large displacement regions, where the velocity is approach-
ing constancy because of air resistance, can probably be
interpreted interestingly, but we did not attempt that.

In order to find test mass accelerations, the spot acceler-
ations were scaled down by the magnification factor of
84.4. This quantity can be calculated from the lengths of
the lever arms listed in Table I, along with a factor of 2
introduced by the mirror. The differences between left and
right test mass accelerations are of the order of 10~° cm/s?,
corresponding to angular displacements from equilibrium
position of about } rad. This is based on the calculated
torque of 2.1 X 10~ dyn cm/rad using the parameters in
Table I and the tabulated value for the bulk modulus of
drawn tungsten.

Geometric asymmetries in the centering of the dumbbell
in the housing are canceled out in first order by left-right
averaging. The next-order effect is only some 1% for a
zero-location error corresponding to some 25 cm in spot
location, even in the closest gravitating position, so we can
neglect centering error throughout. The data here were
taken before we realized the effectiveness of the cancella-
tion, and so includes the errors in our direct measurements
of the distances r. Instead, only the distances between the
pseudospheres in their left-run and right-run positions
need be measured, reducing the errors in line 4 of Table I1
effectively to zero. In that case, it would be worthwhile to
measure the accelerations more accurately.

The final left-right averages have been corrected for sev-
eral small effects, as shown in Table II. (None of the fol-
lowing corrections are made by students in the 2-h lab.)
The averaging cancels out all the torsion except that from

the small difference in the regions of definition of the pa-
rabolas. In all four runs in Table I, the effective operating
regions for left and right runs were within 3 cm of each
other on the scale; the small differences in acceleration are
shown as corrections in Table I1. Other corrections include
both the gravitational torque on the rod and its moment of
inertia, the nonspherical geometry of each test mass, and
the countertorque exerted by the far pseudosphere on each
test mass. The contribution from the rod, as deduced from
the parameters of Table L, is less than one might think be-
cause the parts of the rod that contribute most to its mo-
ment of inertia are also those that are attracted most effec-
tively by the pseudospheres.

To get n in the 1/¢" distance dependence of the accelera-
tion a, the quantity " a was plotted versus . The best hori-
zontal fit and the error in the slope were estimated by eye.
The quite satisfactory results for G (including the iron—
uranium comparison) and for # are given in Table II.
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The angular momentum of a static electric charge-magnetic monopole is, in SI units, L = (eg/
47) 4. Here, e and g are their respective strengths and & is a unit vector along the line from the
electric charge to the magnetic pole. A simple derivation is presented of this well-known result.
The derivation makes use of vector (and tensor) analysis; no actual integrations involving the

electromagnetic field are involved.

Figure 1 shows a static ”charge-monopole” pair. The
pair consists of an electric charge of strength e located at
r= — a/2 and a magnetic pole of strength g located at
r = a/2. Thomson'* stated that the angular momentum L
stored in the associated electromagnetic field is indepen-
dent of the separation distance @ = |a| between the electric
charge and the magnetic pole and that L is given by the
simple expression

L= (eg/4m)a. (N
Here, 4 = a/a is a unit vector in the direction of a (i.e.,
from the electric charge to the magnetic pole). [We have
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converted Thomson’s original expression, L = (eg/c)4,
from Gaussian units to SI.>] Dirac* has shown that the
product of the two strengths eg is quantized so as to make
the angular momentum quantized in integer multiples of
#/2. The purpose of this article is to present a simple meth-
od of obtaining Eq. (1). The method employs only vector
(and tensor) analysis; no actual integrations involving the
electromagnetic fields are necessary. This is intended to
complement the treatment by Adawi,> who has demon-
strated three different methods (including the use of
spherical polar and prolate spheroidal coordinates) to
evaluate the necessary integrals.
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Fig. 1. An electric charge of strength e
and a magnetic pole of strength g form a
“charge~-monopole” pair. The vector
from the electric charge to the magnetic
pole is a. The origin is chosen midway
between the electric charge and the mag-
netic pole.

The angular momentum stored in the electromagnetic
field of the charge-monopole pair is given by the volume
integral

L=¢, er(ExB)dr. (2)

Because the total linear momentum stored in this field is
zero, the angular momentum L is independent of the par-
ticular choice of origin. The electric and magnetic fields for
this situation are>:

E = (e/4me,) [ (r +a/2)/(Jr +a/2)], (3)

B = (g/4m)[(r —a/2)/([r—a/2]?)]. 4)
The electric field E is derivable from a scalar potential ¢,

E= —-V¢, (5)
where

& = e/dmey|r + a/2| . ‘ (6)
The term E X B can be written

EXB= —VgxXB= — VX (¢B) (7)
because VX B = 0. Letting

W=¢B, (8)

the following identity is readily verified:
rX(EXB) =rX(-VXW)
= —~V(r-W)4+V-:-0W)
— 2V +«(Wr) +2rV-W, 9

When integrated over all space, the first three terms on the
right-hand side of Eq. (9) can be transformed into surface
integrals over the surface of a “large” sphere centered at
the origin. Although the argument is somewhat subtle due
to the fact that W goes to zero only as rapidly as 1/7° for
large r, these surface integrals can be shown to vanish (see
Appendix). As for the last term in Eq. (9),

2rV-W =2rV «(¢B) = 2r(V¢)-B + 2r¢vV+B
= —2rE*B + 2r$[gS(r—a/2)]. (10)

When integrated over all space, the first term on the right-
hand side of Eq. (10) vanishes because the integrand is an
odd function of r for our choice of origin. Because of the §
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function, the integral of Eq. (10) over all space becomes

fzrv-ww: 2818|, o> -

= 2g(a/2)(e/dmea) = (eg/4mey)a.  (11)

Finally, combining Eqs. (2) and (9)—(11) leads to the de-
sired result,

L = (eg/4m)d. (12)

After this article was submitted, a similar treatment of
this problem was found in Portis’ text.® Portis attacks the
problem using two scalar potentials (E= — V¢ and
B= —Vg).
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APPENDIX

We will discuss one of the four terms on the right-hand
side of Eq. (9), the others are treated in a similar manner.
Consider the term V «(rW). The volume integral of this can
be converted into a surface integral over a “large” sphere
centered at the origin,

JV-(rW)dT=ff-(rW)dS. (A1)
Here, £ = r/r is a unit vector in the r direction and dS'is a
differential element of surface area on this large sphere. For
large 7, the leading term of £ -rW (arising from the 1/
contribution of W = ¢B) is

£+ rWf r(e/4me,r) (gr/4mr) ,

£+ rWe(eg/16m¢,)t/r. (A2)
Using dS = 7 dQ (dQ = element of solid angle) the inte-
gral (A1) becomes

JV-(rW) dr:(eg/16’n'260)ff'dﬂ, (A3)

which vanishes because of the vector nature of f.

'J. J. Thomson, Elements of the Mathematical Theory of Electricity and
Magnetism (Cambridge U. P., Cambridge, 1909), 4th ed., p. 532.

2J. J. Thomson, Recollections and Reflections (Macmillan, New York,
1937), p. 370.

*We view e and g as sources of D and B, respectively. The pertinent
Maxwell equations are V:-D=p, .. =ed(r+a/2) and V-B
=pmagnetic =g 5(1. - 8/2)
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