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It is shown that the net mechanical impulse one must exert to change one static system of
currents and charges slowly into another such system is independent of the method used, and
is given by the change in > ¢q:AT(x:,t), where AT(x;,2) is the transverse vector potential, evalu-
ated at the position x; of the charge ¢;. The linear momentum stored in a quasistatic electro-
magnetic field is thus given by > ¢;AT(x;,£). These considerations show that it is possible to give
the transverse vector potential AT of a static system a physical meaning. Namely, that A7(x)
is the net mechanical impulse one must exert to bring a unit point charge slowly from infinity

to the point x.

INTRODUCTION

T has long been realized that in order to con-
serve energy and momentum, it is necessary
to endow electromagnetic (EM) radiation with
energy and momentum. In quasistatic fields, that
1s, EM fields in which there is no radiation, the
situation is not so satisfactory. Although the con-
cept of energy in quasistatic electric and mag-
netic fields is discussed at length in most standard
texts on EM theory, it is not commonly appreci-
ated that it is necessary to assume that quasi-
static EM fields also possess linear momentum.
This fact is mentioned by Feynman,! who intro-
duces the angular momentum of a quasistatic
EM field to resolve a paradox, and by Cullwick,?
who discusses the idea of action and reaction in
a system interacting via EM forces. The follow-
ing remarks are based on the ideas discussed in
their books.

1. AN EXAMPLE

In view of the unfamiliarity of the concept of
linear momentum in a quasistatic EM field, it is
useful to begin the discussion by considering a
specific situation, adapted from Cullwick. This
serves to introduce most of the ideas which later
are treated in more generality. A system consists
of an infinitely long circular solenoid, sitting at
rest and initially carrying no current, and a point
charge ¢ also sitting at rest outside the solenoid
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a distance # from the axis of the solenoid (Fig. 1).
Initially, there is no linear momentum. The cur-
rent in and hence the magnetic flux & through
the solenoid is now slowly increased. According
to Faraday’s law an electric field E is generated,
which, at the position of the charge, has the
magnitude

E=(d/2xr)i. (1)
The charge is acted upon by a force
FEM=gE= (gCiD/Zﬂ’f’)i (2)

and tends to move. Suppose, however, that one
exerts on the charge a mechanical force equal
and opposite to that exerted by the electric field

(3)

The charge thus remains at rest. The solenoid
feels no net force so it too remains at rest. When
the flux through the solenoid reaches some value
®, the current and hence the flux is held constant.
In the final state the solenoid is at rest and no
net force acts on it. The charge is at rest and no
force acts on it. There is again no mechanical
linear momentum. However, to reach this state
from the initial one, one has had to supply to

Fup=—Fau=—(¢§/27r)i.

F1G. 1. The charge and
solenoid.
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the system an impulse
Iue= fthME: —_ (gq)/Zﬂ'i’)i . 4)

Thus, the linear momentum of the system has
changed. Since the mechanical linear momentum
is the same before and after, the only place to
store this momentum, equal to the right-hand
side of Eq. (4), is in the static EM field which
exists once the flux is established in the solenoid.

It might, of course, turn out that the net im-
pulse one must apply to the system to reach the
final state depends not only on the state but on
the method by which the state was reached. If
this were the case, then one would not only need
to know the currents and charges in the final
state but at all times in the past. It is shown later
that the net impulse one must apply is indeed
independent of the method used, provided that
the system is set up sufficiently slowly. For the
moment, a consideration of the following alter-
nate method for reaching the final state will serve
to make this plausible.?

Suppose one initially places the charge a great
distance from the solenoid, say on the y axis,
then slowly increases the current in the solenoid
to its final value, and then slowly brings the
charge up to its final position along the y axis.
In this case negligible force acts on either the
charge or the solenoid as the current is increased
in the solenoid. Further, no force acts on the
charge as it is brought up, since it always moves
through a field-free region. However, the moving
charge generates a magnetic field. This magnetic
field acts on the current flowing in the solenoid,
giving a net EM force on the solenoid in the
positive x direction. To prevent the solenoid from
accelerating, one must counterbalance this force
by a mechanical force on the solenoid in the
negative x direction. A direct computation shows
that the total impulse one must give the system
to reach the final state is again given by Eq. (4).

II. GENERALIZATIONS

It remains to generalize these ideas. For this
purpose, consider a system consisting of station-

3 1n this paper the word “state” refers to a particular
configuration of currents and charges. Then, in the general,
although not in the quasistatic, case the net impulse re-
quired to reach some final state will depend not only on the
state but on the history of the system. In practice one
avoids this by generalizing the concept of “state” to in-
clude electric and magnetic fields.
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ary current-carrying loops of wire, the current
density at a point x being J(x), and stationary
charges, the charge density at a point X being
0(x). The individual loops and charges are acted
on by EM forces, which one assumes to be
counterbalanced by mechanical means. The net
mechanical force one must apply to the system
as a whole to keep it from accelerating is zero.
This system can be changed in various ways.
First, one can slowly change the current flowing
through each of the loops. Then, according to
Faraday’s law, an electric field ET is induced,
where

E7(x,t)= —AT(x,t). (5)

AT(x,1) is the transverse vector potentialt, which,
for sufficiently slowly varying currents, is given

by
2 Jr 0
AT(x,f)=— / Fx—" (6)
4 |x—x'|
This electric field acts on the charges, exerting
on them a net force

FEM=/d3Xp (x)ET(x,t)
< @/ [ FxaAT s - )

To keep the charges at rest, one must counter-
balance this force by mechanical forces, the net
mechanical force one must apply to the charges
being

FME= —Fem =d/dt/d3Xp (X)AT(X,t>. (8)

The forces which the individual current loops
exert on one another change as the currents
change. If the loops are to remain stationary,
the mechanical forces applied to the loops must
also change. However, the net mechanical force
one must apply to all the loops remains zero.
Thus, the net impulse one must apply to the
system during the time in which the currents
and hence the vector potential change from some
initial to some final value is simply

IME=/thME=A/d3Xp(X)AT(X,t) B (9)

4 The transverse vector potential AT is the solution to
the equations VXAZ =B, V+A7=0, which vanishes at in-
finity. A7 is invariant under gauge transformations.
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For point charges g; located at the points x;, this
becomes
Ive=A 2 ¢AT(Xil) . (10)

A second way in which the system can be
changed is to move the charges slowly from their
original positions to some final position. It suffices
to consider the effects of moving a single point
charge ¢. As the charge moves, the electrostatic
force which it feels varies. The electrostatic force
which it exerts on the other charges also changes.
However, the sum of the electrostatic forces
acting on all the charges remains zero. In ad-
dition to the electrostatic force, the moving
charge is acted on by the magnetic field of the
loops, the force which the loops exert on the
charge being

Funm{charges) =gv x B(loops)
vx{rx])
e

4r b

Mog

, (11)

where r=x—3" is the radius vector from the in-
stantaneous position of the charge ¥’ to the point
x, and v=x%'is the instantaneous velocity of the
charge. Since the charge is moving, it generates
a magnetic field

B(charge) = (uog/4m) (v x1/7%). (12)

This magnetic field exerts a force on the current
carrying loops, the net force which it exerts being

Feu (loops) = [ d*x] % B(charge)

:’ﬁg/daij x (vx) . {13)
4z il

This force is in addition to the forces which the
loops exert on one another, and which sum to
zero. If one is to prevent the loops and charges
from accelerating, each of these forces must be
counterbalanced by mechanical means. The net
mechanical force one must apply to the system is

Fur(system)
= —Fpy (charges) —Fga (loops)
pog [ vx(rxJ)+Ix (vxD)
a*x

738

A
“ogf v-r v]-r
=£[[d3xj —fd’*x J ]
4 73 78

(14)
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The second of these two integrals is zero. The
first can be rewritten to give

Fur(system) = (d/dt) (¢AT), (13)

where A7 is the transverse vector potential due
to the loops evaluated at the instantaneous posi-
tion of the moving charge. The net impulse one
must give the system as the charge is moved
from its initial to its final position is
I
Tug= j dfFue=A(gAT) . (16)

By combining these two processes, one in
which the current density is changed, and one
in which the charge density is changed, one can
slowly change any static system of currents and
charges into any other such system. In so doing,
one must give the system a net impulse, equal
to the change in >, gAZ. Since the change in
mechanical linear momentum is zero, this im-
pulse must equal the change in linear momentum
stored in the EM field. Thus, the linear momen-
tum of a static EM field is given by 3 gA”.

Although the above derivation clarifies the
various forces acting on various parts of the sys-
tem which contribute to the net force acting on
the system as a whole, it does not make obvious
the fact that the impulse depends only on the
initial and final states, and not on the method
by which one passes from the initial to the final
state. To rectify this, a somewhat more sophisti-
cated, although closely related, approach to the
problem follows. Again, consider a system con-
taining currents, the current density being J(x,t),
and charges, the charge density being p(x,t). For
the moment, the currents and charges can vary
arbitrarily with time. These currents and charges
generate electric and magnetic fields, E and B,
which exert forces back on the currents and
charges which generated them. The net force
which the fields exert is given by

FEM=/d3X(pE+J xB). (17

This expression is now rewritten in a more con-
venient form. Consider first the force exerted on
the charges by the electric field

.
Fp= j @3 . (18)
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The electric field E can be written as the sum of a
longitudinal field EX(V x EX=0) and a transverse
field, E7(V-E7=0)

E=E*+E". (19)
Explicit expressions for EL and E7T are
El= (1/47reo)/d3x’(pr/r3) (20)
and )
ET=—AT, (21)

AT is the transverse vector potential. If the ex-
pression (19), together with (20) and (21), is
substituted into the formula for Fg, Eq. (18), one
obtains

1 p(X,t)p (X', Dr
/ / PR b saih ali

47reg ¥

Fi=
——/d3XpAT. (22)
The first term vanishes. One is left with

Fgp= -—/d3XpAT . (23)

Now consider the force exerted on the currents
by the magnetic field

FM=[d3xJ xB=/dstx (VxAT) . (24)

By using the vector identity

Ux(VxV)+Vx(VxU)
=0vV.-V+Vv.U+V- (U-V-UV-VU) (25)

and Gauss's theorem one can write Fyu in the
form

Fu= —/d?’xATx (v x]T)+]d3xATv-]

—l—fds(ATJn—n-AT]'—n-]AT) . (26)

The surface integral vanishes. By using the equa-
tion of continuity to rewrite the second term,
one finds

Fu= ——fdgprT—/dngT x(vx]). (27)
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These expressions for the electric and magnetic
forces, Egs. (23) and (27), can now be combined
to give the net force exerted by the EM field
on the currents and charges which generated it

d
Fevy=— g—/(ﬁXpAT—/(ﬁXATX (vx]). (28)
¢

No approximations have so far been made. If
one now makes the assumption that p and J
change slowly with time, further simplification
occurs. In this quasistatic case the vector po-
tential A? is given by Eq. (6) to a first approxi-
mation. Substituting this expression for AT into
the second term in Eq. (28), one finds that the
resulting integral vanishes. The corrections to
Eq. (6) for AT involve the second and higher
time derivatives of JT. Thus, if the currents
change sufficiently slowly with time, the second
term in Eq. (28) can be made as small as one
wishes in comparision to the first term in Eq.
(28), which involves only the first time deriv-
ative. Thus, in the quasistatic case one can write

Fa = — (d/d2) f PxpAT 29)
where now AT is related to the current density
by Eq. (6). The net mechanical force one must
exert on the system to prevent it from acceler-
ating is the negative of Fgum

FME=d/dt/dBXPAT . (30)
Since Fyg is expressed as a total time derivative,
the net impulse one must exert on the system to
pass slowly from some initial to some final state
is independent of the method used, and is given
by

IME=Afd3XpAT . (31)
Since the net mechanical linear momentum of
the system remains unchanged, the change in
the linear momentum of the EM field is given
by the right-hand side of Eq. (31) and the field
linear momentum itself by
PEM=/d3XpAT . (32)
Note that Pgym depends solely on the currents
and charges in the state, and not on the method
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by which the state was reached, provided that
the state was reached sufficiently slowly.

These considerations show that the transverse
vector potential of a static EM field can be meas-
ured, although not by a process carried out at a
single point, as in the case of the field strengths.
To be specific, the transverse vector potential
AT (x) is the net impulse one must exert in slowly
moving a unit point charge from infinity to the
point x. Alternatively, A7 (x) is the linear momen-
tum acquired by the EM field when a unit point
charge is brought from infinity to the point x.
This interpretation of AT (x) is completely analo-
gous to that given the electrostatic potential
¢(x), which, if ¢ vanishes at infinity, is the work
required to move a unit point charge from in-
finity to the point x.

ACKNOWLEDGMENTS

The author would like to thank Dr. G, Stabilini
and Dr. M, H. Jericho for helpful discussions.

APPENDIX
It is of interest to compare the expression
(32) for the momentum stored in a static EM
field to the expression for the momentum stored
in an arbitrary EM field, namely

Py = / d*xecE x B. (A1)
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It is relatively easy to show that the two expres-
sions are equivalent in the appropriate limit. To
see this, one writes the electric field in Eq. (A1)
as the sum of a longitudinal and a transverse
part, EX and E7, obtaining

Py = / d*xeoEL x B+ / P*xeETxB . (A2)

Using the vector identity (23), one can write
the first term in Eq. (A2) in the form

f *xATY - (eE7)

—}-fds(AT-ELn——n'ATEL—n~ELAT) . (A3)

The surface integral vanishes, since at large dis-
tances from the source AT falls off at least as
fast as 1, and E* falls off at least as fast as #2,
One finds that, in general, the momentum stored
in an EM field is given by

Ppy = / d*xpAT+ f @xaETxB.  (A4)

In the quasistatic limit, the second term in Eq.
(A4), which involves E7=—AT, is negligibly
small in comparison to the first term. One then
recovers Eq. (32).



