatic field. To find the
electric force density f¢' one can make use of Helm-
holtz’ variational principle, equating the variation of the
free energy of the field, ¥ = 1 | E-D dV under re-
versible, isothermal conditions to the mechanical work
being done by external forces in displacing the matter.
As the external force density must everywhere be equal
and opposite to f, one has for the variation
8F = — [ f'-s dV, where s is the arbitrary displace-
ment within the medium. For an uncharged medium
this procedure leads to the expression

(1] f*= —1E’Ve + {V [E2p(d€/dp)r)

where p is the mass density and e the permittivity (we
use SI units). This expression is called the Helmholtz
force. The detailed derivation of it can be found in
various places, for instance in Panofsky and Phillips
(1), Landau and Lifshitz (2), and Brevik (3). The last
term in [1] is the electrostriction term. In magneto-
statics, the paramagnetic and diamagnetic cases are
handled analogously, the only difference in the final
expression for the force being that the magnetic field H
replaces the electric field E and the permeability
replaces the permittivity e:

2] f™e = —3H*Vu + 3V [H?p(3p/ dp)7]

In writing these expressions we have assumed linear
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constitutive relations, D = ¢E, B = pH.

In the derivation of these expressions for forces act-
ing on dielectric fluids it is characteristic that only the
first order variation of the free energy had to be taken
into account. In order to understand the mechanics of
dielectric fluids there is, however, one important addi-
tional factor that also ought to be included, namely the
thermodynamic stability of the system. This brings the
second order variation of the free energy into the prob-
lem. The physical system is, under ordinary circum-
stances, stable with respect to a small external dis-
turbance. This means that the amount of mechanical
work necessary to bring the system from its equilibrium
state to some neighbouring state is generally positive.
Expressed in terms of the free energy, we may say that
a dielectric fluid, when acted upon by a field, generally
adjusts itself such that its free energy becomes a min-
imum. (We shall always assume that the temperature is
kept constant.) The condition that the free energy be an
extremum leads to the force density expressions, [ 1] and
[2] above, whereas the additional condition that the
extremum be a minimum leads to the thermodynamic
inequalities. We shall not derive the inequalities here;
the reader is referred to Sect. 18 in Landau and Lifshitz
(2). The resulting inequalities are

[3]  (3L/dp)or>0
[4] OE/dD)r >0
where ( is the chemical potential per unit mass.
In deriving the thermodynamic inequalities an arbi-

trary relationship was assumed between E and D, the
relationship need not be linear. In the specific case of a
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linear medium, [4] becomes trivially satisfied as the
permittivity e is always positive. This inequality thus
gives no new information in this case. The remaining
inequality [3] is, however, also of importance when the
medium is linear. In the following we shall assume a
linear medium (as we already did in writing [1] and
[2]). The pressure distribution throughout the fluid is
thus described by [1] (or [2]), whereas the thermo-
dynamic stability of the system is described by [3].

It may feel natural for the reader now to ask: were not
the formulas above after all developed long ago? What
then is the motivation for dealing with the thermo-
dynamics of electromagnetic media once more? The
answer is that these issues are much more delicate and
subject to more controversies than one might be in-
clined to think at first, without detailed background in
this field of research. One important point is the cor-
rectness of Helmholtz® force expression. Within the
scientific community no general consensus has in fact
in the past existed on the correctness of Helmholtz’
force. This expression has had to exist side by side with
other rivalling expressions, the most significant of
which is the Kelvin (or Einstein—Laub) expression
(P-V)E = —3E’Ve + }V(E-P). What has gradually
become clear during recent years is, however, that the
Helmholtz expression stands out as the best alternative
for explaining experimental results in a straightforward
way. We may in this context refer to our review on the
electromagnetic energy —momentum tensor in material
media (4), where various proposals for the electro-
magnetic force were examined and compared with ob-
servations. Especially the Hakim—Higham experiment
(5), along with the Goetz—Zahn experiment (6, 7),
show convincingly good agreement with the Helmholtz
theory. It is interesting to notice also that Lai et al. (8)
recently seem to have been able to derive the Helmholtz
force from first principles, using statistical mechanics.

Our second motivation for the present treatment is to
stress the importance of the electrostriction (or magne-
tostriction) term, as following from the Helmholtz
force, for the distribution of hydrostatic pressure
throughout a dielectric liquid. For instance, in electro-
statics it is just the electrostriction force that furnishes
the compressive pressure needed to hold a column of
liquid together as a whole as it rises between two
charged vertical condenser plates partly immersed in
the liquid. These issues in fact seem to be insufficiently
known. Thus, in the standard textbook of Panofsky and
Phillips (1) one will find that the pressure distribution is
given incorrectly.

Third, we wish to stress a thermodynamic stability
property, namely the central role played by the chem-
ical potential {. It is quite instructive to carry out in
detail the analysis of how the value of { generally ad-
Justs itself so as to resist an external disturbance. We are
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not aware that the stabilizing role of {, although simple,
has ever been discussed in detail in the standard !
treatises on electrodynamics. In particular, it is worth-
while to notice the behaviour of a diamagnetic medium,

. < po. In this case the direction of each force termin |
[2] is opposite to the direction in a paramagnetic me-
dium. Nevertheless, the thermodynamic inequality [3]

is general enough to describe the stability of the system
in this special case also.

It may be worthwhile to notice in passing that the
features discussed here can be of interest not only in
classical electromagnetism but also in different fields of !
physics, such as in the theory of the Casimir (i.e.,
zero-point) force acting on dielectric balls and in the
modern bag-model theory in quantum chromodynamics
(cf. for instance, the paper by Milton (9) on the di-
electric Casimir effect and the related treatment by the
author (10) when electrostriction is included).

We shall now consider two examples which, al-
though relatively simple, are general enough to serve
our demonstration purposes. The reader may consult
also the treatment by Lahoz (11).

I1. Example 1

This example is very simple; in the electrostatic ver-
sion it is a parallel-plate condenser completely im-
mersed in a dielectric liquid. The distribution of pres-
sure in the liquid is described by [1]. Now the first term
to the right in [1] is usually negligible. In the experi-
ment of Hakim and Higham (5) the maximum average
electric field between the electrodes was about 5 X 10/
V/m; even in such a strong field the change in € was
found to be very small. The significant term in [1]is
thus the electrostriction term. The effect of this force is
to draw liquid into the field region between the plates
and compress it, thus increasing the density and pres-
sure of the liquid. Assuming for simplicity a nonpolar
liquid, so that € according to the Clausius—Mossotti
relation (e — €;)/(e + 2¢;) = const. p is a function of |
p but not of the temperature 7', we obtain for the excess
pressure in the region of the field

(5] Ap

1E%p de/dp
= E%(e — €)(e + 2¢p)/(6€p)

which is always positive since € > €;. The physical
meaning of our pressure symbol p ought to be empha-
sized: it is the hydrostatic (or elastic) pressure which,
ignoring changes in entropy, is a function only of the
mass density p. Thus p is a mechanical quantity, not
directly associated with the electric field: if we imagine
that the electric forces were at each position replaced by
external mechanical forces of the same magnitude and *
direction, the resulting pressure throughout the liquid

would be exactly the same as p. (The necessity of giv-
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ing this explicit definition of what is meant by the
pressure in a dielectric fluid has been stressed also by R.
Peierls (personal communication). What is here called
pis just the same as what in Landau and Lifshitz’ book
is called p,. See ref. 2, Sect. 15.)

The excess pressure, as given by [5], was measured
in the Hakim—Higham experiment to within =5%
“, 5).

It is convenient to introduce the symbol f**, defined
as the roral force density acting on the liquid. Thus
o= —Vp + f, and at equilibrium we must neces-
sarily have f* = 0. As Vp can at constant temperature
be replaced by pV{,, in accordance with the thermo-
dynamic identity for the chemical potential {, =
{,(p,T) in the absence of a field, p d{, = dp — S, dT,
we can write, in accordance with ref. 2, Sect. 15,

[6] f = —pVi, — 1E*Ve + 3V[E?p(d€/dp)r]
= -V

where { is the chemical potential in the presence of the
field. The equilibrium condition at constant tem-
perature may be expressed as

(7] €= (p,T) — $E*(de/0p)r = constant

If p = constant, as we may assume in the present
example, we may transform (7] into the form

8] p(p.T) — $E*p(de/dp)r = constant

which is in accordance with [1]. The constant in [8] is
the pressure outside the condenser.

Consider now the stability problem. We may imagine
that the system is brought from the equilibrium state to
a neighbouring state by a compression of the liquid
within the condenser, so that p increases slightly. The
physical conditions in the example are such that it is
convenient to let the voltages on the plates be constant
during the compression. This corresponds to constant £
rather than constant D. We may replace [3] by the
inequality

[9] (3L/3p)er >0

For a linear medium, the transition from [3] to [9]
is trivial. (In the general nonlinear case, we can also
easily derive the inequality [9] on the basis of the
assumed positiveness of the quantity (8D/9E), =
da(D,p)/d(E,p). Namely, the following expression
becomes then positive:
[10] (3_1)_) (ﬂ) _ 9D, p) 3(D,0)
d(E,f) 4(D.D)
o(E, p) 9(E,D)

- (5, (38), >
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from which [9] follows, when [4] is taken into ac-
count.).

The inequality [9] shows that during the com-
pression, which is performed at constant values of £
and 7, the chemical potential { is increasing mono-
tonically with p. Thus { becomes greater inside than
outside the condenser, and the reaction force f*' from
the system will according to [6] act outwards, against
the applied external compressive force. This is in
accordance with what we should expect, as the total free
energy is at minimum at equilibrium and the supplied
mechanical work during the compression therefore
positive. Corresponding results are obtained if we let
the external forces be directed outwards instead of in-
wards: the density p becomes smaller between the
plates than outside, the chemical potential { also be-
comes smaller, and so the reaction force f* acts in-
wards in a direction opposite to the applied force. The
performed work is positive as before. The stability con-
dition generally implies that the chemical potential be-
tween the plates adjusts itself at the right level to pro-
duce the appropriate compensating force.

The electrostatic case considered so far is the most
familiar case. If we now proceed to the magnetostatic
field, we are confronted with phenomena which are
qualitatively different. This is due to the fact that the
permeability i can, on the basis of thermodynamic
arguments, be both greater or less than p,. The para-
magnetic case with i > p, is in our context equivalent
to the electrostatic case and shall not be further consid-
ered. What is of interest here is the diamagnetic case,
B < Mg, as the factor (dp/0p)s in the magnetostriction
term then becomes negative. This is easily seen explic-
itly when it is assumed that the liquid is satisfying the
relation analogous to the Clausius—Mossotti relation;
cf. the analogue to [5] where the right-hand side be-
comes negative when . < pp. This means that the
magnetostriction force acts outwards, tending to expel
liquid from the field region (we assume for definiteness
that the homogeneous magnetic field is produced by an
electromagnet with plane pole surfaces immersed in the
liquid). At first sight one might think that the situation
is unstable. However, this is not so, if it can be assumed
that the pressure in the field-free region outside the
magnet is positive, as it always is in practice. One may
describe the behaviour of the system as follows: the
purpose of the magnetostriction forces is to push out so
much of the liquid that the hydrostatic chemical poten-
tial {o(p,T), which is at constant temperature a mono-
tonically decreasing function for decreasing values of p,
becomes sufficiently low in the field region to permit a
constant value for the total chemical potential { to be
established throughout the liquid:

[11] € = L(p,T) — sH*(9n/9p)r = constant
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Let us finally consider the stability of the diamagnetic
system. As before, the stability is governed by the ther-
modynamic inequality expressing that the total free en-
ergy be a minimum at equilibrium. Assuming constant
magnetizing current in the coils, i.e., constant H, the
inequality analogous to the inequality [9] is

[12] (aé/ﬁp)y,r >0

Thus, assuming for instance an isothermal compression
of the liquid in the field region, the chemical potential
{ will be increasing in that region, and the total reaction
force f* will according to [6] be acting outwards,
against the external compression force. The performed
mechanical work during the compression is positive, as
it should be. If we consider an expansion instead of a
compression of the liquid, we obtain similar consistent
results.

II1. Example 2

Our second example is more complicated in that
two new features have to be taken into account; first,
the gravitational field plays a role for the pressure;
secondly, the liquid has a free surface on which electric
or magnetic forces act. The situation in electrostatics
is the well-known one where a parallel-plate condenser
is partly immersed in a dielectric liquid, cf., Fig. 1.
Above the liquid we assume atmospheric pressure.
When a strong electric field is formed between the
plates, the liquid can be observed to rise slightly in
the interior region. We shall make use of this situation
to discuss some salient points in the force—pressure
balance.

First, in order to avoid unnecessary complications we
shall assume that the distance d between the plates is so
great that surface tension plays no important role. This
will be the case if d > (2a/pg)"?, where a is the surface
tension coefficient, see Landau and Lifshitz (12). The
free surface between the plates will then essentially
remain as a plane surface after it has risen, and become
curved only in the immediate vicinity of the walls.

When discussing the force balance in the liquid we
shall first avoid introducing the chemical potential and
instead apply the force expression in [1] directly. Both
terms in this expression are of importance here. The
term —3E”Ve acting in the boundary region at the free
surface gives, upon integration over the boundary, the
surface force density 1E*(e — €,). This is the force
which is responsible for the elevation of the liquid. The
liquid is thus lifted up at the free surface. Equating the
surface force to the gravitational pressure pgh, we ob-
tain for the equilibrium height h

[13] A= (e — €)E*/(2pg)

Next consider the electrostriction term in [1]. Its role

CAN. J. PHYS. VOL. 60, 1982

N
\
\
N
N
N
\
\
\
N
\
\
\
N

FIG. 1. Two charged condenser plates partly immersed in
a dielectric liquid.

e

is very important for the stability of the system, as it

gives rise to a uniform pressure {E’p(9€/dp)r in the
liquid. At the free surface the electrostriction force acts
downwards, and it is stronger than the surface force
1E*(e — ) acting upwards. This is easily seen explic-
itly if the liquid satisfies the Clausius—Mossotti re-
lation: the difference between the pressure p, in the
liquid just below the free surface and the air pressure p,
just above the surface is

[14] p, — pi = 1E*[pde/dp — (e — €)]
E? (e — E0)2/(650)

cf. Fig. 1. This expression is always positive. Further,
if we assume that the liquid instead is polar and satisfies
a more complicated relation such as the Onsager
relation, we will also see explicitly that p(de/dp)r >
(e — &), for instance from the data compiled by Lahoz
(ref. 11, p. 87). It is important to realize that the condi-

tion for the liquid to be lifted up at the free surface is

that the compression force is always stronger than the
elevating force; this is an immediate consequence of the
fact that a liquid is unable to withstand tension. The
main role played by the electrostriction in the force
balance is that it is responsible for the necessary
stabilizing force. On the other hand, it ought to be
pointed out for completeness why the electrostriction
force, being the gradient of a scalar function, cannot
contribute at all to the elevation height of the liquid: the
z-component of the total electrostriction force can be
written as a surface integral which has to vanish at both
limits; at the upper integration surface (above the free

surface) because p = 0O there, at the lower integration *

surface (far beneath the plates) because £ = 0 in that
region.
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Let us now write down the expression for the hydro-
static pressure p(z) in the liquid column as a function of
the height z. Below the free surface the gravitational
pressure pg(#—z) has to be included in the description,
and we obtain

[15] p(z2) — pi = 3E*p(3€/dp)r — 1E*(e — &)
+ pg(h—z)

This expression, which gives a pressure which varies
lincarly with z, will be valid down to the transition
region between the lower edges of the plates where the
electrostriction force £V [E*p(de/dp)r], which now is
acting upwards, gradually diminishes the electro-
striction pressure. As in Brevik (4), we give in Fig. 2
a schematic illustration of the variation in pressure
along a path from points 1 to 5 in Fig. 1. When there
is air above the liquid, the difference between the air
pressures p, and ps is negligible. The given values for
the pressure variation in the figure correspond to the
following example: the liquid is benzene, for which
e, = 2.28 (at 20°C), p = 880 kg/m’, and the field is
taken equal to £ = 3 X 10° V/m. The pressure in the
main part of the liquid column is then calculated from
[15], where the Clausius—Mossotti relation is used in
the electrostriction term and the value 7 = 5.9 mm is
inserted as a result calculated separately from [13].

The present example was discussed also in Sect. 6-7
in the well known treatise of Panofsky and Phillips (1).
These authors let the symbol p mean the mechanical or
hydrostatic pressure in the liquid, just as we do. It ought
to be pointed out, however, that the pressure distribu-
tion as given in their Fig. 6-8 by comparison with our
Fig. 2 is not correct.

We next consider the chemical potential { in the
presence of the gravitational field. We recall that [6]
and [7], which were derived when disregarding the
gravitational field, were sufficiently general to hold
also when p varied with position. Thus [6] will be
applicable even across the boundary region at the free
surface where p changes abruptly. The inclusion of the
gravitational field merely means that a term g(z—h) has
to be added to the chemical potential, due to the hydro-
static pressure. The condition for mechanical equi-
librium, as before, is that { = constant throughout the
field. The constant must be equal to p,/p,, where sub-
script 1 refers to the atmosphere above the liquid. The
expression for { replacing [7] becomes thus

[16] ¢ = & (p,T) — 3E*(3€/0p)r + g(z—h)
= p/pi
This expression holds within the column of liquid,
7= h.
Note that the effect of the elevating force term
—1E*Ve is not shown explicitly in [16]. The reason for
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FIG. 2. The hydrostatic pressure variation from point 1 to
point 5 in Fig. 1. The variation is linear between points 2
and 3.

this is that the effect of the term has been hidden in the
dependence of € on p: Ve = (3¢/dp);Vp under iso-
thermal conditions. Some care should here be exerted
so that one does not on the basis of [16] conclude that
the elevating force is without significance for the chem-
ical potential. For instance, the density p appearing in
Lo(p,T) is the result of the action of three different
external forces: gravitational force, electrostriction
force, and surface elevating force. A related point
worth noticing is that we cannot on the basis of [16]
directly infer an equation for the pressure, like we did
when passing from [7] to [8]. The last mentioned pas-
sage required constant density. When discussing the
pressure, it is most convenient to use [1] directly, such
as we did above.

Considerations of thermodynamic stability do not
require special attention in this example. The stability
of the system is governed by [9], as before, when the
voltages on the condenser plates are held constant
during imaginary compressions or expansions of the
liquid. The chemical potential { adjusts itself appro-
priately so as to counteract the external forces, in ac-
cordance with [6].

We finally come to the diamagnetic case, b < pq.
The experimental arrangement is imagined to be anal-
ogous to the electrostatic one, for instance in the form
of an electromagnet partly immersed in the diamagnetic
liquid such that the magnetic field is horizontal. The
force density is given by the expression in [2], aug-
mented by the gravitational force. A characteristic of
the diamagnetic case is that the free surface of the liquid
becomes depressed in the field. This is so because the
surface force density 3H?( — o), arising from the first
term in [2], is negative and thus acts downwards. In
direct analogy to [ 13] we can write for the displacement
of the free surface:
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[17] h = (n — o) H*/(2pg)

which is less than zero, corresponding to a depression.
The magnetostriction force in this case acts upwards at
the free surface and downwards in the inhomogeneous
field region between the lower ends of the magnet. This
is easily seen explicitly if we assume the magnetostatic
analogue to the Clausius—Mossotti relation, cf. [5]. As
before, the magnetostriction effect cannot have any in-
fluence on the displacement 4 of the free surface.

Let us write down the expression for the pressure
difference (p, — p,), where p, refers to a point just
below the free surface and p; to a point just above it:

(18] p, — py = $H[pdu/dp — (b — o)}
= H*(n — po)’/ (6po)

This is a quadratic expression, positive even when p <
io. The positiveness of (p, — py) is actually what we
should expect on physical grounds, for a negative pres-
sure difference would simply mean that p, was negative
in the special case of a vacuum above the liquid
(p; = 0), and that would be meaningless. The for-
malism thus leads to consistent results. We see from
[18] that the reason why (p, — p,) is positive is that the
downwards directed surface force $H?(u — ) is stron-
ger than the upwards directed magnetostriction force
1H? dp./dp. Thus, not only are the directions of the two
force terms in [2] opposite to what we are accustomed
to from the more familiar case of positive sus-
ceptibilities, but also the relative strengths of the two
terms have been interchanged.

On the whole, one ought to exert some care in dis-
tinguishing material-dependent properties of a physical
system from the underlying general principles. We have
seen above that the dominating influence from the
striction forces on the variation of the local hydrostatic
pressure in a liquid is no general principle but only a
material-dependent property, dependent on the sign of
the susceptibility. In order to distinguish the underlying
general principles we shall usually have to go to ther-
modynamics. The thermodynamic principie of main
importance here, being independent of whether the
fluid in question has positive or negative susceptibility,
is that the free energy at constant temperature tends
towards a minimum at equilibrium. In other words, the
work required to bring the system out of the equilibrium
state is always positive.

IV. Conclusion

Our discussion has throughout been based upon
the Helmholtz force, as given in [1] and [2] for the
electrostatic and magnetostatic cases respectively. The
correctness and straightforward applicability of the
Helmholtz force in experimental situations is an im-

: P
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portant point that should be stressed. Putting the
Helmbholtz force equal to the gradient of a pressure p at
equilibrium implies that p is the Aydrostatic pressure, at
the same value of fluid density. That is, the role played
by the electric or magnetic field is essentially to act as
an external agency, compressing the fluid. If the field
were removed, and there were instead some other de-

vice producing the same local force density at each .

point, the pressure would everywhere be the same as p.
The fact that the Helmholtz force is derived from a
thermodynamic variational principle can be considered
as just one example of the surprisingly great power of
thermodynamics. Similarly the stability of the system,
as expressed basically by the inequalities [3] and [4], is
also a thermodynamic result. As such it is strong
enough, as we have seen, to cover also the diamagnetic
case, despite the fact that the direction of each term in
the force expression [2] is now reversed relative to the
case of a paramagnetic fluid. The essential point is thus
not the sign of the susceptibility, or the direction of the
field force, but rather that the work required to bring the
system out from equilibrium is always positive.

It is important to be aware of the essential role played
by the electrostriction (or magnetostriction) force for
the distribution of the hydrostatic pressure in a fluid.
We dealt with the electrostriction force in both exam-
ples above. As regards example 1, we have noticed the
good agreement between the Hakim—Higham experi-
ment (5) and the Helmholtz theory. As regards example
2, we have taken the opportunity to point out the incor-
rect pressure variation given in Panofsky and Phillips’
book (1). While recognizing the importance of striction
forces for the variation of pressure throughout the fluid,
it should, however, be borne in mind that these forces
are peculiar in that they are expressible as gradients of
scalar functions. Therefore, they are in principle unable
to contribute to the total, integrated force on a test body.
For this reason striction forces are frequently omitted in
the formalism; for instance, this is the case both for
Minkowski’s and Abraham’s energy —momentum ten-
sors. When only overall forces or torques on a test body
are desired, this omission is fully legitimate.

In this paper we have considered only dielectric,
paramagnetic, and diamagnetic fluids; ferromagnetic
media have been left out.

Finally we mention that the relation between .

Helmholtz™ and Kelvin’s force expressions has recently
been the subject of a discussion between Gingras (13)
and Lahoz (14). The reader may consult these
references for further information.
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