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Abstract: The paper examines the interaction 
between a charge q moving at constant velocity 
through a region in which the magnetic flux 
density may be zero, but the A vector is not. The 
simplest example of the source of A is a closed 
toroid carrying constant current. The motion of q 
induces an EMF in the toroid, causing an 
exchange of energy with the current source, 
although the toroid produces no external mag- 
netic flux or induced electric field. It is shown that 
the apparent anomaly of a transfer of energy 
without a force on q is resolved by the changes of 
internal energy and by the definition of what is 
meant by the term ‘force’. The interaction depends 
on the vector A, and illustrates the consequences 
of a change of electrokinetic momentum, a 
concept, due to Maxwell, whose practical applica- 
tion has been explored in previous papers. Its pre- 
dictions are, necessarily, consistent with those of 
field theory, but assigning the momentum and 
stored energy to the charges, instead of the field, 
clarifies the operating principle, defines the param- 
eters in terms of inductance, and provides an 
equivalent circuit, as in other electrical machines, 
whereas the alternative field concept of flux 
linkage is difficult to apply to a charge q moving 
through no flux. The Aharonov-Bohm effect, 
which is commonly stated to be inconsistent with 
classical electromagnetism, provides an example of 
the momentum change in terms of the quantum- 
mechanical phase change due to the vector A.  

1 Introduction 

The practical advantages of Maxwell’s ‘dynamical’ inter- 
pretation of electromagnetism have been argued else- 
where [l], and have been shown to be a part of an 
electromagnetic theory in which the electric potential $J 
and the vector A replace the field vectors as the quan- 
tities of primary physical significance [2]. A is defined as 
the electrokinetic momentum per unit charge [3], rather 
than as the magnetic vector potential. Electrical and 
magnetic energies become the potential and kinetic ener- 
gies of the charges, and are mutual in the sense that the 
energy allocated to any charge group depends on the 
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proximity, or otherwise, of others. Momentum is likewise 
a mutual property. The action of a transformer depends 
on changes of mutual momentum with time, whereas that 
of a DC machine depends on changes with position. 

One of the simplest examples of such a change is the 
movement of a charge q along the axis of a toroidal coil 
(Fig. 1). The progressive increase in the A vector due to q 

I 

I 

Fig. 1 Mutual momentum exchange 
Toroid shown in cross-section 

induces an EMF in the coil, in which the electron stream 
is the electromagnetic equivalent of a flywheel, exchang- 
ing momentum with q. Expressed in field terms, the 
moving charge is a source of magnetic flux, and the EMF 
is due to the rate-of-change of flux linkage with the 
toroid as q approaches. Thus the device forms an electri- 
cal generator, capable of delivering current and power 
into an electrical load. It offers possibilities for MHD 
applications and the like, and variants have been exam- 
ined for such purposes [4]. 

The objective of the paper is to clarify the nature of 
the interaction, which provides one of the most funda- 
mental examples of an exchange of mutual momentum, 
and was studied for this reason. The device shown in Fig. 
1 is unusual in several respects. Its operation is magnetic 
in the conventional sense, so that adding an iron core to 
the toroid, for example, will increase the voltage and 
power generation capability. But there is no magnetic, or 
U x B, force on q, since the magnetic flux density B due 
to an ideal toroid is limited to the region enclosed by the 
winding, and is zero everywhere outside (except for the 
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single-turn effect, which can be ignored if the number of 
turns is sufficiently large). Even if q were subjected to a 
magnetic field, the nature of the U x B force prohibits any 
exchange of energy. 

Any change in the current i in the toroid causes a 
force on q because, in field theory, a change in flux in the 
interior region causes an electric field outside by ‘trans- 
former action’. But this is not a necessary part of the 
interaction, since an external current source may be used 
to keep i constant without affecting the power generation 
capability. The toroid then produces neither a magnetic 
field, nor an induced electric field, at any exterior point, 
although it is a source of A .  It is for this reason that the 
Aharonov-Bohm effect [ S I ,  which describes the same 
interaction in terms of the motion of a modulated elec- 
tron beam around a small coil or magnetised whisker 
(Fig. 2), is widely regarded as anomalous [S-71. The 

magnetised whisker 
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Fig. 2 Aharonov-Bohm effect 

interference pattern formed by splitting the beam, and 
then recombining it, is observed to depend on the magne- 
tisation in the whisker, in according with the Schrodinger 
equation, although the electron packets pass through no 
B field. 

Forces due to changes in i are utilised in many appli- 
cations, including betatrons and other forms of particle 
accelerator. Simple devices of this nature have been 
described as paradoxical [SI for precisely the opposite 
reason, namely that there appears to be no reaction on 
the coil to the angular acceleration forces in the external 
charges [ 9 ] .  The toroid is usually replaced by a short 
coil, giving a flux density B outside it, which combines 
with the electric flux density D due to q, to give a field 
momentum, D x B, whose changes with time account for 
the reaction, and measurements made with such a device 
have been given as direct experimental evidence of forces 
acting on empty space [ l o ] .  As has been shown in Refer- 
ence 1, the electrodynamical description of the inter- 
action clarifies it, and shows that the field momentum 
argument can be misleading in that there is a (delayed) 
reaction on the coil. The present paper extends this work 
to include the effects of the motion of q. 

The operation of an energy convertor in the manner 
illustrated in Fig. 1 requires the separation of q from an 
opposite charge -q, and the process of separation and 
recombination is obviously important, partly because of 
the role of the ‘electrostatic’ forces, and also because the 
two charges must be recombined as a part of the oper- 
ating cycle. Bringing up a charge - q  to meet q reverses 
the original action and gives zero net energy exchange, 
which is also the result of allowing q to continue through 
the coil to a remote point before recombining it with -4, 
since then the net change in flux linkage is zero. Thus the 
current must be varied at some stage in the operating 
cycle of any continuously acting generator, and in practi- 
cal devices [4] the changes in current and in position will 
normally occur simultaneously. Magnetrons, klystrons 
and the like provide examples in which the operating fre- 
quency makes the wavelength comparable with the 

56 

device dimensions, and the current in the toroidal coil is 
replaced by those on the surface of a resonant cavity, but 
the coupling principles remain the same, and the 
geometry similar. The superposition of the effects of the 
changes in current (i.e. of charge acceleration) with those 
due to charge velocity then tend to obscure the latter, 
and one of the purposes of the paper is to separate them. 
It is assumed, for simplicity, that 4 moves at a sufficiently 
low velocity to neglect retardation and also effects which 
are explicitly relativistic, although special relativity 
theory cannot be ignored since it accounts for the forces 
which are conventionally regarded as ‘magnetic’ (Section 
9) .  

2 Dynamical theory 

The approach to electromagnetics set out in References 1 
and 2 is characterised by the assumption that the electro- 
magnetic stored energy, power and momentum are 
properties of the charges, instead of the field, giving 
energy densities p 4 / 2  and J * A/2 ,  in place of E - D / 2  and 
H * B/2, where p is the charge density, J is the current 
density, and 4 is the electric potential. D x B is replaced 
by the canonical momentum density pA,  which defines A 
as the momentum per unit charge, instead of the mag- 
netic vector potential, and the term ‘potential’ will be 
reserved for 4, commonly referred to as the ‘electrostatic 
potential’, although the name can be misleading since the 
4 interaction is not confined to statics. In general, ~ $ 1 1 2  is 
the potential, or separation, energy of the charges, and 
the term was used in this sense by Maxwell [ 3 ]  to dis- 
tinguish it from the kinetic energy, J A/2 ,  of the ‘electri- 
cal fluid’, or moving charges, whose momentum defines 
A .  Maxwell developed his ‘general equations of the elec- 
tromagnetic field‘ by applying this ‘dynamical theory’ [3, 
111, and his name provides, perhaps, the most descriptive 
way of distinguishing it from field theory*. The change in 
definitions means that the field vector E and B, given by 

E+ = -grad 4 
E., = -aA/a t  

E = E+ + EA ( 1 4  

B = curl A ( 1 4  

combining to 

and 

are merely convenient labels for the differentials of 4 and 
A ,  and become auxiliary functions, thus reversing the cus- 
tomary roles of the field and potential quantities in field 
theory. The difference in approach is illustrated by 
Maxwell’s use of eqn. l b  as the first of the ‘general equa- 
tions’ of the Treatise [ 3 ] ,  written with B on the left-hand 
side, not the right, A denoting ‘the electromagnetic 
momentum’ (art.604). 

The observable behaviour of the charges is given by 
the force, of density 

f = p [ E + u x S j  ( 2 )  

f =  p[  - grad 4 - aA/& + U x (curl A ) ]  ( 3 )  

or 

* What is meant by the ‘dynamical theory’ here is described in Refer- 
ences 1 and 2, and differs in detail from Maxwell’s; for example, he 
included the displacement current, dD/at, as a component of I in vacuo. 
Maxwell’s treatment is examined in a paper in preparation entitled 
‘Maxwell’s equations and the Maxwell force’. 
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and is the same whether expressed in terms of E and B, 
or A and 4. Eqn. 2 is conventionally referred to as the 
Lorentz force, but eqn. 3, with B in place of curl A ,  was 
given by Maxwell [3] as the second of his ‘general equa- 
tions’ (putting it in place of one of those universally 
referred to as the ‘Maxwell equations’), and the separa- 
tion into three components is fundamental to the defini- 
tion of 4 and A ,  and thus to the dynamical theory. Field 
theory, on the other hand, is based on the vector E (like 
B) as the underlying physical concept, defining a single 
condition of space which accounts for the force on a sta- 
tionary charge, so that any components of E are mathe- 
matical fictions having no physical significance. Hence 
the common view that the ‘back EMF‘ in a transformer, 
represented by the dA/dt term in eqn. 3, and the ‘applied 
voltage’, obtained by integrating grad 4, are artificial 
concepts, and, some suggest, should be avoided. The 
argument is based on the assumption that the only mean- 
ingful velocity is that of the charge on which the force f 
acts, whereas the dynamical theory attaches equal impor- 
tance to the velocities of the source charges, expressed in 
terms of the vector A .  That is, it distinguishes the inter- 
actions due to the excess (‘static’) charges on the trans- 
former winding surface from those due to the conduction 
electrons in the conductor interior (together with the 
electron spins in any ferromagnetic material) whose 
motion causes the current. The symbol 4 is needed, in 
place of I/, to make the essential distinction between 
these two different sources of voltage, one of which is 
conservative whilst the other is not. 

The difference is illustrated most clearly by writing the 
equations for 4 and A in integral form (Reference 3, p. 
257 or Reference 12), 

(4) 4=-- 
4n-5, ‘s r 

and 

( 5 )  
A ==s5iv 1 

4n&,c2 r 

although any of the usual methods can be used for prac- 
tical calculations. Here p is the net, or excess, charge 
density, and J is the current density in any volume 
element dv (taking the time-retarded values when propa- 
gation effects are significant, so that divA satisfies the 
Lorentz gauge [2]). Thus, in some applications (such as 
antennas), the dynamical and field theories differ only in 
interpretation, and they will always give identical results, 
provided that field theory is used in a self-consistent way. 
But, as has been shown elsewhere [l], this requirement is 
not always met, as in the treatment of the betatron 
‘paradox’, because one consequence of assigning proper- 
ties to the field tends to be a lack of adequate attention 
to the sources. The dynamical theory, in replacing eqn. 2 
by eqn. 3, draws attention to both the two groups of 
charge which are involved in every electromagnetic inter- 
action, and it is these which form the elements of the 
‘connected system’ whose properties Maxwell examined 
in terms of Lagrangian dynamics, and expressed in terms 
of the momentum vector A .  

The energy convertor (Fig. 1) provides an illustration 
of the practical difference between the two theories. 
Although the flux density B (i.e. curl A )  is zero every- 
where outside the coil, A is not (Fig. 3). The current i in 
the wire sets up a momentum vector A i ,  which forms 
closed lines parallel to the current in regions close to the 
wires, and here takes its maximum value, in accordance 
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with eqn. 5. Thus A i  is not confined to the interior, but 
also encircles the coil outside, as we see from the vector 
potential interpretation, in which the B lines inside are 

Fig. 3 Momentum vector due to i 

the source of A i  outside, giving an electric field, -dAi/dt 
(eqn. l), as in a transformer, when i changes in time. Since 
i depends on velocity, any charges of density p outside 
the coil acquire a mutual momentum 

Cl, = pAidv  ( 6 4  s 
due to the force exerted on them by changes in current, 
and it is these forces which cause the EMF in the second- 
ary winding of a transformer in which the toroid is the 
primary. When the charges form a group with a total 
charge q, as in Fig. 1, it is convenient to abbreviate eqn. 
6a to 

G I ,  = qAi ( 6 4  
for simplicity and clarity, although the charge group q 
need not be small. (Here the symbol q is used to dis- 
tinguish between total charge and charge density.) 

The interaction is obviously reciprocal, since A i  is due 
to the movement of the conduction electrons, and the 
motion of q at velocity U likewise generates an A ,  vector 
given by eqn. 5. Comparing the integrand with eqn. 4 
shows that the result can be expressed in the form 

A ,  = u ~ , / c ’  (7 )  
where 4, denotes the potential due to q, giving a simple 
and clear picture of the A ,  ‘field’ due to q (and, in general, 
a very succinct, useful and general statement of the 
relationship between electrodynamics and electrostatics 
[13]). The EMF in the coil, due to the rate-of-change of 
A , ,  is the same as is given by the change in magnetic flux, 
since integrating eqn. 1 b defines flux linkage 

Q , =  A - d l  (8) i 
as the integral of the A vector around any turn of the 
coil. But the underlying explanation is very different. The 
forces on the conduction electrons, which are, in field 
terms, caused by the changes in B, (due to q), are attrib- 
uted instead to the mutual kinetic properties of the two 
sets of charge. Both represent action-at-a-distance effects 
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[14], one due to the fluxes in empty space, and the other 
due to the source charges. The EMF provides a direct 
illustration of the meaning of the vector A ,  which is 
defined in momentum terms by the force which it causes 
when it changes in time. 

The momentum interpretation shows at once the 
nature of the difficulties underlying both the field and 
momentum descriptions. The charge q is subjected to a 
change in A i ,  and thus to a force of density 

f ,  = p(-grad 4 - a A j a t )  (9) 

aAi/at = (aA,/az)(dz/dt)  (10) 

in the reference frame R,  in which q is stationary, where 

is due to the movement of q in the direction z, and thus 
to the relative motion of the coil in the opposite direc- 
tion. But the a A j a t  term is not the only force on q in eqn. 
9, and the point which is fundamental to the operation is 
whether the interaction is wholly ‘magnetic’, in the sense 
that it is confined to the EA part of E in eqn. 3, or 
whether it also depends on E+.  In the dynamical theory 
[2] the energy-flow vector is .I$, showing that 4 is essen- 
tial to all electrical generators (although disguised in the 
Poynting vector E x H by the contributions of both 4 
and A to E), and this raises the question of the role of 
the ‘electrostatic’ forces in the description of a ‘magnetic’ 
device. 

3 Electrokinetic momentum 

The property of mutual momentum, and the forces which 
it causes, can be illustrated most directly by a system in 
which the toroidal coil is replaced by one or more insu- 
lated discs carrying charges around their rims (Fig. 4), 

0 + + +  J 0 + 

t + *  

Fig. 4 Spinning-disc equivalent 

each spinning in its own plane about its axis. The con- 
figuration is similar to that considered by Feynman et al. 
[9] as an example of the betatron-type force, caused by 
an acceleration of the discs, but here the forces on the 
discs are of direct interest, together with the reaction on q 
when the discs are spun at constant speed. By fixing the 
charges to the material the aA,/at forces due to q can be 
resisted by ‘mechanical’ forces*, in place of the grad 4 
restraints which are typical of conductors, and the EMF 

Using the term ‘mechanical’ in the pragmatic sense. It raises the 
underlying question of the nature of the ‘nonelectromagnetic’ forces 
acting on electric charge. 
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tending to move the conduction electrons and crystal 
lattice charges in opposite directions is replaced by a net 
torque. That is, the discs replace electrokinetic, or differ- 
ential, momentum by ‘mechanical’ momentum by remo- 
ving the lattice charges. The electric forces due to 4, are, 
by definition, conservative, so that the torque caused by 
the approach of q is accounted for by the momentum 
force of density 

(1 1) fd = - P d  aAq/a t  

on the disc charges, of density p d .  The torque depends on 

f d  ’ dl = - P d  - A ,  * dl (12) i dt d i  
in accordance with the change in flux linkage (eqn. 8). If 
the mechanical constraints were removed, the discs 
would accelerate so as to conserve momentum, 

( m d  + pd Ad + pd A,) ’ dl = 0 (13) 

where m is the relevant mass density, concentrated in the 
rim, is the local velocity, and Ad is due to the charges 
on the discs. When m is negligible Ad opposes A , ,  in 
accordance with Lenz’s law, which is a statement of 
momentum conservation. 

The EMF consists of the sum of the peripheral com- 
ponents of the forces on the elements Sq, of the charges 
on the discs, due to the elements Sq, of q. The mutual 
momentum force on Sq, is given by 

i 

sf2 = -69, a s ~ , , / a t  

where SA,,  is the A due to dq, ‘seen’ by dq,. Substituting 
from eqn. 7, 

SA21 = (4 - U 2 ) S 4 2 l / C 2  

if U, and U, are the linear velocities of the two elements, 
and S 4 2 1  is the mutual potential. Combining this with 
the reciprocity condition 

sqid4i,  = 8q2842i (14) 
shows that the reaction is symmetrical, and that the 
kinetic, like the electrostatic, forces are equal but 
opposite 

(15) Sf1 + Sf ,  = 0 

sf1 = - sq ,asA1 , /a t  

where 

However, the reference frames in which 6fi and 6f2 are 
observed are those of the two different charges, and are 
not the same, so that the simplicity of electrostatic inter- 
action is, inevitably, lost. Although each charge experi- 
ences a force due to the SA vector generated by the other, 
it sets up no A vector itself in the reference in which it is 
stationary and ‘sees’ no contribution from A to the force 
on the other charge. Moreover, although eqn. 15 leaves 
no net linear force, it leaves a net torque on the system 
comprising the two charges Sq, and Sq, since the forces 
Sfl and Sf2 are in the two (opposite) directions of the 6 A  
vectors. If the charges are moving in straight lines, both 
SA and aSA/at are in the direction of motion of the 
source charge, not along the line joining the two. Since A 
depends on the reference, the electromagnetic effects of 
motion are clearly not limited to the momentum forces 
defined by eqn. 1 1 ,  but the grad 4 terms contribute; i.e. 
they also are electrodynamic. The same point emerges in 
eqn. 2 from the asymmetry of the U x B term, which acts 
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at right-angles to the velocity U ,  so that it cannot satisfy 
the action-reaction principle, and disappears in the refer- 
ence in which the source is stationary*. Thus the effect of 
motion is not confined to the U x B term, but includes E 
(which is not the same as the 4 term in eqn. 3). 

The devices shown in Figs. 1 and 4 differ from conven- 
tional ‘magnetic’ machines in two essentials. Whereas the 
energy exchange is usually between closed circuits, the 
motion of the charge q around a closed path would make 
the net output energy zero, so that, whereas we may 
ignore 4 in calculating the EMF in a closed winding, we 
may not do so in examining the force on q. Also, since q 
is not paired, its magnetic field B depends on the refer- 
ence from which it is observed, and, although the oper- 
ation must be self consistent in any reference, care is 
needed in specifying which one. Likewise, as in mecha- 
nics, the momentum must necessarily depend on the ref- 
erence frame used to define the velocity, but with one 
essential difference. As is shown explicitly by eqn. 6, the 
momentum density qA acquired by a small charge q is a 
mutual property (it is merely another way of describing 
inductance) which depends on the velocity of the source 
of A ,  not that of q. The force which is caused by a 
moving charge is nonconservative, and the difference 
between the 4 and A components is not that the former 
is ‘electrostatic’, but that it is the conservative part of a 
force interaction which is relativistic in origin (as is 
shown directly by eqn. 7). Hence the 4 term is not suffi- 
cient, and it is, of course, this which makes electrical 
machines, and the associated electromagnetic energy 
transfer, possible. But likewise neither is A (or B) suffi- 
cient to describe the force on an isolated charge q. 

Eqn. 7 shows that the spinning-disc model is wholly 
impractical as an energy convertor, since the dynamic 
forces on the discs, due to q, are too small to observe. 
Replacing them by a conducting wire, moving at half the 
drift velocity, introduces two sets of charges moving in 
opposite directions, and the symmetrical nature of this 
system gives A without any net 4, but only if the charges 
are constrained to a uniform charge density, which is not 
the property of a conductor. It is the vast amount of 
charge in the conduction energy band, compared with 
what is possible on a disc, which makes ‘electromotive’ 
force more important than the ‘mechanical’ torque, and 
gives the interaction which is illustrated in Fig. 1 a practi- 
cal value. 

4 Electrokinetic energy 

A more practical form of ‘flywheel’ is obtained by short- 
circuiting a superconducting winding. The opposite 
forces on the conduction electron stream and lattice 
charges produce electrokinetic momentum due to the dif- 
ferential velocity, in place of the net, or ‘mechanical’, 
momentum, and the density of the charges produces a 
large Ai  vector, due to the resulting current i ,  replacing 
A ,  in eqn. 13. The mu term, due to the self-mass of the 
electrons, is now assumed to be negligible. 

The electrokinetic energy, unlike the momentum, 
depends on the velocities of the charges which carry it, as 

* Note also that, in field theory, the problem is complicated by the 
rotation. The electric field E experienced at any point on the discs, 
moving at local velocity U,  is U x B, and has nonzero divergence so that 
it does not satisfy the Maxwell field equations. This is characteristic of 
any rotating (noninertial) reference frame, and it is, perhaps, unfor- 
tunate that most devices of interest to the machines engineer rotate. 
Hence the extensive literature on the electromagnetic mysteries of 
homopolar machines, whose operation depends on the nonzero diver- 
gence of U x B. 
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well as those of the source of A .  The electrokinetic energy 
density (Reference 3, art. 634, or Reference 12) is J * A/2, 
where the current density is 

J = p u  

due to charges of density p moving at velocity U ,  and the 
total kinetic energy of the system becomes 

1 

+ c j  J -  ( A ,  + A i )  du 
2 coil 

in the inertial reference Rcoil in which the coil is station- 
ary. Here mq is the mass of q, and the other two terms are 
integrated over q and over the circuit, respectively. The 
mutual components pu * A and J - A are negative when 
the current is induced, flowing in the direction shown in 
Figs. 1 and 3, and both the momentum and the energy 
are conserved. 

The relationship between the two is illustrated by 
writing the first mutual term in eqn. 16 in the form 

(UA)lZ = ’ G12/2 

(eqn. 6) assuming uniform velocity U. Substituting from 
eqn. 5 shows that the two mutual terms are equal, and 
are given by 

where r is the distance between the volume elements do, 
and du, of q and of the coil, respectively. This simplies to 

1 f - 1  

when q is sufficiently small in volume, and the coil con- 
sists of line elements dl all carrying the same current i c .  
In practice, q is likely to be cylindrical in shape, of length 
6,, so that 

qu = iq6,  

or this forms an equivalent. The energy can then be 
written in the form 

U, = [mqu2 + i ,2LI1 + i q i ,  L , ,  + i, i , ~ , ,  + i , Z ~ , , ] / 2  

(17) 
and the concept of inductance is not limited to closed 
circuits, as is implied by the customary field definition in 
terms of flux linkage (eqn. 8). Eqn. 17 shows that the 
operation of the device, like that of other machines, 
depends on the rate-of-change of inductance, and that the 
change is reciprocal, even though q moves through no 
magnetic field due to i ,  . 

Suppose i is initially zero when q is remote. The equi- 
librium, in the axial direction, of the conduction elec- 
trons, of density p - , in the wire is given by 

(18) 
since the U x curl A term in eqn. 3 is zero in the direction 
of motion. The local mismatch between A ,  and Ai  pro- 
duces nonzero div J, and generates 4, but this makes no 
net contribution in the closed circuit (although the same 
term is important in considering the force on q). The 
momentum balance makes the second integral in eqn. 16 
zero, and likewise the corresponding mutual and self 
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energies in eqn. 17, 

i,i,L2,/2 + ifL,,/2 = O 

so that the component of mutual energy assigned to the 
coil, and likewise the component assigned to q, goes 
negative. Suppose that the system is now returned to its 
original energy state by switching the current off in a suf- 
ficiently short time to allow no significant change in the 
position of q. The work which has to be expended on q to 
keep it moving at uniform velocity is given by sf, - u dt = s q u  - dAJdt dt 

= s i, L,, di,Jdt dt 

and integrates to i, i, L I Z ;  i.e. twice the amount of mutual 
energy which was extracted previously in the coil. The 
other half must have been extracted from q during the 
first part of the cycle, requiring a force, but due only to 
the change in i, , not to the change in position. 

This is shown most simply by again imposing the con- 
dition that U ,  and hence i,, are constant. If the required 
force&, now a restraint, were given by the total differen- 
tial of A i ,  it would absorb an energy sf, U dt = qu * A = i, i, L,, 

where i, and L,, are the final values, and this is twice the 
amount needed for the energy balance. The total differen- 
tial includes the two components 

qu - dAiJdt = i,[L,, di,Jdt + i, dL,,Jdt] 

and i, varies linearly with L,, , since the coil voltage (eqn. 
18)  takes the form 

L,, di,Jdt + i, dL,,Jdt = 0 

Thus the di,/dt part of dAiJdt at q satisfies the energy 
balance requirements, and the dL,,Jdt part as given by 
eqn. 10 makes no contribution, showing the importance 
of the grad 4 term in eqn. 9. 

The energy can (necessarily) be accounted for in mag- 
netic field terms, although field theory tends to obscure 
the various interactions between the charges. The kinetic 
energy is replaced by the magnetic energy density H BJ 
2, giving 

U ,  = ( H ,  + Hi) - ( B ,  + Bi)J2 dv (19) 

where the subscripts indicate the sources, and the integral 
extends over all space (introducing problems of 
retardation). The mutual energy 

s 
(H,  Bi  + Hi * B,)J2 dv = Hi * B ,  dv s 5 

is confined to the region inside the toroid, and the two 
components which the dynamical theory separates 
between the two sources are overlaid on one another 
within the same space. The result is the same, when retar- 
dation effects are neglected, as follows at once from the 
usual proof of the equivalence between the field and 
kinetic energy forms (e.g. Reference 12, p. 124), which 
allows independent sources of H and B. Thus there is no 
difference in the two approaches when the fields are 
separated out into the various ‘overlaid’ components, but 
terms which are physically separate in eqn. 16 now 
occupy the same space, and the superposition conflicts 
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with the conventional view that it is only the resultant E 
and B vectors, defined by eqn. 2, which are physically 
significant. The different inductances in eqn. 17 are gener- 
ally regarded as separate entities when applied to closed 
circuits, and this is one of the causes of the conceptual 
divide between the field and circuit descriptions of any 
given device. The dynamical theory, by removing the 
energy from the ‘field’ (i.e. the A map) and assigning it to 
the charges, provides a ‘circuit-theory’ view expressed in 
terms of the interactions between the various ‘circuit’ 
parts, including any isolated charges, and it is this which 
brings to the fore the key concept of mutual energy. 
Although very familiar in circuit terms, the idea of 
separation into four parts, two of which combine to give 
a total mutual energy which omits the usual factor 112, 
appears artificial when applied to the field, and is seldom 
considered in treatments of energy in texts on ‘electro- 
magnetic theory’. In consequence, although all the 
J * AJ2 energies described as ‘kinetic’ can equally be 
interpreted in field terms as ‘magnetic’ (provided that 
retardation effects are negligible), the operation of the 
device (like others) tends to be confused, rather than clar- 
ified, by combining the energies of all the component 
interactions, and redistributing them in empty space. But 
making the comparison shows that the ‘kinetic’ forces 
due to A and ‘magnetic’ forces due to B are not the same. 

5 Induced charge 

Eqn. 17 shows that, in the reference Rcoil in which the coil 
is stationary, the interaction appears similar to that in 
any ‘magnetic’ machine, but it is different when ‘seen’ 
from q. In the reference R, in which q is stationary, A ,  
disappears, along with the corresponding magnetic field 
B,, so that there appears to be no induced EMF, and no 
change in mutual inductance. This reflects the fundamen- 
tal difference between a conventional machine, in which 
all the sources of A (i.e. of momentum) are due to the 
differential motion of the charges within the conductors, 
and a device whose operation depends on the separation 
of q from - 4 .  

The effect of the separation is to induce a charge of 
density p, on the coil, opposite in sign to q, and ps is the 
most obvious source of a grad 4 term in the force on q. 
Cullwick [ lS,  161, in drawing attention to some of the 
unusual features of the device shown in Fig. 1, pointed 
out that B, depends on the reference, so that, as argued 
by Howe [ 171, the self-consistency of the field description 
requires that the induced EMF in R,  must be accounted 
for by the motion of p,,  and the electrostatic part of the 
interaction cannot be isolated from the electrokinetic 
part. A demonstration, in field terms, of the equivalence 
of the q and p, sources is difficult [18] ,  and it is, perhaps, 
unfortunate that a long discussion of this point distracted 
attention from its underlying implications, and from 
more important aspects of the operating principle. 

The proof of the equivalence in charge-potential terms 
follows at once if the coil is open-circuited, so that dAJdt 
can be ignored, and we assume that grad 4,, due to p, , is 
equal but opposite to grad 4,, due to q, at all points on 
the coil. That is, 

4, + 4 s  = 0 (20) 
if the coil is the potential reference. Assuming that all the 
p, charges move at the same velocity - U  gives 

A, = -u4 , / c2  (21) 
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in R ,  (from eqn. 7), and substituting from eqn. 20 shows 
that A,, in R , ,  takes the same value as A , ,  in Rcoil ,  at all 
points on the wire (neglecting the small change in 4 
between REoil and R,). Thus the equivalence applies not 
only to the EMF due to the line integrals of A ,  and A , ,  
but to the distribution of the dA/& force around the coil. 
Since the operation of the device depends on the EMF, 
and this is essentially a relativistic modification of 4, (as 
is shown by eqn. 7), the independence of reference is cor- 
respondingly important, and the result illustrates the 
practical advantages of eqn. 7 as a means of describing 
kinetic, or ‘magnetic’, effects. 

Although the potential reference is not arbitrary [ 2 ] ,  it 
may be chosen to simplify the point here, since it is only 
the derivatives which produce the forces. The coil poten- 
tial is, of course, zero if it is earthed sufficiently effectively 
(i.e. through a low-inductance connection), and the 
charge density, p , ,  on it then integrates to -q;  more gen- 
erally some of -q  is located elsewhere, but this does not 
affect the proof (other than in the need to examine the 
potential reference). Eqn. 20 depends on the assumption 
that the open-circuit removes the momentum terms, and 
that the velocity -U is uniform, which ignores the effect 
of the current due to the changes in p, ,  causing an elec- 
tric, or differential, effect, but this is the same in both 
references, and can be ignored in making the comparison 
between them. More obvious, perhaps, is the neglect of 
the A ,  term (i.e. A, in eqn. 18) in the equilibrium condi- 
tion (eqn. 20), obtained by equating the potential gra- 
dients. Eqn. 21 shows that the force due to dAJat is 
small, compared with grad 4,, and is a part of the rela- 
tivistic changes in 4 which have also been ignored. It is 
not the relative magnitude of A ,  which is important, but 
its nonconservative property acting on the large amount 
of charge in the conduction energy band of the wire. 

Eqn. 16 is replaced by 

1 
p,( -U) - ( A  , + A i )  du 

+‘j J - ( A , + A i ) d u  
2 coil 

where m, denotes the mass of the coil. The electromag- 
netic, like the ‘mechanical’, part of the kinetic energy of q 
is transferred to the coil in the change from Rcoil to R , ,  
but retains the same sign. Since A ,  is equal to A , ,  the 
mutual term in the second integral is unchanged, and so 
also is the other half of the mutual energy, whilst the 
momentum reciprocity condition derived from eqn. 14 
shows that the change from pA, to p,A, transfers the 
same self energy from q to p, (i.e. - q). 

Thus the choice of reference does not affect the elec- 
trokinetic energy, but it locates both halves on the coil, 
and this changes the way in which the interaction is 
described. ‘Viewed’ from R,  it is the motion of the ‘static’ 
charges ps on the surface of the coil, at velocity -U, 
which induces the EMF, causing the conduction electron 
‘flywheel’ to rotate, and imparting iZL2,/2 energy to it. 
Expressed in field terms, the magnetic flux due to the 
relative movement of the two parts of the system is gener- 
ated by the coil, which thus acquires inductance com- 
ponents due to its net motion, in addition to its more 
familiar self inductance, due to A i .  These fluxes and 
inductances provide the kinetic coupling, due to A ,  and 
A i ,  between the moving p, charges on the surface of the 
wire and the conduction electrons, defining the J vector, 
inside it. 

If the superconductor is replaced by a resistive wire of 
variable section, the EMF induced at any given instant 
may be matched to the resistance, so that i remains 
uniform and constant, dAi/dt is zero, and the energy is 
dissipated instead of stored. Then the only force on q is 
that due to 4,, i.e. is the same as when the coil is station- 
ary, and any additional aAJat component, due to 
changes in i, represent the usual ‘transformer action’ 
(Section 4), as in a static device. The net force on the coil 
is likewise limited to 4,, acting on p, ,  so that the R ,  view 
of the resistance-matched constant-i operation shows 
that the net forces on both q, and on the coil, are the 
same as when the coil is stationary, if retardation delays 
are ignored. 

6 

The R ,  reference shows the importance of the potential 
energy due to 4, and 4, (i.e. of the E term in eqn. 2). But 
it does not explain the zero U x Bi component in eqn. 2, 
due to the current, i, giving zero magnetic force on q in 
Rcoi l ,  whereas the aAi/at term in eqn. 10 is not zero. The 
difference requires another source of grad 4, as is obvious 
from the vector expansion 

Components of U x B 

V(u - A )  = U x v x A + (U - V ) A  

+ A  x v x U + ( A  .V)u  

showing that 

U x B = U x V x A = V(U ‘ A )  -(U * V ) A  (23) 
if V operates only on A ,  not U. Since the first term is a 
scalar, it can be written 

$’= - U S A  (24) 
(complementing eqn. 7), and the U x B, like the E, part of 
eqn. 2 can be separated into components expressed in 
terms of 4 and A 

(25) 
The four components can be reduced back to two by 
adding 4’ to 4, and observing that the total change in A 
is 

(26) 

(27) 
in accordance with eqn. 3 when the potential, and dA/dt ,  
terms are those ‘seen’ by the moving charge. The trans- 
formation is Galilean, so that the force is that predicted 
from the reference relative to which the charge is moving, 
rather than that experienced by the charge. Thus eqn. 3 
can be reduced to two terms, but the condensation is not 
necessarily helpful. 

The significance of the components is shown by the 
diagram of U x B (Fig. 5), that is of the vector 

4. = U x Bi 

f =  p[-grad 4 - dA/& - grad 4’ - (U * V ) A ]  

dA/dt  = aA/at + (U * V)A 

f =  p[ -grad (4’ + 4) - dA/dt ]  

which is the more general form of eqn. 10. Then 

representing the electric field ‘seen’ by q, as a conse- 
quence of its motion past the magnetic field Bi due to the 
current i in the toroid. Here the prime is used to dis- 
tinguish the reference frame R,  in which q is stationary. 
Since Bi is confined to the interior of the coil, so also is 
4 ,  and the electric field lines terminate on the wires. 
Thus the sources of 4. consists of 

curl 4. = - a s i / a t  
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generating the component of Ei given by 

-(dAi/dt)’  = - (U * V ) A i  

together with a scalar component, - V 4 ; ,  given by eqn. 
24, using the suffix i to emphasise the source. Comparing 

v24 = -PIE0 

with 

V 2 A  = -J/Eoc2 

(or, more generally, their retarded equivalents) shows that 
the sources of 4; are 

pi = - U ’  J/c’ (28) 
Hence the conduction electron density in an uncharged 
current-carrying wire is not equal but opposite to the 
lattice charge density, in the reference R ,  moving relative 
to the wire at velocity U. 

I I 

Fig. 5 ElectricJield e., ‘seen’ by  q, in R ,  

used to calculate the ‘mechanical’ forces, due to the 
motion of the conduction electrons, V(u - A )  gives the 
interaction between long, current-carrying wires which 
are parallel to each other, whilst (U * V ) A  describes that 
at a right-angled bend, the two cancelling out when 
applied to the axial components of force on parallel cur- 
rents*. When applied to E,’, they also cancel outside the 
toroid (where curl A i  is zero), although the relevant com- 
ponents of A i  are at right-angles; but in the interior the 
contributions add, in the direction of E,’. They cancel 
everywhere, in the direction U, but separate conservative 
from nonconservative components, and adding the con- 
servative part makes the result in R,  the same as in REoi, .  

The change in 4 is reflected in the potential energy 
(PE) ,  given by 

The charges of density p, in q, acquire additional PE, in 
R, , of density 

p $ ~ ; / 2  = p( -U * A i)/2 (30) 
from eqn. 24, and the corresponding P E  of the pj charges 
in the 4, ‘field’ of q, is, from eqns. 28 and 7 

where A ,  is interchangeable with A , .  Thus the transfer of 
kinetic energy from q to p s ,  as a consequence in the 
change in reference, is accompanied by equal, but 
opposite, changes in potential energy, so that the ‘poten- 
tial’, like the ‘kinetic’, energy depends on velocity, and the 
essential distinction between them is in the noncon- 
servative part of the associated forces. The distinction is, 
however, self consistent in any given reference. 

7 Operating cycle 

Eqns. 25 and 27 illustrate the way in which the change in 
reference affects the nature of the forces and the extent to 
which the description of the device in terms of the A 
vector, or inductance, is incomplete. In consequence the 
dynamical and field theories (necessarily) agree in pre- 
dicting the same force on q when it is moving as when it 
is stationary, assuming that the output energy is 
absorbed locally (Section 8). But this does not prevent the 
energy exchange, due to the motion of q, and, as shown 
in Section 4, the inductance coefficients are sufficient and 
self consistent in describing the exchange, when ‘viewed‘ 
from any given reference. But they are derived from A ,  
not from the concept of flux; indeed the A vector can be 
defined and interpreted as the current times the induc- 
tance per unit length between circuit elementst 

A , ,  * 61, = i ,dL,, (32) 

S’ I 
Fig. 6 Rectangular-section coil 

If the coil is rectangular in shape (Fig. 6), the pi 
sources are inside the wires, such as RQ, parallel to U, 
whereas the sources of the component of (U * V)A,  which 
contributes to Ef are confined to wires normal to U, such 
as RS. These terminate Ef tangentially, and, as in the 
division of the E vector in eqn. 2, the two terms in eqn. 
23 represent the effects of different sets of charge. When 

where the source element need not be small. The increase 
(or reduction) in mutual inductance, as q approaches the 
coil, is due to the changes in A i ,  and A , ,  and the field 

* Showing that it is this separation of terms which underlies the distinc- 
tion between Amfire’s law of force between current elements and that 
deduced in the customary way from the U x B term in eqn. 2. The 
former gives equal but opposite action and reaction, whereas the latter 
does not. 
t A measures the ‘inductivity’ of the conductor. The dynamical theory 
extends the local conductor property of resistivity to all of the circuit 
parameters, including capacitance, impedance and radiation resistance. 
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interpretation fails not only because of the difficulty in 
defining flux linkage, but because q ‘sees’ no change in 
the flux produced by the coil. 

It is helpful, in comparing the different points of view 
and the effect of constant-current operation, to examine 
an operating cycle which includes a constant-current 
phase. A period during which the current does change 
has to be included, to provide for the recombination of q 
with the opposite charge -4, without nullifying the 
energy transfer, and the complete cycle might consist of 
four parts. During the first, q is separated from - q  and 
set in motion, acquiring a kinetic energy 

U ,  = m,u2/2 + i,2 L ,  , / 2  

in Rcoil (eqn. 17). The toroid is energised, when remote 
from q, requiring an electrical input 

U ,  = i,2L2,/2 

from an external source. During the second part, q 
approaches the toroid at uniform velocity, whilst i ,  is 
kept constant, requiring a further external input to the 
coil 

U ,  = i,(dA,/dt) * dl dt = i ,  i , L , ,  

where L,, is the final value. U ,  is positive if i ,  is in the 
direction defining positive L , ,  (i.e. opposite to that 
shown in the diagrams). The current is then switched off, 
during the third part of the cycle, and the fourth part 
consists of the recombination of q and -q ,  while the coil 
is open-circuited. The original ‘electrostatic’ separation 
energy, which is included in the grad 4 forces on q (and 
on p,) throughout, is then recovered, and these capacitive 
energy and force terms can be ignored for the present 
purpose. They require a supplementary energy balance, 
which is considered in Section 8. 

It is convenient to assume, as in Section 4, that the 
current switch-off is sufficiently rapid to make the change 
in mutual inductance negligible during stage 3, and that a 
force,&, keeps the velocity U constant. The work done by 
f ,  is 

U , =  f , . u d t =  q u . d A i  s s  
= i , i ,  L , ,  

as before, and the energy obtained from the coil 

U ,  = j$ i ,  A i  . dl dt = i:L,,/2 

since A ,  is constant. The kinetic energy which is then 
recovered from q, during stage 4, 

U ,  = m,u2/2 + i ,2L1,/2 

is that originally supplied during stage 1. 
The force f, is introduced to simplify the calculation 

by separating the self and mutual energy terms, but is not 
needed in practice since stages 3 and 4 could be com- 
bined by choosing the current ic so that the dAidt force, 
due to ‘transformer action’, brings q to rest. The practical 
details of this part of the cycle do not affect the kinetic 
energy balance, which allows no force on q during stage 
2, when both the velocity U and the current i, are con- 
stant. More specifically, it allows no change in the force 
which is exerted on q when stationary. This is because 
the electrical input U , ,  if positive, increases the internal 
(mutual) energy by supplying a current in the direction 
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which makes L , ,  positive. The characteristic feature of 
the device, operating as a generator, is that the direction 
of the induced current drives L,, negative, giving a lower 
internal energy state at the end of the stage than at the 
beginning, even though the initial mutual energy is zero. 
Field theory accounts for the absence of a forcef, in the 
same way; that is the Hi * B, component goes negative, 
reducing the total H - B/2 energy in the region inside the 
toroid. 

The negative energy is subsequently recovered in res- 
toring the system to its original energy state, and in this 
respect the operation is no different from that of any 
device during a period in which the net internal energy 
diminishes. It illustrates the physical significance of the 
negative sign of J - A/2,  whenever the vectors J and A 
have opposite direction, which is characteristic of the 
mutual energy terms in all transformers and ‘magnetic’ 
machines, and gives a useful insight into their operation. 
Eqn. 17 shows that the inductive effect of q on the toroid 
is the same as that of another closed winding, and it is 
helpful to make the comparison with an equivalent two- 
winding system, in which the two currents are kept con- 
stant whilst one coil is brought into the vicinity of the 
other. The mechanical work on moving coil 1 is given by 

J f, . U, dt = i , i ,  aL , , / dxu  dt = i , i , L 1 2  J 
and the electrical work obtained by integrating i ,  d A ,  is 
equal but opposite, since i ,  is constant. Thus there is no 
net expenditure of energy on the moving coil, just as 
none is required on q, and the stationary coil requires an 
electrical work which accounts for the whole of the 
mutual energy i , i ,  M .  

The comparison illustrates an essential difference 
between the self-energy and mutual-energy terms (eqns. 
16 and 17), in that the latter are not, in general, injected 
into, or recovered from, the components to which they 
are assigned. ‘Self energies’ analyse, in turn, into the sum 
of mutual subenergies, since all electromagnetic energy is 
mutual, so that the density J A/2 ,  like H - B/2, is merely 
a convenient way of making the system energy account 
balance, and may not be interpreted literally. The obser- 
vable energy expenditure on the charges, and thus the 
stored energy density, is given [a]  by the integral of 
J * dA, which has arbitrary values whenever J and A are 
varied independently, and it is only the total system 
energy which can be accounted for by assuming a stored 
energy density J - A/2.  The energy density provides a 
local energy balance in systems driven in such a way that 
A varies linearly with J, but not when driven in other 
ways, even though the system remains linear in the sense 
that it contains no ferromagnetic materials. The energy 
transfer by remote action is a consequence of the action- 
at-a-distance of the observable forces, i.e. those which act 
on the charges*. This point is fundamental to the oper- 
ation of the device with constant i ,  , since this transfers to 
the coil the energy which is assigned to q in the third 
term of eqn. 17, and accounts for energy generation 
without a force on q. 

The constant-current operating mode is not essentially 
different from that described in Section 4, in which the 
short-circuited coil stores the exchange energy in self- 
inductance, and this may be supplied subsequently to an 
electrical load. The details of the actual cycle are a matter 

* Field theory ‘explains’ the transfer of energy, but only if we take an 
equally literal view of the mechanism transferring the force, i.e. of the 
physical existence of Maxwell stresses in empty space [2]. 
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of practical convenience, subject only to the requirement 
that the current is switched to zero when the charges are 
recombined, which means that a relatively large amount 
of inductive energy must be injected into the coil and 
recovered, giving the device the equivalent of a poor 
power factor. The mutual and self energies are obviously 
closely linked, and both depend on the cross-sectional 
area of the coil, so that their ratio imposes severe limi- 
tations on the operation at low speed. It does not, 
however, make the exchange impractical, as is shown by 
its many applications (including magnetrons). 

8 

In field theory there is a tendency to ignore 4 as wholly 
‘electrostatic’, but 4; in R, shows that care is needed in 
interpretation, and the 4 in Rcoil clearly cannot be the 
same as when q is stationary, since the axial equilibrium 
of the conduction electrons in the coil (eqn. 18) must 
depend on the current. This adds energy terms, and 
requires further examination. The potential which is 
observed in Rcoil separates into three parts, 

Energy transfer to external source 

d = dq + 4 s  + 4 e  (33) 
where 4, is due to q, and 4, is the opposite ‘static’ com- 
ponent defined by the condition that 4, and 4s sum to 
zero at all points on the coil (eqn. 20), leaving the 4e to 
balance the forces due to the total A (eqn. 18) in a resist- 
anceless conductor. The transfer of energy around the 
coil requires a h#~ vector [2] due to the net 4e, which 
depends on the shape of the conductors, as well as their 
resistivity, but is controlled by the potential difference 
between the coil terminals. That is, by the external source 
providing the ‘applied voltage’, due to 4e, which opposes 
the ‘back EMF’, or induced voltage, due to A .  A trans- 
former provides a familiar example. causes the electric 
stress in the insulation and determines the rate of energy 
transfer along the conductors. It also contributes to the 
force on q. 

Consider a toroidal coil of rectangular cross-section 
(Fig. 6) whose opening RR‘ is sufficiently small compared 
with the rectangle dimensions as to make the effects of 
the other corners negligible as q approaches R. Keeping 
the current i, constant removes the A i  term from eqn. 18, 
and the equilibrium of the conduction electrons, in the 
axial direction, requires 

f- = p-(-grad 4e - dA,(at) = 0 (34) 
in Rcoil ,  assuming a resistanceless wire. The dA,/at force 
on the electrons is concentrated in the vicinity of R, and 
is confined to the wires, such as RQ, parallel to U, so that 
charge accumulates, and produces the 4e needed to 
transfer energy to the rest of the turn, and to the external 
load. +e provides the electrical equivalent of the ‘mecha- 
nical’ restraints on the rotating discs in Fig. 4, and J 4 e  
provides the alternative to the ‘mechanical’ power. 

Consider first the equilibrium forces on the -4, or p s ,  
charge with which q is paired. If the system consisting of 
the two components shown in Fig. 1 is to be closed, the 
coil must be ‘earthed’, so that p, integrates to -q ,  and, as 
q approaches, the induced charge is transferred progres- 
sively to the nearer surface of the toroid. In the absence 
of resistance the transfer cannot be achieved in a stable 
way, since the axial electron equilibrium condition in the 
earth lead, 

f- =p- ( -grad  4 - dA/dt )  = 0 
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leads to sustained oscillations between potential and 
kinetic energy, as when a charged capacitor is connected 
in parallel with one which is discharged (Reference 2, p. 
61), giving a net loss of p4/2 energy because of the addi- 
tion J * A / 2  term. The only way of achieving equilibrium 
is by some form of viscous damping, for example by 
including resistance in the earthing lead, and this absorbs 
the separation energy which is lost as q approaches ps . In 
general, a second energy convertor is needed in the earth- 
ing lead in addition to that connected between the ter- 
minals, and the assumption made in Section 7 that all the 
potential energy of the system is recovered requires that 
the second converter is reversible. 

The separation energy due to 4e likewise has to be 
injected and recovered. The force 

F, = -qVb,  (35) 

f, = -Pev4q 

on q, together with the corresponding force density 

on the sources, pe ,  of 4e on the coil, produces an addi- 
tional potential energy, q4,/2, and pe 4,/2, which is suffi- 
ciently small to ignore in most two-winding devices. It 
here requires a supply energy balance, which depends on 
the current i,, but it is additional to the kinetic energy 
exchange, not a part of it, since, although pe and 4e 
control the transfer of energy, the control power is not 
directly related to the amount transferred. 

This is shown by considering, for example, a short- 
circuited coil in which the conductivity U is distributed so 
as to keep i temporarily constant, by matching aAq/at to 
the resistive volt-drop Jla. The mutual-energy exchange 
U, (Section 7) is then converted locally into heat, and be 
is eliminated. In general, the magnitude of 4e, together 
with the corresponding force on q, depends on the extent 
of the redistribution of energy within the circuit, rather 
than on the amount transferred, and the same capacitive 
energy appears as an additional effect in field theory 
(although easily overlooked when concentrating atten- 
tion on the fields, instead of the charge equilibrium 
conditions). It supplements the ‘magnetic’ component of 
the interaction, but does not form a part of it. The role of 
the 4e term is evident in high-frequency applications, 
such as cavity resonators, in which a resistanceless con- 
ductor obviously cannot be assumed to be an equipo- 
tential. Its relative importance depends directly on the 
frequency, geometry and resistivity. 

9 Lorentz transformation 

The 4e term shows that the force on q depends on the 
current in the coil, but it is the components of U x B, in 
R,, which are more directly involved in the energy 
exchange, and these illustrate the practical implications 
of the relativistic nature of the ‘magnetic’, or ‘kinetic’, 
forces. Separating the third term in eqn. 3 into its com- 
ponents answers the question whether or not U x V x A 
is a ‘momentum force’, by distinguishing between aA/at 
and 4‘, but this depends, in turn, on the definition of 4 
by its conservative property, and ‘momentum’ as the 
nonconservative term. 

The transformation can be made self-consistent only 
by stating it in relativistic, instead of Galilean, form, i.e. 
as a Lorentz transformation [19, 201 from one inertial 
reference, R, to another, R‘, moving at velocity U, 

4’ = ~ ( 4  - U A )  (36) 
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where 

y = 1/J(1 - u2/c2) 

’4: = y(A, - U4/C’) 

(37) 

(38) 
and the component in the transverse direction is the same 
in R‘ as in R. Eqn. 7 follows from eqn. 38 by substituting 
A’ = 0, and eqn. 24 is an approximate form of eqn. 36, 
likewise taking the exact form 

The component of A’ in the direction U is 

$ = U S A  (39) 
if 4’ = 0. Thus a current-carrying wire whose surface is 
an equipotential in the reference, now R’, in which the 
crystal lattice is stationary, acquires a different value of 4 
in any other reference. 

The interchange between 4 and A ,  and the associated 
energy change, is comparable to that between the E and 
B fields, although with the proviso that the field com- 
ponents are not the same as those due to 4 and A .  The 
distinction between 4, as a ‘static’ effect, and either A ,  or 
U x B, as ‘kinetic’ or ‘dynamic’, is essentially arbitrary, 
not only because it depends on the reference used to 
define velocity, and requires the motion of two sets of 
interacting charges, but because the ‘static’ charge density 
on a conductor is not invariant (despite the invariance of 
charge). The underlying interaction is between two 
moving charges, causing a force on one, say q,, which is 
given by the E field of the source charge, q2 , in the refer- 
ence in which q1 is stationary, and is directed along the 
radius vector from the retarded position of 4 ,  [19, 203. 
This is in contrast with U x B, directed in the plane 
normal to U, and aA/at,  which is in the direction of 
motion if the charges are moving parallel to each other. 
The concept of momentum (like that of flux) describes a 
component of the relativistic change in the potential, 4, 
due to a stationary charge, and necessarily depends on 
the choice of reference. It is defined by the distinction 
between conservative and nonconservative components, 
where the definition of ‘conservative’ is, in turn, affected 
by retardation, and it is only the Lorentz gauge which 
retards both 4 and A ,  in accordance with the fundamen- 
tal postulate of special relativity. Because 4, due to q 2 ,  is 
retarded, its local gradient is not in the direction of E, i.e. 
of the radius vector. In general, neither the U x B nor the 
aA/& term is sufficient to account for the ‘dynamic’ force 
on a moving charge. 

10 Equivalent circuit 

Eqn. 17 shows that the aA/at terms can be represented by 
an equivalent circuit (Fig. 7), whose graphical symbolism 

load 

dt m d u  
dt 

0; 
Fig. 7 Electrical equivalent circuit 
K = m6Jq 
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provides a useful summary of the operating principles, as 
in other forms of energy convertor. In the coil the 
changes in momentum produce electrical voltages given 

(40) 
in which the two ‘transformer’ terms are represented in 
the usual way by inductance elements, and the last 
requires an additional generator representing the effect of 
the relative movement between the parts, giving a voltage 
which depends on i , .  These together represent the coil 
term in eqn. 16. They combine with the resistive volt 
drop to account for the terminal voltage 4,. 

The charge q can likewise be replaced by an equivalent 
winding whose inductances are defined by equating ener- 
gies, so that the corresponding terms in eqns. 16 and 17 
are equivalent to the voltages 

by 
U, = L,,  di,/dt + L 2 ,  di,/dt + i ,  dL , , /d t  

v 1  = L , ,  di,/dt -k L , ,  di,/dt + i ,  dL,, /dt  (41) 
representing the various momentum forces on q. An addi- 
tional circuit element is required to represent changes in 
mu, caused by changes in i , ,  as in a betratron, and 
another is required to balance the i, dLl , /d t  effect of 
changes in position. The additional component is the $I, 
or V(u * Ai),  generator, which combines with i ,  dL, , /d t ,  
or (U - V)A,  term to produce zero net force on q. Thus, 
when ‘viewed’ from the coil (i.e. from Rcoil), the two gen- 
erators on the q side combine, and can be removed, cor- 
responding to the U x B description, but they are needed 
to separate the momentum and conservative force com- 
ponents. 

When i ,  is kept constant, the approach of q, at con- 
stant velocity, gives zero voltage across all the inductance 
elements, and the i ,  dL,, /dt  generator exchanges i ,  i ,  L , ,  
energy with the external source. On the q side the two 
generators describe opposite changes in internal energy, 
summing to zero, i.e. they represent an energy exchange, 
in which neither component is accessible, separately, to 
external observation. During a sufficiently rapid current 
change, on the other hand, all three generators can be 
ignored, and the remaining elements exchange energy 
with the inductors, which store the relevant i l i 2  L 1 2 / 2  
components, accounting jointly for the total mutual 
energy i ,  i ,  L , , .  Thus the internal energy is accessible, in 
electrical form, via both the inductors and the generators, 
and the latter represent the aA/at forces due to changes 
in position, although not the mechanical energy. If q were 
to be replaced by a second winding, giving a symmetrical 
equivalent circuit, and both carry constant current, the 
movement of one requires a mechanical work which bal- 
ances the electrical input to it, and the net change in 
mutual energy is provided by the electrical input to the 
fixed winding, as in Fig. 7. The equivalent circuit then 
represents electrical voltage and energy components in 
both windings, but no such distinction is possible when 
representing q, other than in units. The force on q due to 
4e is excluded, and requires a separate equivalent circuit 
in which the elements are capacitors. 

Fig. 7 illustrates the close relationship between the 
dynamical and circuit descriptions. The former analyses 
the lumped parameters into the components contributed 
by each part of the circuit, in contrast with field theory, 
which concentrates attention on the different parts of 
the field, and their contributions to the flux linkages. 
The practical importance of the separation of the EMF 
into components is shown by the dependence of the 
kinetic (or magnetic) stored energy density J A / 2  on A ,  
whereas the power flow Jq5 is accounted for by 4. The 
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operation of the device depends on the interaction 
between these terms. 

The circuit also shows the implications of the high 
leakage reactance, and the consequences of increasing the 
momentum, per unit current, by filling the interior of the 
toroid with iron. This increases L,, in the ratio of the 
permeability p, and thus the corresponding motion gen- 
erator voltage, per unit current, but it also increases L,, , 
and the stored energy, per unit current, introduces a 
dL, , /dt  term, and imposes other limitations. Fig. 7 gives 
the two-port form, in which the inductance L, ,  - L12 is 
usually negative, and the turns ratio is not shown explic- 
itly. Both can be corrected by introducing an ideal trans- 
former, but this contributes little of importance, other 
than in defining what is meant by ‘turns ratio’ in a device 
in which one of the elements is an isolated group of 
moving charge. 

11 Electromagnetic mass 

The separation of E, in eqn. 2, into two components (eqn. 
3) separates the electromagnetic momentum from the 
forces which change it, and identifies a property which 
can also be expressed in terms of mass. Eqn. 17 shows 
that the momentum of q,  on its own, is 

(42) G, = mu + m, , u 

m11 = (4/d,)2Lll  (43) 

where 

is its electromagnetic mass. By substituting from eqn. 7 in 
the relevant term in eqn. 16, 

m , , u 2 / 2  = [pu - A ,  du 

= (U * 4 2 )  j @ O q / C 2 )  do  (44) 

showing that m,, is the mass of the energy which is 
required to separate the charge from its opposite counter- 
part (the total separation energy requiring integration 
over both charge groups). Although m,, is normally too 
small to be significant compared with m, showing that 
L l l  also is then negligible, this may not be so for the 
other inductances, and their corresponding masses. Here 
m represents the ‘ordinary’ mass of the charges, but, if 
these are electrons, m can, in turn, be explained in the 
same way [9, 19, 21, 223, i.e. as the mass of its electro- 
magnetic energy, usually expressed in field terms*. 

The mutual momentum density g,, of charges of 
density p , ,  in a ‘field‘ A , ,  is p1 A , ,  so that, if the velocity 
of p 1  is U , ,  the mutual energy assigned to a charge group 
q is 

= J k 1 2  * u1/2) du 
4 

If the source is also a small group, moving at uniform 
velocity U , ,  the kinetic energy density takes the form 

(45) J ,  - A 2/2 = (mutual mass density)u, * u2/2 
~ 

* The effects of retardation have to be taken into account in making the 
comparison. 
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where the mass density is given by 

@ 1  4 2  + P 2  41)/2c2 
from eqn. 7, together with the reciprocity principle. A 
source consisting of a uniform wire carrying a current 

1, = q -  U- 

due to electrons of density q -  , per unit length of wire, is 
characterised by the velocity U -  of the electrons. The 
kinetic interaction between q and each section of the wire 
can be interpreted as a contribution to the mutual mass, 
summed in accordance with the local scalar product of 
the vectors U and U -  . Assuming that both are uniform in 
magnitude defines a net mutual mass m l , ,  so that the 
mutual-energy term (eqn. 17) 

i,i, L,,/2 = uu- m12/2 

giving 

m12 = 4 -  4L12tdq (46) 

The reciprocity evident in eqns. 17 and 46 shows that the 
same mutual mass is assigned to the current. 

The mutual momentum assigned to q can be summed 
around the circuit and written in vector form 

G,, = qA, = m 1 2 u  

since the inductance is given by 

L, ,  = A ,  S,/i, or A i  = q -  U -  L,,/d, (47) 

where A ,  defines the direction of the equivalent velocity 
vector U - .  Thus the momentum of q (eqn. 42) is changed 
by the presence of the coil to 

G, =mu + ml lu  + m,,u-  (48) 
giving a momentum force 

F, = m du ld t  + m,, duldt  

+ m12 d u - l d t  + U -  dm,,/dt (49) 
with magnitude 

F ,  = m duld t  + (q/d,)(L, ,  di,/dt 

+ L, ,  di,/dt + i, dL, , /dt)  (50) 
by substitution from eqns. 43 and 46. This compares 
directly with the corresponding expression (eqns. 40 and 
41) for EMF, which gives the line integral of the electric 
field, and thus the total force per unit line charge density. 

Although the change in terms does not add anything 
new to the result, it provides a different perception of it, 
and the concept of the electromagnetic mass of individual 
electrons becomes an example of a wider view of the 
kinetic interactions between all moving charges as an 
inertial effect. Two electrons moving in the same direc- 
tion acquire more mass than when they are separated, for 
the same reasons as each acquires its own, if we adopt an 
electromagnetic model of the electron. Viewed in this 
way, the inertial property of the moving electron stream 
in a coil, which ‘explains’ the inductance, is a necessary 
consequence of the retardation of the ‘electrostatic’ inter- 
action between the electrons, as can be shown directly by 
considering the electromagnetic effects of a pulse in 
parallel wires [13]. The interaction between q and the 
coil follows. 

The description in terms of momentum and mass 
helps to clarify the difference between the dynamical and 
field theory concepts. Whereas the Lorentz force equi- 
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librium is 

FL = q(E + U x B) = m duldt (51) 
of a charge q with ‘nonelectromagnetic’ mass m, defining 
force in terms of momentum, F,, in eqn. 49, takes the m I 2  
component of U x B from one side of the equation to the 
other. Thus, although replacing momentum by mass 
merely restates what was implied at the outset by using 
the vector A (i.e. the inductance), it helps in showing that 
‘force’ is not an unambiguous concept when its origins 
are electromagnetic. Whether or not there is a force on q 
is, in the end, a matter of definition. 

12 Aharonov-Bohm effect 

As has been pointed out by Feinberg [23], an electron, q, 
moving past a magnetised whisker (Fig. 2), produces an 
H,  field which changes the magnetisation energy in the 
whisker by an amount depending on which way q goes 
round it. The change in magnetisation replaces the load 
energy, in Fig. 7, and shows that classical field theory 
predicts an interaction between the two, even though the 
whisker produces no B field at q. The point is often 
ignored, because of the tendency of the classical approach 
to concentrate attention on the fields, at the expense of 
the sources, although the effect on the magnetisation 
shows that any apparent discrepancy is not with 
quantum mechanics, as usually stated, but is internal to 
field theory. Replacing B by the A ‘field’ shows the physi- 
cal significance of A as a measure of the mutual kinetic 
energy, and provides an answer to the question posed by 
Imry and Webb [6] and others about the extent to which 
the Aharonov-Bohm effect can be scaled up. 

The apparatus used in various experimental investiga- 
tions (see, for example, Reference 7) includes an earthed 
conducting screen around the whisker, suggesting that 
there is no essential difference between this and the coil 
shown in Fig. 1, except that 4e is zero. The quantum- 
mechanical phase (which can, of course, be observed only 
up to 274 provides a measure of the mutual energy 
between q and the whisker [23], and is equivalent to F, 
(eqn. 49), instead of the Lorentz force FL (eqn. 51), as is to 
be expected since the Hamiltonian implies a definition of 
force in terms of momentum. q acquires a mutual mass 
due to the coupling of its motion with the electron spins 
in the whisker, as is shown directly by Maxwell’s dynami- 
cal treatment of classical theory, which can be rephrased 
in conventional field terms by the equivalence [7] 

qAi  = D ,  x Bi dv (52) s 
where the suffixes denote the sources, and thus a momen- 
tum exchange since D, and Bi are components, not total 
fields. However, the absence of Bi at q illustrates the way 
in which A provides a much more direct interpretation of 
momentum than D x B, as is reflected in the Schrodinger 
equation, but is equally true of classical theory. To quote 
Feynman et al. (Reference 9, pp. 15-14) ‘E  and B are 
slowly disappearing from the modern expression of 
physical laws; they are being replaced by A and 4’. 
Perhaps the most remarkable aspects of the change is the 
neglect by all except a few writers such as Macdonald 
[24] of Maxwell’s own use of the ‘dynamical’ ideas as the 
basis for the classical theory. 

Difficulties in understanding how q can ‘sense’ the pre- 
sence of flux at points remote from it [25], or on the 
existence of a long-range quantum state [26], are evi- 
dence of the conceptual problems associated with the B 
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and D vectors, and are not peculiar to the Aharonov- 
Bohm device. Integrating the equation 

curl E = - a ~ / a t  

shows that flux has a long-range or action-at-a-distance 
effect in all magnetic interactions; moreover one which is 
instantaneous, not retarded [14]. Remarks by many 
authors on the rather mysterious nature of the canonical 
momentum density 

g = m + p A  

likewise show the essential artificial nature of the diffi- 
culties which are caused by interpreting electromagnetic 
momentum as D x B, so that related quantum effects 
appearing in other applications, such as the behaviour of 
Josephson junctions in circuits linked by flux, and of 
SQUID devices, are also usually presented as examples 
of a failure of classical theory. The ‘trapping’ of flux by 
superconductors becomes rather less mysterious when 
viewed in 4 A  terms, since the removal of extraneous 
forces from the conduction charges necessarily implies 
the conservation of their momentum (as is recognised in 
the London theory [17]), and this is quantised as a direct 
consequence of the quantum nature of the Cooper pairs 
which carry it. 

13 Force on circuit 

Portis [7], in examining the Aharonov-Bohm effect, 
argues that, although there may be no force on q, there is 
one on the coil, because the J x B, interaction with the 
current does not integrate to zero. This point, together 
with the proof, which is given by demonstrating the 
equivalence between the total J x B, force and the rate- 
of-change of mutual momentum given by the right-hand 
side of eqn. 52, is of interest for several reasons, including 
the obvious implications of an apparent lack of balance 
between the action and the consequent reaction. It 
amplifies the point made previously [l] about the use of 
one component of the D x B momentum to obtain the 
net force on the system, when the current in the same 
device changes in time. The force which is then exerted 
on q is accounted for by the rate-of-change of mutual 
momentum, giving an apparent reaction on empty space, 
instead of on the coil, when expressed in field terms. 
Replacing the right-hand side of eqn. 52 by the left-hand 
side helps to clarify the physical significance of the 
mutual term. 

Clearly the J x B forces on the coil cannot balance 
out, because B, is everywhere at right-angles to the cross- 
section (which may be a rectangle consisting of parallel 
conductors of equal length), and the field is greater in the 
regions close to q than in those further away. But the 
lack of a J x B term at q does not mean there is no force, 
and likewise J x B is not the only component of force on 
the circuit. The interaction depends on the separation 
energy of q, so that the E term in eqn. 2 cannot be 
ignored, nor can it be assumed to be identical to the 
static field in the absence of i ;  i.e. motional effects are not 
limited to U x B, as is evident when considering the inter- 
actions between two moving charges. 

It is also evident by changing the reference frame from 
Rcoi, to R, ,  as was pointed out in Section 5, since B, then 
disappears, and with it the force density J x B, on the 
winding. It is replaced by a J x B term due to the B 
vector in R, ,  which is accounted for by the movement of 
the - q, or p s  , charges on the surface of the coil. That is, 
the field which appears in the absence of any current in 
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the coil. The J x B term now represents a force on the 
current within the wire due to a charge on its surface, and 
can only be one component of a total force which must 
be zero; otherwise the coil would propel itself along. It 
can be argued that this does happen, because the mutual 
component D, x Bi is changing in time, where D, is due 
to ps , but, as when considering the ‘transformer’ effect of 
a change in current [l], the other components of D x B 
have to be taken into account. As observed from Rcoil ,  
the net D vector is zero everywhere inside the coil, if 4e is 
zero in eqn. 33 (as it is if the resistance is suitably 
distributed), and there is no net D x B i .  The rate-of- 
change of one component of the momentum certainly 
indicates a component of force, as we see at once by sub- 
stituting the term on the right-hand side of eqn. 52 by 
that on the left, but it does not follow that this is the net 
force, and is observable; i.e. that it changes the ‘mechani- 
cal’ momentum mu due to the ‘ordinary’ mass m. There 
will be a change in the total D x B when integrated over 
all space, indicating a force on the system as a whole, but 
this merely confirms the lack of an instantaneous balance 
between the observable forces on q, and on the coil, due 
to the finite velocity of propagation, and is of little practi- 
cal interest, even at high frequencies. 

Although the field momentum can be separated into 
components by eqn. 52, with the same physical implica- 
tions as the qA alternatives, this is unlikely to be helpful 
even to those familiar with the practical application of 
the D x B concept, and it will not be further pursued 
here. The more important point is that, although there is 
a J x B force on the coil, and this is directly related to 
the mutual momentum, the assumption that either proves 
that there is a net force on the coil, or on the system as a 
whole [7], is clearly unwarranted. 

14 

The condition that Bi (or curl Ai)  is zero at q simplifies 
the investigation of the energy change, but is not neces- 
sary to it. Any coil replacing the toroid in Fig. 1, for 
example, will share a mutual kinetic energy with q, given 
by J - A/2 ,  or pu * A/2 ,  as will any two groups of charge 
when the velocity U of one through the A ‘field‘ of the 
other has a component in the direction of A .  The energy 
changes if the U component of A is not constant, and this 
principle is unaffected by the curl of A .  The change does 
not, of itself, produce a force on q, in the sense that it 
does not alter the ‘mechanical’ momentum mu, whereas 
curl A does. The U x curl A force, on the other hand, has 
the well-known property of producing no change in 
energy. In general, the total interaction separates into 
two parts, one an energy change without a force, and the 
other a force without an energy change. 

The U x V x A forces constrain moving charges into a 
spiral motion, which can be interpreted in the conven- 
tional way as evidence of the B vector (Fig. 84,  but is 
equally evidence of A ,  since the charges conform to the 
momentum pattern of the source (Fig. 8b). Devices such 
as storage rings, for example, are designed to produce an 
A vector in the form of closed circles, thus forcing the 
charges into similar paths, parallel to the local sources of 
A in eqn. 5 ,  and momentum conservation suggests that 
the direction of motion of positive charges is opposite to 
that of A (in accordance with the result obtained from the 
field by applying the two crossproduct rules). The 
resulting mutual energy is a familiar property of any 
betatron device, or transformer, in which the charges are 
accelerated by changing the source current. If A does not 

Force on 9 due to curl A 
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vary with position, the mutual energy does not change 
during the orbit, and, even if it does, the closing of the 
orbit, or circuit, as in a second transformer winding, 
makes the net energy change zero when the source 

\ 
c 
c 

B = curl A 

a 

Fig. 8 
U Interaction with B 
b Interaction with A 

Forces due to curl A 
b 

current is constant. The (U - V ) A  term in eqn. 26 then has 
little practical interest. More generally, any isolated 
charge moving through the earth’s A ‘field’, for example, 
will produce a change of flux linkage with the source 
current i and inject energy into it, if the component of Ai, 
due to i, in the direction of motion is not constant. The 
reciprocity principle shows the A i  provides a convenient 
alternative to A ,  as a measure of this exchange. The effect 
tends to change the net source current, and is additional 
to that of any ‘electrostatic’ component, such as $s and 

The amount of energy involved is commonly too small 
to be significant and it integrates to zero when q com- 
pletes a closed path or is recombined without a change in 
the source of A .  Nevertheless, its neglect conceals an 
interaction which may be useful. It becomes most evident 
when curl A is zero, as in Fig. 1, or in other examples, 
such as waveguides, in which the H-mode (or A-mode) 
gives nonzero A outside the waveguide, where B is zero, 
showing that a moving charge can couple with the mode. 
More generally, the energy changes due to U A appear 
in combination with the forces due to U x V x A ,  
requiring a more complete statement of the dynamical 
interaction than is possible here, but it may be helpful to 
make a brief comparison between the momentum and 
field description. 

Since the magnitude of U is constant, the centrifugal 
force, normal to U, can be expressed either as m(u V)u 
(cf. eqn. 23) or in the form 

f,,,, = m(u x curl u)/2 

@e (eqn. 33). 

Comparison with eqn. 3 shows that the ‘magnetic’ equi- 
librium condition is 

m curl U + 2q curl A = 0 (53) 
for a freely moving particle of ‘nonelectromagnetic’ mass 
m, and charge q, neglecting the electrical self-momentum 
qA,  . Integrating, and equating integrands, 

(54) mu + 2qA = constant 

if the ‘field’ is uniform. These are alternatives to the more 
usual scalar relationship 

r = mu/qB 

for the radius of the path. They give the sign of U and the 
direction of the axis of rotation by inspection, and show 
the linear relationship between the velocity and the 
amount of source current which is needed to keep the 
orbit geometry unchanged. 
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The factor 2 is the same as appears in superconductor 
theory, in which the concept of momentum qA plays an 
important role [27] .  Here m is the mass of the electron, 
and 2q is the charge of the Cooper pair (e.g. Reference 9, 
vol. 111). In general, the canonical momentum 

G = m u + q A  

is not conserved for reasons which depend on the choice 
of reference frame. When viewed from one, such as Reoil, 
relative to which q is in motion, the U x V x A term 
appears as a force which is additional to the momentum 
term, aA/at ,  so that, in this reference, q is not in equi- 
librium under the action of V 4  and momentum forces 
only. As ‘seen’ from R, ,  there is no U x B term, and the 
V 4  and momentum forces are sufficient, but both con- 
tribute to the circular motion of q, since, as the direction 
of U changes, so also do the parts of the current source 
which are selected by the U * J source of 4’ (eqn. 28). R ,  is 
not an inertial reference if it is defined so that q is contin- 
ually stationary in it, but choosing it so that q is momen- 
tarily stationary shows that the V 4 ’  and (U V ) A  terms 
make equal contributions to the total force. This illus- 
trates the magnitude of the V 4 ’  term, as a part of the 
familiar U x B force. The equality of components occurs 
repeatedly in different guises, and is a result of the invari- 
ance of the scalar product of the (J,  p)  and ( A ,  4) 4- 
vectors, i.e. of the corresponding Lagrangian, or energy 
difference. 

15 Conclusions 

The study has extended previous work on electrokinetic 
momentum to the interaction between a charge q and a 
closed winding, carrying a constant current i, due to the 
motion of q past the winding. It has been shown that the 
kinetic, or ‘magnetic’, coupling between them causes an 
exchange of energy with the current source, at a rate 
which depends on the A i  vector due to i, whilst the mag- 
netic field Bi, due to i, at q, is not directly relevant and 
may be zero. In this respect the exchange is essentially 
the same as the ‘transformer’ action due to a change in 
the current i, which defines the momentum, and depends 
on the local A value at q, not the local B. Both effects 
illustrate the physical significance of the (retarded) A ,  
manifest either as an interaction due to charge acceler- 
ation, as in a transformer, or as a kinetic effect due to 
changes in position. Both suggest that the common view 
of the A vector as a mathematical fiction can be mislead- 
ing, since it provides a direct measure of the kinetic inter- 
action between the two sources of A .  

The change in A i  experienced by q, due to its motion, 
provides a convenient reciprocal measure of the effect of 
q on the coil; that is, of the rate-of-change of flux linkage, 
given by A , ,  due to q. The essential role of the vector A ,  
is to separate the nonconservative part of the electromag- 
netic effect of q from the contribution due to the potential 
4,, and thus select the part of the interaction which is 
important in a closed circuit. The induced EMF gives no 
net linear force on a uniformly-charged circuit, and like- 
wise none on q, in accordance with field theory, which 
gives no U x Bi force due to i, if Bi is zero. Thus the 
energy exchange requires no conversion of momentum 
from qA to ‘mechanical’ (mu) form. 

The interaction depends on the electromagnetic effect 
of the charge velocity U in a form which was given explic- 
itly by Maxwell, in his ‘general equations’, although 
absent from what are now referred to as the ‘Maxwell 
equations’. The E term in the Lorentz force (eqn. 2)  
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separates into two components, and this separation is 
essential to the concept of charge momentum qA. The 
U x B term likewise separates into parts, corresponding 
to 4 and A terms, when ‘seen’ from the reference R,  in 
which q is stationary, and the corresponding forces are 
equal but opposite when B is zero. This gives two differ- 
ent views of the interaction. Whereas in R, the momen- 
tum and V 4  forces are sufficient, any reference in which q 
is in motion requires an additional U x B term. Although 
this depends on the differential of A ,  it is not a momen- 
tum force, although it has a momentum component. 

Expressing the charge momentum in terms of A shows 
that this is merely another view of inductance, or ‘induc- 
tivity’, links electromagnetic theory directly to circuit 
theory, and provides an equivalent circuit describing the 
operation. The energy conversion within the winding is at 
the expense of the internal energy of the system, which 
may be driven negative, so that the exchange demands no 
kinetic force on q when the current i is kept constant. 
This does not, however, imply the absence of a force, 
since the interaction is due to the ‘electrostatic’ effect of q, 
which means that the circuit is not uniformly charged, 
and the 4 terms are correspondingly important. These 
include the 4: component of U x B, in the reference R, ,  
and the term which is needed to transfer energy from 
the coil to the current source. The J 4  equivalent of the 
Poynting vector shows the importance of 4 in any trans- 
fer of energy by the moving charges, and the device also 
illustrates the transfer by remote action, since the energy 
input to one component may be recovered from another. 

The net change in the kinetic energy, J * A/2 ,  or 
qu - A/2 ,  is zero when q completes a closed path, or is 
recombined with the opposite charge, whilst the source 
current is kept constant, so that the exchange can be 
ignored in most practical applications, but not in all. It is 
illustrated by the Aharonov-Bohm, and related quantum- 
mechanical, effects, which are usually regarded as incon- 
sistent with classical electromagnetic theory because they 
depend on mutual momentum and energy. The momen- 
tum concept, and the associated electromagnetic mass, 
shows that there are alternative definitions of what is 
meant by the force on a charge, although there can be no 
essential difference between field theory and Maxwell’s 
‘dynamical’ theory, since they share the same 4 and A ,  
and predict the same observable forces. However, the 
field description tends to obscure the interaction by com- 
bining all the components, and concentrating attention 
on the total field vectors, at the expense of the source 
charges and the mutual terms. It also tends to conceal 
the role of the momentum, which is fundamental to all 
electromagnetic charge interactions, regardless of fre- 
quency. 
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