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Elliptic vortices of electromagnetic wave fields
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We demonstrate the existence of elliptic vortices of electromagnetic scalar wave fields. The corresponding
intensity profiles are formed by propagation-invariant confocal elliptic rings. We have found that copropa-
gation of this kind of vortex occurs without interaction. The results presented here also apply for physical
systems described by the �2 1 1�-dimensional Schrödinger equation. © 2001 Optical Society of America
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Electromagnetic vortices occur for some solutions of
linear and nonlinear wave equations. Depending on
their particular features, they may be referred to as
wave dislocations or disclinations, field defects, sin-
gular f ields, helical waves, rotating waves, and dark
beams.1 – 6 Potential applications of electromagnetic
vortices as optical waveguides,2 in manipulations of
microparticles,7 and in the detection of weak optical
signals8 have motivated theoretical and experimental
research in recent years.

For the linear case, high-order Bessel beams are
the fundamental vortex solutions of the three-dimen-
sional Helmholtz wave equation, whereas Laguerre–
Gaussian beams are their counterparts in the paraxial
approximation. For the nonlinear case, vortices can
occur as solutions of the nonlinear Schrödinger equa-
tion that represents vortex solitons.2 These kinds of
solution can also be found for the Gross–Pitaevskii
equation, which is used in the studies of Bose–Einstein
condensates,3 and for the Ginzburg–Landau equation,
which occurs in solid-state physics, superf luidity,
superconductivity, and the spatiotemporal dynamics
of laser resonators.4,5

The propagation and interaction of optical vortices
have been studied in linear and nonlinear media. In
both cases it has been observed that vortices can inter-
act through the intensity and the phase gradient be-
tween them and hence be displaced from their original
transverse positions.9 – 13

In this Letter we demonstrate the existence of
electromagnetic elliptic vortices that can occur as fun-
damental solutions of the Helmholtz and Schrödinger
wave equations. We show that high-order elliptic vor-
tices are composed of a number of unitary vortices that
do not interact on propagation, even in a nonlinear
medium. In this case the overall phase of the f ield
appears to rotate about a thin lamina as it propagates.

Propagation of scalar electromagnetic fields in linear
media is described by the Helmholtz equation =2E 1

k2E � 0, where, for wave fields of angular frequency
v traveling with speed v in a transparent medium, the
wave number is k � v�v. The most elemental vor-
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tex of the Helmholtz equation (HE) and the �2 1 1�-
dimensional Schrödinger equation (SE) is found for
fields with radial symmetry that carry an azimuthal
phase factor of the form exp�6imw�. The integer m
defines the winding number or topological charge; and
its sign, the direction of rotation.

We investigate only the scalar HE because the SE
can be treated in the same way. In the transverse
plane, elliptic coordinates with foci at �6h, 0� are de-
fined by the transformation x 1 iy � h cosh�j 1 ih�,
where the eccentric radial and angular curvilinear co-
ordinates vary in the range 0 # j , ` and 0 # h , 2p,
respectively. In these coordinates, the three-dimen-
sional HE separates into a longitudinal part that has
a solution with dependence exp�6ikzz� and a trans-
verse part that further separates into the eccentric
radial (modified) Mathieu equation and the eccentric
angular (ordinary) Mathieu equation.14 These are,
respectively,

≠2R�j�
≠j2 2 �a 2 2q cosh 2j�R�j� � 0 , (1)

≠2F�h�
≠h2 1 �a 2 2q cos 2h�F�h� � 0 , (2)

where the eigenvalue a emerges as a separation
constant. Parameter q � k2

t h
2�4 carries informa-

tion about transverse frequency kt and the elliptic
coordinate system through h. The transverse and lon-
gitudinal wave-vector components satisfy k2 � k2

t 1 k2
z .

The solutions to Eqs. (1) and (2) are known as
Mathieu functions.14 – 18 The values of a for which an-
gular equation (2) has periodic solutions are denoted
am �m � 0, 1, 2 . . .� for the even solutions cem�h; q�
and bm �m � 1, 2, . . .� for the odd solutions sem�h;q�.
For a given order m (i.e., am and bm), radial equa-
tion (1) has four associated solutions: two even
solutions, Jem�j;q� and Nem�j;q�, and (when m fi 0)
two odd solutions, Jom�j; q� and Nom�j;q�. The
© 2001 Optical Society of America
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nomenclature that we have adopted here ensures a
direct correspondence to the Bessel circular cylindric
functions Jm and Nm when h ! 0, namely, Jem,
Jom ! Jm and Nem, Nom ! Nm. In the mathematical
literature, these function pairs are normally written
Cem, Sem and Fem, Gem, respectively.15 – 18

A suitable linear combination of products of the an-
gular and the radial solutions can be used to represent
elliptic traveling waves of the HE in elliptic coordinates
in the same way as in circular coordinates.6,19 To find
appropriate values of the coefficients, we use the so-
lution of the three-dimensional HE expressed by a re-
duced form of the Whittaker integral,16 namely,

E�r� � exp�ikzz�
Z 2p

0
A�w�

3 exp�ikt�x cos w 1 y sin w��dw , (3)

where A�w� is the angular spectrum of f ield E�r�.
Inasmuch as the f ield intensity that is due to
Eq. (3) is independent of propagation coordinate z,
it represents propagation-invariant electromagnetic
fields. For instance, in circular coordinates, where
x 1 iy � r exp�iu�, setting A�w� � exp�im�w 2 u��
results in E�r, u, z� � Jm�ktr�exp�imu 1 ikzz�, which,
for optical fields, is identified as the propagation-
invariant mth-order Bessel beam.20

For the elliptic case, the eccentric angular so-
lutions of Eq. (2) are cem�h; q� and sem�h; q�,
which we use to construct the complex function
eem�w;q� � cem�w; q� 1 i sem�w; q�. Setting A�w� �
eem�w;q�, using the corresponding coordinate trans-
formation in Eq. (3), and evaluating the integral,17 we
obtain the final form for the electromagnetic field:

E�j,h, z;q� � �Am�q�Jem�j; q�cem�h; q�

1 iBm�q�Jom�j;q�sem�h; q��exp�ikzz� ,

(4)

which includes the coefficients Am�q� and Bm�q� men-
tioned above. We have found that, for m $ 2 and q &

m2�2 2 1, numerical evaluation of these constants17,18

yields values that are such that Am�q� � Bm�q� and
hence can be factored out.

The physics of Eq. (4) becomes clear once the f ield
is displayed graphically. In Fig. 1, the transverse in-
tensity patterns and corresponding phase at z � 0 are
shown for m � 1, 4, 7. The field intensity has an el-
liptic ringed structure, and its phase rotates following
an elliptic trajectory. For the total topological charge
m � 1, the phase is formed by a single elliptic vortex.
For m $ 2, the phase is formed by m in-line vortices,
each with unitary topological charge such that the to-
tal charge (along a closed trajectory enclosing all the
vortices) is m. The branch cuts lie upon confocal hy-
perbolas, implying that, on propagation, a point in the
phase front travels along an elliptic helix of constant j.
Observe that the phase gradient along the line joining
adjacent vortices is zero.

From Eq. (4) it is clear that, unlike vortices of the
circular cylindric HE, elliptic vortices also depend on
the eccentric radial variable. The principal branch
points of the elliptic vortices are found where the real
and imaginary components of the field, and the ec-
centric radial coordinate j, are zero. This occurs at
xa � h cos�ha�, where a � 1, . . . ,m and ha are the ze-
ros of cem�h;q� in the interval �0, p�. Whereas in f irst
order the phase rotates about the longitudinal axis, for
higher order it apparently rotates about a strip in the
x z plane defined by points x1 and xm, the width of
which is always smaller than 2h.

The field in Eq. (4) is a fundamental solution of
the HE and defines the mth-order Mathieu propaga-
tion-invariant electromagnetic f ield. It constitutes
the mth member of a two-dimensional Fourier ex-
pansion in elliptical coordinates. The corresponding
Fourier coeff icients can be obtained by use of the
two-dimensional orthogonality theorem for Mathieu
functions.15,21 These functions form a complete basis
for wave fields described by the HE (or wave functions
for the SE). The m � 0 solution has been studied
theoretically in the optical context22 and was realized
experimentally in the research reported in Ref. 23.
Although as it stands Eq. (4) represents a f ield of
infinite width, it must be stressed than any experi-
mental realization of a propagation-invariant f ield
will inevitably be of f inite lateral extent; the beam
in the laboratory will therefore propagate without
change of shape within the Fresnel region defined by
the size of the physical aperture and its associated
conical geometry.19 Outside this region, diffraction
effects modify the dynamics of the vortices.

The elliptic patterns of Fig. 1 were obtained under
the assumption that the coefficients Am�q� and Bm�q�
are practically equal and can be neglected. However,
for a given order m the numerical values of these coeffi-
cients depend on q, and there exists a critical value, qc,
for which Am�q� fi Bm�q� if q . qc. A typical pattern
for this situation is shown in Fig. 2 for a fourth-order

Fig. 1. Intensities and elliptic phases of higher-order
Mathieu beams. The ellipticity of the phase is best
observed in the central region of the ringed pattern.
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Fig. 2. Breakup of a fourth-order elliptic vortex as a result
of excessive stretching of the elliptic ring pattern by an
increase of the value of interfocal distance h of the elliptic
coordinates such that now the coeff icients Am�q� and Bm�q�
in Eq. (4) are not equal, as is the case in Fig. 1. Observe
that new vortices are created and that some of them rotate
in the opposite direction to the original.

pattern with q � 20. Observe that a number of
vortices have been created and are arranged in a
crystallike pattern. We remark that this intensity
pattern is propagation invariant, a possible interpre-
tation of which is that, for a fixed wavelength, we can
stretch an elliptic pattern of order m by increasing
the value of h and consequently of q; doing so results
in breaking the elliptic pattern, and a new vortex
structure is formed. The phase picture shows that
some of the newly created vortices rotate in the oppo-
site direction to the original, so the total topological
charge m must remain unaltered. This breaking of
the pattern shows the relevance of the coefficients in
the description of elliptic waves of the HE.

The fact that Eq. (4) represents a propagation-
invariant field implies that (for m $ 2) the constituent
vortices remain in the same transverse position. This
behavior contrasts with that reported in Refs. 9–13,
where the copropagating vortices shifted as a result
of the amplitude and phase gradients of the diffracted
background field. The difference arises because the
field distributions discussed in this Letter are natural
modes of the wave equation and possess the structure
necessary for invariant propagation within the limits
mentioned above. We performed several simulations
to conf irm that propagation-invariant behavior does
indeed occur, even in the presence of Kerr-type non-
linearity of both focusing and defocusing types.

One can apply the wave field presented here to inves-
tigate elliptic optical tweezers and atom traps as well to
study the transfer of angular momentum to micropar-
ticles or atoms.7,24 It may be enlightening to analyze
the effects of an induced elliptic rotating phase and
its angular momentum on Bose–Èinstein condensates3

or on the formation of quantum mirages in elliptic
corrals.25

In conclusion, we have demonstrated the existence
of electromagnetic elliptic vortices of the Helmholtz
and Schrödinger wave equations. We have introduced
the function eem�w; q� that is the required angular
spectrum for their creation and obtained the appropri-
ate coefficients to represent elliptic traveling waves.
Our results show that electromagnetic elliptic vortices
comprise a number of in-line vortices. Because the
vortices presented here belong to the family of propa-
gation-invariant optical fields, they do not interact,
even in nonlinear media. We have also shown that
there exist situations for which the elliptic pattern is
broken and new vortices are formed and arranged in a
crystallike structure. Field distributions of this type
can be produced in the laboratory by use of holographic
techniques.20
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