
SCIENCE 

Electromagnetic energy and power in terms of 
charges and potentials instead of fields 

C.J. Carpenter, CEng, FlEE 

lndexing terms: Electromagnetic theory, Mathematical techniques, Magnetic fields 

Abstract: It has been shown in a previous paper 
by Konopinski that there are important advan- 
tages, particularly to the engineer, in an electro- 
magnetic theory in which the properties, which 
are customarily associated with the fields, are 
assigned instead to the source charges, and mea- 
sured by the potentials. These properties include 
stored energy and energy flow. The objective of 
the paper is to reformulate Poynting’s theorem in 
charge-potential terms, and it is shown that the 
energy flow vector which is obtained simplifies the 
quantitative description of electromagnetic power 
transfer. It is closely related to the circuit concepts 
familiar to all electrical engineers, and, unlike the 
Poynting vector, is equally useful in communica- 
tions and in power-frequency applications. It 
demonstrates the fundamental importance of elec- 
trostatic forces in all electromagnetic devices. The 
paper also shows that practical difficulties in 
applying field theory, and, in particular, the 
Poynting vector, have led to the use of hybrids in 
which two wholly different viewpoints are mixed. 

1 Introduction 

As magnetism is a consequence of the motion of charge, 
magnetic energy is equivalent to kinetic energy, and any 
group of moving charges behaves as if it has inertia. 
Although this view of magnetism as a kinetic property of 
the charges themselves, instead of the fields around them, 
is very well known in general terms, it is usually regarded 
as an analogy, and somewhat obscured by treating it as 
another aspect of field theory. But Maxwell [ l ]  demon- 
strated that it provides an entirely different interpretation 
of the observable phenomena which is as valid as the 
explanation in terms of the Faraday concept of magnetic 
flux, and, as has been shown elsewhere [ 2 ] ,  the electro- 
kinetic momentum description has many advantages over 
field theory for teaching purposes. A similar approach 
has also been advocated by Konopinski [3] and others 

It raises many questions about the role of, and need 
for, the field concepts, one of which is the flow of energy. 
The Poynting concept of power flowing through the field, 
with density E x H, like the electromagnetic momentum 
vector D x B, appears to be a necessary consequence of 
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electromagnetic propagation, and both have become so 
familiar a part of electromagnetic theory that they are 
often regarded as inseparable from it. But they rest on 
untested assumptions, and are called into question by 
Maxwell’s electrokinetic interpretation of the momentum. 
As is well known, the curl of the Poynting vector E x H 
is arbitrary, so that many different descriptions of energy 
flow are possible, all equally valid. What is less clearly 
recognised is that the divergence is arbitrary as well, 
because it is chosen to match the electric and magnetic 
field energy densities E * Dl2 and H . B/2, and these are, 
in turn, unsupported by any experimental evidence. The 
characteristic of the electrokinetic momentum view is the 
description of magnetic stored energy as a property of the 
charges, with density J . AI2 instead of H . B/2, and the 
electric stored energy can likewise be removed from the 
field and attributed to the sources. This obviously affects 
not only the description of momentum, but also the 
energy transfer. 

The object of the paper is to explore some of the con- 
sequences of describing electromagnetic energy flow, like 
the momentum and stored energy, in terms of the charges 
and potentials instead of the field vectors. As shown in 
Reference 2, such a change is of fundamental importance 
because the Aharonov-Bohm effect [SI provides experi- 
mental evidence in favour of the potentials, not the field 
vectors, as the quantities which are physically significant. 
But the usual assumption that there is no way of dis- 
tinguishing experimentally between the different stored 
energy densities is sufficient for the present purpose, 
which is limited to examining the relative practical 
advantages, to engineers, of the different descriptions of 
power flow in devices which are familiar to them. 

Although momentum often receives little attention in 
electromagnetic texts, because of the way in which field 
theory obscures its role at low frequency, it is inseparable 
from the transfer of energy, and one advantage of the 
charge-potential formulation is that it shows this 
relationship more clearly [2]. Some of the momentum 
implications are examined separately* in terms of the 
application to plane waves, and this also provides an 
important practical example of the different energy-flow 
concepts. 

2 Charge-potential theory 

Electromagnetism rests on the ‘electrostatic’ interactions 
between charges due to position, i.e. to their potential 
energy. This is a system property, usually expressed in the 
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form 

= 41612 = (q1412 + 4 2  42l)i2 (1 )  

for two charges, where 412 is the potential at charge 1 
due to 2. More generally, it is obtained by summing, or 
integrating, over all the charges. The energy is custom- 
arily assumed to be distributed in the field, with density 

U ;  = E .  Dl2 (2)  

4 = P4P ( 3 4  

but an equally valid choice of energy density is 

where p is the charge density, either per unit volume, or 
per unit surface area when applied to conductors. This 
locates the energy in the regions occupied by the charges 
and, in this sense, it is stored ‘by’ the charges, and not in 
the empty space between them. It represents the pressure 
energy in a cloud of charge of like sign, analogous to 
hydraulic pressure in that it is due to the mutual repul- 
sion forces between the constituent charges, and increases 
as the packing density is increased. It forms the c- 
equivalent of the Maxwell field stress, an implication 
which will be examined elsewhere. 

Although the two views of energy are very well known, 
their implications have attracted surprisingly little atten- 
tion, other than by writers such as O’Rahilly [SI. They 
provide the basis for two alternative electromagnetic 
theories, one expressed in terms of the charge densities 
and potentials, indicated by the subscript c, the other by 
the field vectors and designatedf. They differ fundamen- 
tally in viewpoint, even though they may share the same 
potentials, and one of the incidental objectives of the 
paper is to attempt to disentangle them. As is well 
known, the energy is a system property whose distribu- 
tion cannot be tested by experiment [3,610], so that the 
statement, in some texts, that the energy of a capacitor is 
stored in the field and not on the plates is without foun- 
dation. If both energy densities are equally valid, then so 
also are the two theories which follow by adopting either 
in a self-consistent way. 

One obvious advantage of eqn. 3 in place of eqn. 2 is 
the relative simplicity of the proof. This is because U must 
be derived from a system, energy U, which is, necessarily, 
expressed in terms of the charges and potentials, so that 
the usual proof of eqn. 2 [ l l ]  is essentially an exercise in 
translating from one theory to the other. Replacing eqn. 
2 by eqn. 3 makes this unnecessary, and reflects the way 
in which the charge-potential description is much more 
closely related to the terminal parameters of circuit 
theory [2 ]  and to practical measurements. 

Likewise the magnetic energy due the current inside a 
conductor, of density J, can be assigned to Maxwell’s 
‘electrical fluid’, i.e. to the conduction electrons, by 
choosing the energy density 

U: = J .  AI2 = p - u .  A /2  (36) 

in place of the field equivalent H . B/2. Here, p -  denotes 
the density of electrons in the conduction energy band, U 
is the mean drift velocity?, and A is the magnetic vector 
potential of field theory, although the comparison 
between eqns. 3a and 3b shows that there is a much more 
direct relationship between A and 4 (Section 6). The 
terms ‘kinetic energy’ and ‘potential energy’, or ‘pressure 
energy’, are more descriptive and more accurate than 

‘magnetic energy’ and ‘electrostatic energy’, because 

U ,  = p 4 / 2  + J . AI2 (4) 

like 

U, = E . DJ2 + H . BJ2 ( 5 )  

is assumed to give the system energy, regardless of the 
motion of the charges. 

It is this assumption which many authors reject, 
asserting that field theory is necessary to describe 
changes in time. But the assertion is not substantiated, 
and does not appear to have been closely examined. Con- 
ventional theory derives from the Lagrangian density 
[lo, 12-14] 

L, = ( E .  D - H ’ B)/2 - ~ ( 4  - U A )  (6) 

in which 4 - U . A is the Schwarzschild ‘electrokinetic 
potential’ [ 151 representing the interaction energy 
between the fields and the charges, p 4  corresponding to 
the q1q!J12 form of eqn. 1. As the Lagrangian is not 
limited to static conditions, neither is eqn. 4. Using the 
alternative form of eqn. 1 is equivalent to 

L, = - (p$  - J . A)/2 (7) 

which is given by Schwinger [ 161. Charge-potential 
theory merely substitutes L, for L, . 

The same point is demonstrated by the momentum. 
Eqn. 3b shows, by inspection, that the kinetic energy 
requires a momentum density 

gc = P - A  (8) 

g , = D x B  (9) 

in place of the field equivalent 

The quantity gc is familiar to physicists as the electro- 
magnetic part of the canonical momentum, and redefines 
A as the momentum per unit charge; i.e. as Maxwell’s 
‘electrokinetic momentum’ vector. It is less familiar, in 
this form, to engineers, but can be deduced very simply 
and directly from the electrostatic interactions between 
the charges by considering the process by which they are 
accelerated in a pulse [2]. If the conductor is resist- 
anceless, the conduction electrons are in equilibrium 
under the influence of grad 4 and momentum forces only, 
giving 

(10) 

where 4 and A are observed in the reference frame of the 
moving charges. It is this equilibrium condition which 
defines A .  Relativity theory shows that it describes all the 
electromagnetic forces which act on the moving charges, 
at all velocities up to U = c, where c is the propagation 
velocity in empty space. Thus the ‘c’ description of 
momentum, like the Lagrangian, applies to radiating as 
well as nonradiating systems, although it necessarily 
requires some changes in concepts (Section 12). 

grad 4 + aA/at = o 

3 Energy flow vector 

In the c description the moving charges carry the 
momentum and, thus, also the energy. The Poynting 
vector 

t The vector symbol U distinguishes velocity from energy U. 
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can be replaced by$ 

W, = J 4  = up- 4 i 

as this has the required divergence. It describes the trans- 
fer of energy, of density p - 4 ,  at the charge velocity U, the 
negative subscript emphasising the distinction between 
the moving and the stationary charges when there are 
two, or more, groups occupying the same space, as in a 
conductor. The divergence expands to 

div ( J 4 )  = (div J)$ + J . (grad 4) 
where 

div J = -ap/a t  = - a p - / a t  

div ( J 4 )  = -&&-/a t )  + p-U . grad 4 
Thus 

(13) 

and J 4  accounts for two local actions. The first is the 
rate of change of potential, or pressure, energy density, 
expressed in terms of the local changes in p, and the 
second is the work which is required to convey the 
moving charges through the change in 4 due to an equiv- 
alent stationary charge group (Section 7). 

The grad 4 work may be accounted for in many differ- 
ent ways, depending on the various energy sources exert- 
ing forces on the charges. The most common example is 
wire of conductivity D .  Viewed from the stationary 
crystal-lattice reference frame, the equilibrium condition 
for the moving electrons becomes 

( 1 4 ~ )  p-(grad 4 + aA/at - U x curl A )  + J/D = 0 

in place of eqn. 10 or, alternatively, 

grad 4 + aA/at + (curl A )  x U + U/D = 0 (14b) 

div ( ~ 4 )  = - 4(ap - /a t )  - p - U . (aA/at)  - J . J / o  (1 5 )  

Substituting for grad 4 in eqn. 13 gives 

because U . (U x curl A )  is zero (i.e. there is no work done 
by the magnetic forces). The result shows that, when the 
balance between the grad 4 and momentum forces on the 
moving charges is provided by lattice collisions, the 
energy flow J 4  accounts for the changes in the potential 
and kinetic energies, plus the rate of energy conversion in 
collisions. This is the description of the energy exchange 
process ‘seen’ from the reference frame in which the wire 
is stationary, but is easily extended to any sources and 
sinks of electromagnetic energy. It puts the result in a 
form which is directly comparable with the Poynting 
equivalent 

div ( E  x H) = - E .  aD/at - H .  ae /a t  - E .  J (16) 
One important point, which is illustrated by the compari- 
son, is that the vector E is not the same as grad 4, but 
represents the difference between the grad 4 and the 
momentum (aA/at)  forces (Section 7).  Another is the 
more general form of energy density in eqn. 15 : 

U , =  s s  4 d p +  J - d A  (17) 

in place of eqn. 4. This, like the Poynting vector equiva- 
lent, is valid when the relationships are nonlinear, and 
shows (Section 11) that the charge-potential description 
of ferromagnetism is essentially in terms of an electron 

1 Or by pot+, where po is the change in charge density in a pulse. This 
form is closer to E x H.  It is examined elsewhere (see the footnote to 
Section 1). 

IEE PROCEEDINGS, Vol. 136, Pt .  A ,  No .  2, MARCH 1989 

spin response to A .  The first term in eqn. 15 describes 
directly the forces which have to be exerted on the 
charges in any volume element in order to remove them, 
and thus the corresponding energy, from the element. 
The kinetic energy term takes a different form because 
the aA/at forces are due to changes in velocity of the 
remote charges, not those causing the local current 
density J.  In general, eqns. 13 and 15 show how the 
system energy is accounted for by the actual expenditure 
of work on the charges, whereas, in eqn. 16, the physical 
significance of the terms is less obvious. 

Integrating eqn. 15 over any volume U bounded by a 
closed surface s gives 

a -  $ w, . ds + j! % du 

+ J . - d~ + J * / D  do = 0 ( 1 8 ~ )  1: i 
in place of 

+ H - d o  + E .  J d u  = 0 (18b) 1.: i 
Thus the rate of change of stored energy, plus the energy 
conversion, within s is obtained by integrating either 
E x H or J 4  over s, but the only contribution to w, is 
from the intersections of s with the conductors, whereas 
the Poynting vector E x H usually has to be evaluated 
everywhere except at these intersections. A further dis- 
tinction is that wf requires a vector cross-product, 
whereas w, is in the direction in which the charges are 
moving, and this mathematical simplicity reflects the con- 
ceptual advantages of a description of the energy 
exchange processes in terms of the charges themselves, 
instead of the fields around them. The subscript dis- 
tinguishing the moving (i.e. conduction) electrons p - 
from the crystal lattice charges in eqn. 18a can be 
omitted, as the only way of producing a change in time is 
by movement, but its retention helps to emphasise an 
important point. As the energy transfer and exchange 
processes depend on the movement of charge, the contri- 
bution to eqn. 18a from the stationary charges is limited 
to the potential 4 (other than the provision of the lattice 
collision ‘obstacles’). 

The changes in scalar potential are not necessarily the 
same as the voltage V between any two points, because 
of what appear as induced electric fields in field theory 
(i.e. aA/at terms). The symbol V was used for potential in 
Reference 2 because of its familiarity to engineers, and 
because no distinction was necessary, but the difference 
between voltage and potential is of fundamental impor- 
tance when considering power flow. 

4 Hybrid vectors 

The Jd, description of energy flow is a return to the ideas 
which were familiar before Poynting and Heaviside 
showed that E x H is a valid equivalent, and conflicts 
with the usual assumption that all alternatives to E x H 
are more complex in form. Slepian [17], for example, has 
listed nine, and he [18] and others [19] have advocated 
what we may call the Slepian vector: 

w , = J ~ + D ~ + H x A  (19) 
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in which the dots denote differentiation in time. A variant 
proposed by Macdonald [20] and O’Rahilly [6 ]  has been 
advocated by Hines [21] and others. Many authors 
accept E x H somewhat reluctantly, because of the com- 
plexity of such alternatives, which is a direct consequence 
of their hybrid nature. Whereas E x H describes energy 
flow in terms of the field vectors only and J 4  in terms of 
the charges and potential only, all of the alternatives 
include mixtures of both. 

One reason for this is that ws attempts to describe 
power flow in terms of J 4  by utilising the arbitrary 
nature of the curl of w,  so that energy stored in the field is 
conveyed by the charges, so far as is possible, the hybrid 
terms representing the resulting exchange of energy 
between the two. Slepian also explored the consequences 
of changing the divergence of w, by changing the energy 
density, but used another form of hybrid (see Appendix 
16) which combined the real sources with a surface equiv- 
alent, and attributed the energy of one to E .  Dl2 and 
that of the other to p4 /2 .  Macdonald [20] is one of the 
few writers to examine the implications of Maxwell’s two 
different theories, and of the two Lagrangian and power 
densities which they imply. He supported the electro- 
kinetic momentum description, and criticised Maxwell’s 
use of field theory. But he followed Maxwell in including 
the displacement current, defining the ‘total current’ as 
J +  aD/at in place of J, thus attributing some kinetic 
energy to empty space. He combined the resulting J . A/2  
description of the kinetic energy with the E .  Dl2 dis- 
tribution of electric energy, giving yet another hybrid 
form for w. The variety in these results seems to suggest 
that the ingrained concepts of field theory have tended to 
obscure alternatives which might otherwise be obvious. 

The essence of the problem is shown by the hybrid 
nature of the usual Lagrangian (eqn. 6). Although the 
field terms, on their own, provide the whole of the system 
energy, they are not sufficient, because of the need to 
predict the observable effects, which are the forces on the 
charges. Thus the interaction terms, due to and A, 
are necessary, whereas the field terms are not. The 4 and 
A values have to be calculated, of course, although the 
need to use field concepts is open to question [ 2 ] .  
However, this is of no concern for the present purpose, 
which is to show that, if we choose the Lagrangian L,, 
then J 4  describes the energy flow, and no hybrid terms 
are necessary. 

5 

When viewed from the standpoint of field theory, the 
weakness of the charge-potential description is its failure 
to explain how energy is conveyed across empty space 
from one charge to another; more specifically the trans- 
mission of energy between antennas, one of which is radi- 
ating. It is this which is central to the objections which 
many have to a w vector as simple as J4 .  However, the 
mechanisms of the electromagnetic interactions, all of 
which are remote, are of no interest to the engineer if 
they are not needed to predict the behaviour of electro- 
magnetic devices, and the general objective of Reference 2 
was to show that this is so. As J 4  satisfies the stored 
energy and force requirements, the point which remains 
is not whether it is a ‘correct’ description of energy flow 
(a question which is clearly meaningless in view of the 
variety of the alternatives), but whether or not it is suffi- 
cient for practical purposes. 

Inserting a capacitor into any circuit interrupts Jd,  
but not the flow of energy from a source in one part of 
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Energy exchange with a capacitor 

the circuit to a sink in another, so that an example which 
is commonly used to demonstrate E x H provides a con- 
venient illustration of the consequences of replacing it by 
J4 .  In general, the plates can be replaced by antennas, 
because there is no need to restrict the frequency, but this 
may give a net energy loss (Section 12), and, for the 
present, it will be assumed that the system, as a whole, 
does not radiate energy. Its parts, however, necessarily 
radiate, because changes in any one take time to affect 
any other, so that the simple process of charging a capa- 
citor (Fig. 1) has wider implications than is sometimes 

‘ + + + + + I  5 

b 
Fig. 1 
a Integration surface enclosing capacitor 
b Surface enclosing one plate 

Energyflow into a capacitor 

suggested. For the present, it is assumed that there is no 
dielectric. 

Any surface s1 (Fig. la),  which separates the capacitor 
from the energy source or sink, provides two lead inter- 
sections, through each of which the power flow J 4  gives 
the rate of change of the energy on the plate to which the 
lead is connected. The E x H vector describes the same 
total energy transfer in terms of a flow around the capa- 
citor edges, where H i s  due to the current in the plates. If, 
however, a different surface s2 is drawn round one plate 
only, close to the surface (Fig. lb), the two integrals are 
entirely different. The integral of E x H gives only the 
12R loss in the plate, because the stored energy flows 
around the outside of s2 and is not intercepted by it, 
whereas the J 4  description is unchanged, and attributes 
half the total stored energy to each plate, if the 4 datum 
is suitably chosen (Section 6). Shrinking s further, so that 
it encloses only a part of the plate, reduces J4  to the 
energy which is expended in transferring charge into that 
part, and reflects directly the actual forces which have to 
be exerted on the charges during the transfer process. It 
gives the energy exchange through s, but (like the E x H 
vector) provides no account of the source of energy 
outside, or of what happens to it inside s. Eqn. 15 is a 
particular example, illustrating the more general form of 
energy transfer given by eqn. 13. 

In general, the integration of J 4  over surfaces enclos- 
ing different parts of the system provides an account of 
the electromagnetic energy transfer, due to the grad 4 
forces, to and from the charges that define the part. The 
shape and extent of the surface s are irrelevant, in con- 
trast with the integral of E x H which gives the same 
information only if s is sufficiently extensive. The capa- 
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citor example shows that what is meant by ‘sufficiently 
extensive’ is that s has to include the whole of the field 
which is associated with the part. This definition is not 
precise, because s necessarily cuts through the leads (i.e. 
through groups of charges whose individual contribu- 
tions to the field are dificult to separate), in contrast with 
J4 which provides an exact account of the energy trans- 
fer process to and from charge groups defined clearly and 
unambiguously. 

When the potentials of both plates are raised, by 
adding an energy sink in series, power which enters one 
reappears at the other, in accordance with what is 
observed. Introducing any form of E x H probe changes 
the system, by adding additional charges, and the energy 
flow measured is the new J4. The charge-potential pre- 
diction of the actual events accords with the field predic- 
tion, regardless of the rapidity, or frequency, of the 
process, because both give the same forces on the 
charges. The potential 4 and momentum vector A quan- 
tify an action-at-a-distance theory which accepts that 
charges on one plate cause forces on the other, and the 
disappearance or reappearance of energy is a direct con- 
sequence of the spatial (and temporal) separation of those 
forces. 

6 Lorentz gauge 

4 and A are usually defined in terms of the fields, and 
rejected as quantities of any physical significance because 
of the arbitrary choice of datum and gauge, or div A. The 
charge-potential approach suggests powerful reasons for 
choosing the definitions 

and 

A = 4u/c2 

where the charges of density p are moving at velocity U, 
both retarded values, evaluated at time t - r/c. These 
relationships, which are valid for all velocities (U < c) and 
accelerations, define both 4 = 0 and A = 0, and also the 
gauge 

When a group of charges of like sign is assembled, the 
resulting pressure energy density p4/2 is a consequence 
of the assembly forces, causing, for example, tensile 
stresses in the crystal lattice of a charged conductor. 
Transferring a charge Q from one conductor to another 
leaves both in an equal state of strain, if both have the 
same size and shape and the geometry is symmetrical. 
Because the strain is observable, the energy definition of 
4 requires a 4 datum in accordance with eqn. 20. The 
resulting pressure energy p - 412 in Maxwell’s ‘electrical 
fluid’ determines the rate of flow of energy, in eqn. 12, 
and shows that the distribution of power between the 
conductors of an n-wire system is not arbitrary, even 
though it may be convenient to take one wire as the 
datum when measuring total power. 

The relationship between energy and momentum pro- 
vides another illustration. The motion of any group of 
charge, of density pl, at velocity ul ,  will cause a mutual 
momentum of density 

g21 = P2A21 
IEE PROCEEDINGS, Vol. 136, P t .  A ,  No. 2, MARCH 1989 

at a second group, of density p z  , where 

A21 = ~ 1 4 2 1 / C 2  

relates the A and 4 values at group 2 due to group 1. The 
momentum reflects the forces on p2 due to changes in u l .  
From eqn. 20 (with due regard to simultaneity 
considerations) 

P2421 = P1412 

m12 = P1412/C2 

so that g2, represents a mass of density 

moving at velocity u l ,  where p 1 b 1 2  includes equal 
potential-energy and kinetic-energy contributions. The 
same energy density defines the mutual energy flow rate 

UlPI412 = J 1 4 1 2  

in eqn. 12 (or, alternatively, an energy and charge transfer 
at velocity c, if the charges in a conductor are replaced by 
the change in charge density which is caused by a pulse 
[2]). By separating, or uncoupling, the potential and 
kinetic energies, the Lorentz gauge provides a simple and 
direct link between energy, mass, momentum and energy 
flow, with the proviso that the motion of one group 
defines J4 in it, but assigns the resulting mutual momen- 
tum to the other. 

It is helpful to compare the retarded 4 and A values 
with those obtained from the Coulomb gauge, defined by 

div A’ = 0 

which is the most common alternative. As shown in Ref- 
erence 2, all changes, regardless of supply frequency, can 
be described in terms of superposed pulses or surges 
(Fig. 24. We take long parallel wires, so as to limit reflec- 
tions, and assume, for the present, that the spaces around 
the wires are empty, giving the corresponding propaga- 
tion velocity c. Nothing happens at any point P until the 
disturbance arrives, and there are, likewise, no changes in 
4 or A, as defined by the Lorentz gauge. The Coulomb 
gauge, on the other hand, gives a potential 4’ in accord- 
ance with eqn. 20, but with p interpreted as the instanta- 
neous, not retarded, value, thus changing both the energy 
density and the energy flow. The corresponding Coulomb 
field is electrostatic, travelling ahead of its sources, so 
that the magnitude of # at P rises progressively to half 
its final value at the instant at which the disturbance 
arrives (assuming this to be steep-fronted). The changes 
in grad 4’ are matched by corresponding changes in A’, 
which is defined by 

V ~ A ’  - (i/c*) a2A‘/at2 = - p o ~  + (i/c2)v(a4i/at) (23) 
(Reference 12, p. 221). This shows how a$’/at acts as a 
source of A’, so that A’ also ‘travels ahead‘ of the surge, 
despite the retardation term on the left-hand side. The 
additional sources generate components of A’ at right 
angles to J, as necessary to make the divergence zero, in 
contrast with the retarded A, which is confined to the 
direction of current flow and is discontinuous in the 
plane of the wavefront. 

In the region behind the wavefront, the radial E-vector 
(Fig. 2b) is -grad 4 in the Lorentz gauge (Fig. 2 4 ,  
whereas it contains contributions from both 4’ and A‘. 
The H, or B, vector is zero before the wave arrives, but A’ 
is not, providing another example of the difference 

@ The retarded 4 values are needed only on the wires, but are shown for 
comparison with the field description. The magnitude of A varies in 
much the same way (eqn. 21). 
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between ‘kinetic’ and ‘magnetic’ which results from the 
change of gauge. From the charge-potential viewpoint, 
the ‘Coulomb’, ‘transverse’ or ‘radiation’ gauge (because 
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Fig. 2 
(I Surge waveform 
b E and H (or B)  vectors 
c Retarded 4 values in space between wires 
4 vanes linearly for all z 

Surge traoelling along parallel wires 

it describes radiation in terms of A only) is essentially 
artificial in that the potential 4‘ travels at infinite veloc- 
ity, and has to be compensated by opposing terms in A’, 
because the condition div A = 0 is entirely arbitrary, and 
conflicts with the requirements imposed by retardation. 
This is of paramount importance because it is directly 
observable. The simple relationships between g and w are 
lost because they depend on eqn. 21. It is considerations 
such as these, following from relativistic properties of the 
wavefront (compared with those of 4‘ and A‘) (Reference 
14, p. 178), which make the Lorentz gauge the obvious 
choice in the charge-potential formulation. It separates 
the potential energy from the kinetic energy in a physi- 
cally significant way (Section 7), and the acceleration 
term emerges as a direct consequence of the retardation. 

7 Separation principle 

giving an A-vector, but no 4 because there is no net 
charge. Thus, any electromagnetic system, defined as a set 
of charges whose positions, velocities and accelerations 
are all specified, may have superposed on it two addi- 
tional sets, 1 and 2, chosen so that 

J +  J, + J2 = 0 

at all points, where J is the original current density. 
Removing the currents removes the A-vector, leaving the 
net charge density at every point, and thus the potential 
4 (eqn. 20) is unchanged. We may, likewise, redefine the 
charge groups 1 and 2, so that their two current densities 
are everywhere equal but opposite, and 

P + P 1 +  P2 = o  
at every point, where p is the original charge density. 
Superposing this removes all the sources of 4 in eqn. 20, 
leaving 

unchanged, where J is the retarded value, as in eqns. 20 
and 21. 

Any system may be separated in this way into two 
independent components. One, defined by A = 0, carries 
all of the potential energy p4/2 and the other, defined by 
4 = 0, all the kinetic energy J . A/2. This is merely the 
well known ‘decoupling’ property of the Lorentz gauge, 
but expressing it in physical terms helps to illustrate its 
significance. J4 is zero in each of the components, 
showing that changes in stored energy with time are 
entirely accounted for by the work done by the restraints 
which have to be imposed on the additional charge 
groups, two of which are needed for each of the separated 
4 and A sources. Thus, the J4-vector in the original 
system describes the work done on the ‘moving’ charges 
by the ‘stationary’ charges, and these terms can be 
simply, but precisely, defined (so that the symbol w is not 
inappropriate, although it does not indicate the work per 
unit volume, which is div w). pA likewise represents a 
momentum transfer between the two system components, 
if p is interpreted as the net charge density. As p and J 
(like 4 and A)  are changed by a Lorentz transformation, 
the components also change and the reference frame 
must be specified, but the principle remains valid, regard- 
less of the (inertial) reference which is chosen. 

Hammond [22] has stated the same principle, 
although, in a rather different way, and shown how it is 
used implicitly in practical applications of E x H. As E is 
zero at the surface of an ideal conductor, the power in the 
transformer, for example, flows around the ends of, and 
along the gap between, the windings, so that the energy 
transfer from the primary to the secondary cannot be 
found by integrating E x H over any surface s drawn 
between them. The copper acts as an energy waveguide, 
which causes practical problems in measuring E x H in 
electrical machines (Section 8) and means that the power 
radiated by an antenna cannot be found by integrating 
E x H over its surface. Resolving E into its components: 

If we take two charge groups, 1 and 2, of equal but E = -grad 4 - aA/& 
opposite densities, 

P I  = - P 2  

is equivalent to separating out the applied voltage from 
the back EMF. in the transformer or other device. If we , -  . _  

travelling at equal but opposite velocities, and superpose remove the charges which cause 4, the charges which are 
left will not be in equilibrium and will require some other 
forces equivalent to the missing electric field. This is what them, the two current densities are equal: 

J, = J2 Hammond calls the ‘partial field’, and is equal to 
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-grad 4. The Poynting vector, due to the part of the 
system which is left, becomes 

E x H . d s = -  H . B d v -  E . d d v  S S  
- j ( J .  J/o + J . grad 4) dv 

and gives a power flow into the transformer winding 
which accounts for the resistance loss, together with the 
energy conversion due to the partial field. Choosing s so 
as to cut through the supply leads, the last term inte- 
grates through the volume of the winding to give J 4  at 
the intersection with s. The partial-field E x H vector, 
which is defined in this way, is another form of hybrid, 
because it assigns the energy conversion to the charges, 
but the stored energy to the field. It predicts the same 
energy conversion in the winding as does J 4 ,  but differs 
from it in explaining how the energy gets there. 

One example of the separation approach is the cus- 
tomary description of energy flow into a capacitor 
(Fig. 1). The field is usually assumed to be -grad 4, and 
the aA/& term is ignored, an assumption which is some- 
times stated explicitly and justified by arguing that the 
induced fields are negligible if the changes are sufficiently 
slow. This selects a partial field, but is valid only if resist- 
ance effects take the place of the missing term; either one 
can be ignored, but not both. The resulting discrepancy is 
the well known energy anomaly which appears when one 
capacitor is charged from another, so that the total 
charge Q is shared, giving a final Q4/2 energy which is 
half the initial value when the capacitances are equal. 
Eqn. 10 shows that the underlying charging process nec- 
essarily involves surges [2], and the final condition is an 
oscillation, not a static charge distribution, if there is no 
loss. 

S 

8 Measurement of energy transfer 

Although a study of conductors in relative motion goes 
beyond the scope of this paper, the problem of measuring 
energy flow across the airgap in an electrical machine 
[23] provides a convenient illustration of the application 
of J4.  Consider, for simplicity, a linear version of the 
Faraday disc generator, consisting of a conducting sheet 
moving past an iron-cored DC coil (Fig. 3a), and supply- 
ing a load via brushes in contact with the opposite sides 
of the sheet. The dA/& (i.e. mutual momentum) forces on 
the conduction electrons in the sheet (Reference 2, 
Section 10) produce the EMF which, in field theory, is 
given by U x B, and is opposed by the grad 4 forces due 
to the surface charges. The latter determine the potential 
difference between the brushes, so that integrating J 4  
over any surface which intersects the connecting leads 
will give the power transfer to or from the machine. 
Extending the surface to infinity gives the same result 
from the integral of E x H,  provided that no other con- 
ductors are intersected. This view of the machine from a 
surface external to it illustrates the point that it is the 
grad 4 forces which determine the power flow into the 
machine (when motoring), regardless of the nature of the 
forces which oppose them. 

An important characteristic of the charge-potential 
description is that 4, and hence J 4 ,  is unchanged when 
moving from the stationary system to the reference frame 
of the sheet, moving at velocity U (provided that u/c is 
small), in direct contrast to the E-vector in E x H, which 
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is -grad 4 in a stationary reference frame, but falls to 
zero in the moving sheet if this has no resistance. These 
rapid variations in the Poynting vector have led to 

b C 

Fig. 3 
a Generator arrangement 
b grad Q probe 
c Probe used to measure A and I 

Linear version of Faraday disc generator 

another hybrid (including field and potential terms) 
devised specifically to solve the measurement problem 
[23]. The grad 4 forces can be observed with a voltmeter 
connected between two brushes mounted close together 
at the point of interest (Fig. 3b), and translated into J4  
by measuring the momentum vector A ,  due to J, with an 
integrating voltmeter connected to a short wire PQ 
mounted close to the plate surface (Fig. 3c). In practice, 
the brushes might be replaced by a capacitive pick up, 
and the A-probe by a multi-turn search coil PQRS giving 
the difference in A between PQ and RS, but these 
changes do not affect the measurement principle, which 
can be used to obtain a detailed picture of the J 4  power 
exchange with the sheet. 

The output of the search coil used to measure A can 
equally be interpreted in terms of the component of H 
tangential to the sheet. Thus the probe can also be 
viewed as a means of measuring the normal component 
of E, x H (where E, = -grad 4 is the partial field), pro- 
viding another example of the way in which this gives the 
same description as J 4  of the power conversion in the 
sheet, although not the means by which it is conveyed 
there. The energy conversion process is an action which 
tends to conserve the mutual momentum p A ,  between the 
conduction electrons in the sheet and the field currents, 
so that the signs of both the induced EMF and the drag 
force follow by inspection (in marked contrast to the 
usual cross-product, or ‘right-hand’ rules), and the result 
integrates directly to the mutual inductance expressions 
of modern machine theory. 

The interaction between the conduction electrons in 
the two circuits is bilateral in 4, so that setting the sheet 
in motion causes an immediate reaction on the electrons 
in the field coil, because of the grad 4 forces due to the 
charge displacement in the sheet. This causes a rapid 
transient, leaving a surface charge on the field coil which 
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modifies J 4 ,  and hence the transfer of power into the 
field circuit. It can be argued that such a description of 
the machine behaviour provides a clearer view of the 
energy transfer mechanism than the customary descrip- 
tion in terms of magnetic flux, and this description is 
better able to cope with unusual operating conditions 
such as fast-rise pulses. 

9 

A point at which many texts seriously question the 
assumptions of field theory is in describing the effect on 
the Poynting vector of placing a charge on a magnet, or 
current-carrying coil. The radial E- and axial H-fields 
produce an E x H-vector pointing in the circumferential 
direction, and thus a continuous flow of energy around 
the source, extending out to infinity. In general, the flow 
of mutual energy around closed paths is typical of any 
static combination of a magnet and a charged body. 
Although this is an immediate and necessary conse- 
quence of the assumption that the magnetic and electric 
energies are stored in the field, it is one which causes 
much unease, and is often held to have no physical sig- 
nificance. 

The momentum density D x B may produce a force, or 
torque, when it changes, and it is, perhaps, surprising 
that this receives less attention than E x H. Its implica- 
tions will be discussed elsewhere. Replacing E x H sug- 
gests that there is nothing remarkable about energy flow 
in closed paths, as J4  depends on the motion of charge 
and gives a picture of coils and magnets which is not 
static. The pressure in the ‘electrical fluid‘ in a current- 
carrying coil necessarily controls the local energy transfer 
rate and, as in hydraulics, it is irrelevant where the ‘pipe’ 
comes from, or goes to, or whether or not any energy is 
being extracted. The point is, of course, of fundamental 
importance to the concept of energy transfer. Substituting 
a magnet for the coil replaces the current by electron 
spins, but these are equivalent to a surface current, so 
that only the details of the J4  description are changed, 
not its essential features. 

The endless dance of energy 

10 Dielectrics 

Adding a dielectric (e.g. in Fig. 1 )  adds the polarisation 
vector P, due to the bound charges, and hence an addi- 
tional current of density 

J~ = aptat = P 
giving a corresponding flow of energy through the dielec- 
tric at the rate of J d 4 .  This provides the change in the 
potential energy stored in the dielectric, of density 

U: = ( P  . grad 4)/2 (25) 
which is comparable to the field energy distribution, as 
the field description acquires a direct physical significance 
inside polarised materials. But the direction of energy 
flow is to and from the plates into the material, and is at 
right angles to the E x H vector, because it is the charge 
displacement which both stores and conveys the energy. 
P measures the amount of the displacement, and grad 4 
the electrical force which is necessary to produce it, 
requiring a restraint acting in opposition and a corre- 
sponding energy store. The description in terms of 
charges, as in conductors, provides a more direct picture 
of what is happening than that in terms of fields, and it 
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avoids the ambiguities which are inherent in the conflict 
between the choice of the flux vector D, or the vector P, 
as the more fundamental concept: i.e. between the alter- 
native treatments of dielectrics as ‘conductors of flux’ and 
as assemblies of charges. These can be a source of much 
confusion, because the equivalent surface charge, which 
plays a key role in the latter, is ignored in the definition 
of D. 

Taking the divergence, 

div (P4) = 4 div P + . grad 4 
= -$p+P.gradc$ (26) 

as in eqn. 13, but the charges are now subject to different 
constraints. Expressed in field terms, these are described 
by 
P = (E,  - 1 ) ~ o  E = K E O  E (27) 

where K ,  rather than relative permittivity E,,  measures the 
fundamental dielectric property. Translated into charge- 
potential terms, the equilibrium condition in a loss-free 
dielectric is 

grad 4 + aA/at - U x curl A + PIKE0 = 0 (28) 
compared with eqn. 14 in a conductor. The losses add a 
further component which can be represented in various 
ways, including an equivalent conductivity. In the 
absence of losses, eqn. 18a is replaced by 

f (&) . ds + I4P du + . A du 

in which the last two terms represent changes in the 
kinetic energy 

U: = P . A/2  (30) 
of the displaced charges, and in the displacement energy 
U:. 

The vector P4 in the dielectric, like that in the conduc- 
tor, represents the interchange of energy between the ‘sta- 
tionary’ charges and the local moving charges. It is of less 
practical interest than is J4  in the conductors, because 
the relevant energy sources are not as accessible. There is 
no w-vector in the airgaps between the different 
materials, because the charge-potential description of the 
energy transfer across them is in terms of remote actions. 

11 Magnetic materials and transformers 

Viewed in charge-potential terms, a transformer consists 
essentially of two long conductors (Fig. 44, wound in a 
spiral to maximise their mutual momentum, usually with 
the assistance of an iron core (Fig. 46). An example of 
design calculations carried out in these terms, without 
reference to flux, has been given in Reference 2. The p4/2 
pressure originating in the supply transports charges 
along the primary winding, carrying with them a J 4  
energy from each terminal. This energy is dissipated 
partly in lattice collisions, and partly by the aA/at forces, 
where A represents the coupling with the core and the 
secondary. The core, represented largely by an equivalent 
surface current J, , has the effect of a flywheel, into which 
the primary injects and recovers momentum by the 
remote action effect of A .  The electron stream in the sec- 
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ondary conveys energy into the load, which generates a 
p4/2 pressure in the winding, and hence controls the rate 
at which energy is extracted from the ‘fluid’. The resulting 

1 1 

- 
J 0  I J 0  

2 , P = O  2 

d 

b 

Fig. 4 
LI Primary and secondary conductors 
b Winding and core arrangement 
Equivalent current I,  distributed over the core surface 

Energyflow in a transformer 

drag tends to reduce aA/at in the secondary, and hence in 
the primary, thus increasing the energy conversion rate 
and the J 4  energy supplied. 

This summary illustrates the essential simplicity of the 
different viewpoint, and also the way in which the energy 
is conveyed across the gap by the kinetic coupling due to 
the movement of the electrons, described quantitatively 
by the vector A.  The transformer would still work if 4 
were removed by the separation principle. This is in con- 
trast to the energy transfer between the plates in Fig. 1, 
due to the ‘static’ forces and quantified by 4. In the trans- 
former, as in the capacitor, the assumption that the rele- 
vant energy is stored in the copper makes any enquiry 
into the ‘mechanism’ of the transfer essentially meaning- 
less. Everything which is observable, however the obser- 
vation is made, is accounted for by J4 ,  which is sufficient 
to provide a complete and detailed account of the energy 
transfer in the device, regardless of the supply frequency. 

Although the purpose of the transformer is to transfer 
power, few texts give any explanation of how this occurs, 
and the Poynting vector does not transfer it between 
windings. Most engineers would probably regard the 
description of the output energy as flowing around the 
end-windings as entirely academic. Yet it is commonly 
asserted that the energy is stored in the field, and some 
form of energy flow giving very high-power densities in 
empty space (in a large transformer) necessarily follows. 
The student is surprised to learn that, although the core 
is the seat of much of the action, it accounts for practi- 
cally none of the energy (or energy flow), a point which is 
explained more simply and directly in momentum terms, 
as is the relationship between the stored energy and the 
equivalent circuit model. It is doubtful whether many stu- 
dents gain any real understanding of the role of the ‘mag- 
netic’ energy, although the transformer works by 
transforming potential energy into kinetic energy, and the 
J4  vector explains exactly how this is done. 
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The energy flow in the core, like that in a dielectric, is 
of limited practical interest (forces can be calculated more 
conveniently in terms of the charge-potential equivalent 
of the Maxwell stress, as will be shown elsewhere). The 
customary dipole model of magnetic materials can be 
translated into charge-potential terms [2], but is essen- 
tially foreign to it because the dipole, as an element, is 
based on the concept of flux. A self-consistent description 
requires the introduction of an electron spin vector as the 
source, which is loosely equivalent to a reversal of the 
roles of the B- and H-vectors in field theory. However, it 
presents the magnetisation curve in an unfamiliar way, 
and requires a more extended treatment than is possible 
here. 

12 Radiation 

Although the J 4  description is well recognised at low fre- 
quencies, it is customarily treated as an approximation 
which becomes invalid as the frequency is raised. The 
failure to question this assumption shows how deeply 
rooted is the field theory philosophy, as the surge (Fig. 2) 
provides an obvious example of the equivalence of the 
field and charge-potential descriptions of energy, at all 
frequencies. 

The radiation of energy from an antenna is commonly 
taken as direct evidence of E x H, but the power is 
usually measured by connecting some form of wattmeter 
into the leads through which the antenna is supplied with 
energy, so that the measurement provides equal evidence 
for J4 .  It is, of course, the radiation lobes which matter 
in antenna design, and these may be described by the 
E x H vector, but they are calculated by using the retar- 
ded 4 and A ,  and measured with a second receiving 
antenna; i.e. by observing not the field vectors, nor 
E x H, but by moving the receiving antenna around and 
measuring either J 4  or 4 with a voltmeter. The different 
descriptions of energy flow form part of two theories 
which differ in philosophy, but share the same 4 and A,  
and predict the same forces on the charges: 

f = p(  -grad 4 - aA/& + U x curl A )  (3 1) 
and thus the same observable effects in antennas and in 
waveguides, as in all other electromagnetic devices. 

Once f is known everywhere, then the energy trans- 
ferred by the moving charges is given by up- 4, in 
accordance with eqn. 13, and the antennas are no differ- 
ent in this respect from the plates in Fig. 1, or from the 
wires in Fig. 4a. Both examples illustrate the way in 
which removing the energy from empty space also 
removes the energy flow vector which is needed to 
account for it, and makes the question of the ‘mechanism’ 
of energy transfer wholly irrelevant. The mutual energy is 
divided between the charges, so that they necessarily 
become the vehicle by which the energy is transferred. It 
is, perhaps, remarkable that, although Maxwell’s 
attempts to use field theory to develop a mechanistic 
aether model have been universally abandoned, and with 
them the possibility of any useful meaning to the concept 
of the field as proliding a force transfer mechanism, the 
properties of mass, energy and momentum in empty 
space are still interpreted literally, and go largely unchal- 
lenged. The resulting point of view is essentially ambiv- 
alent, as we cannot have the field energy, or momentum, 
without the Maxwell stress, a point which is discussed in 
more detail elsewhere. Most engineers have no difficulty 
in accepting the idea of electrostatic forces between capa- 
citor plates, or magnetic forces between coils, as remote 
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actions, and the concept of remote energy transfer is a 
direct and necessary consequence. 

Hammond [22] has given examples comparing the 
usual E x H integral with 34 (expressed in terms of the 
‘back EMF‘) to obtain the energy radiation from simple 
dipoles, showing that the 34 calculation can be simpler. 
He points out that the usual integral is in terms of a 
partial field, because the actual E-field is complex, and 
E x H describes the energy as coming not from the 
dipole itself, but from the stream flowing in around the 
supply leads. In consequence, the standard textbook 
treatment substitutes a hypothetical dipole consisting of 
isolated charges; i.e. uses the separation principle. This 
has the desired effect of making the dipole appear to 
radiate, but its use is potentially confusing to students 
and increases the mystery which tends to surround 
E x H. The need for such hybrids illustrates the practical 
difficulties faced by communication as well as power- 
frequency engineers in applying ‘pure’ field theory. 

If we remove the leads which supply the dipole it is 
possible to draw a closed surface s around it, and to 
include the energy source (i.e. the hypothetical restraints) 
inside s. JQ, allows the same surface, with the leads in 
place. It describes energy as coming into the dipole 
through s and disappearing, whereas E, x H describes it 
as appearing inside s and flowing out. The two energies 
are the same because they are different descriptions of the 
same forces. If we make the connection leads sufficiently 
long to separate the dipole from the generator, the local 
conditions around it become irrelevant, and the dipole 
appears as any other electrical load. Its radiation resist- 
ance can be calculated from the local 4- and A-values (in 
the Lorentz gauge), showing that the concept of mutual 
energy (Fig. 1) is now limited to the different parts of the 
dipole, and leading to an examination of the nature of 
the charge conditions causing the radiation which is at 
least as instructive as ‘explaining’ it in terms of fields. The 
retardation shows that the energy loss depends on accel- 
eration and makes radiation resistance a simple extension 
of the concept of electron stream momentum. 

13 Conclusions 

It has been shown that conventional electromagnetism 
has failed to distinguish sufficiently clearly between two 
entirely different viewpoints, one of which attributes 
energy, energy flow and momentum to the fields around 
the charges, whereas the other attributes the same 
properties to the charges themselves. Both were recog- 
nised by Maxwell, who developed the idea of the ‘electri- 
cal fluid’ momentum in some detail and contrasted the 
two approaches, but the clarity of Maxwell’s treatment 
has been lost in modern accounts. Some of the conse- 
quences have been examined. 

‘Pure’ field theory treats conductors as no more than 
passive waveguides, so that energy does not flow from 
the primary to the secondary of a transformer, and is not 
radiated from the surface of an antenna. Although such a 
theory is simple and self-consistent, it is of limited practi- 
cal value, as is shown by the very selective way in which 
it is used. Engineers need to predict the behaviour of the 
field sources (i.e. the charges) rather than what happens 
in the empty spaces between them, and this has led to the 
use of various forms of hybrid in which the field and 
charge-potential descriptions are mixed. The hybrids 
include the energy flow vectors suggested by Slepian and 
others, and the partial-field approach which is commonly 
used to predict dipole radiation. It has been shown that a 

theory which is both simple and self-contained is 
obtained by abandoning the field description altogether, 
and attributing all electromagnetic properties to the 
charges. The energies densities are p 4 / 2  and J . A/2,  in 
place of E .  D/2  and H .  B/2, and the energy flow and 
momentum vectors are JQ, and pA in place of E x H and 
D x B. The retarded potential Q, and momentum vector 
A take the place of the field vectors (or, more specifically, 
the fluxes) as the quantities of fundamental physical sig- 
nificance. 

Reformulating Poynting’s theorem in charge-potential 
terms shows that replacing E x H by J& requires a 
change in divergence as well as curl. It confines the 
energy flow in an antenna to the interior of the wires, and 
predicts the radiation from the input instead of the 
output power, so that it is JQ,, not E x H, which 
describes the antenna wire as radiating. The JQ,-vector 
formalises a view of power flow which is used intuitively 
by probably the great majority of engineers and is, in 
essence, a return to ideas which were generally accepted 
before Poynting and Heaviside showed the validity of the 
field alternative. 

It is, perhaps, remarkable that so simple and general 
an alternative to the Poynting vector has escaped atten- 
tion in modern work, but this may reflect an artificial 
difficulty, created by the ingrained concepts of field 
theory. The disappearance of energy into one winding of 
a transformer, and its reappearance in the other, is a 
direct consequence of the interaction forces between the 
various charges and currents, and it is no more necessary 
to provide an ‘explanation’ for the ‘mechanism’ of the 
transfer of energy than it is to provide one for the trans- 
fer of force. The JQ, description is more in accord with 
practical measurement than is E x H, and simplifies the 
calculations, in both power-frequency and communica- 
tion applications, by avoiding the complexity of the 
E x H energy-flow pattern around end-windings and 
antennas. It also avoids the extremely high-power den- 
sities, in the empty spaces of large machines, which are 
generally regarded as conceptually obnoxious, and it 
clarifies other conceptual difficulties, such as the ‘endless 
dance of energy’ around a charged magnet. 

The 3Q,-vector illustrates the fundamental importance 
of the electrostatic forces in all electromagnetic devices, 
including those labelled magnetic. The flow of energy is 
intimately associated with the momentum vectors pA and 
D x B, which are compared elsewhere. As Maxwell 
pointed out [ 13, the concept of electrokinetic momentum 
follows naturally from Lagrangian dynamics, which are 
of increasing importance in modern physics [24] ,  
showing the possibilities offered by the charge-potential 
approach as a means of integrating the treatment of 
mechanical and electromagnetic systems. 
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16 Appendix: Slepian energy-flow vectors 

In Reference 17, Slepian defined nine different energy- 
flow vectors P at any surface s, by considering the 
sources which would be needed to terminate the field on 
s and calculating the power which these sources would 
require. He showed that various forms of source were 
possible, defining P vectors with different curls, and that 
other variants depended on the choice of p4J2 in place of 
E .  Dl2 and J . AJ2 in place of H ’ BJ2. But he limited 
these changes in energy density to the equivalent sources 
on s, and ignored the actual field sources in the region 
enclosed. The resulting P vectors gave energy densities 
such as 

Ts = TI - H .  B +  J .  A 

in his notation, where 

TI = E .  Dl2 + H . BJ2 

is the usual field energy density associated with the 
Poynting vector E x H. Slepian pointed to the negative 
field energy which results, but did not appear to realise 
that this indicates the need to reallocate the energy of one 
of the components of the hybrid. The consistent choice of 
a single energy density, instead of a hybrid, gives the 
results obtained in Section 3. It is remarkable that, 
having come so close to his objective of a .I4 vector [lS], 
Slepian failed to achieve it. 
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