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Electromagnetic Induction

GEORGEIL COHN

ASSOCIATE AIEE

HE TWO most widely used laws of electromagnetic
induction are the flux-linking law, as given in rational-
ized meter-kilogram-second units

de
=—— 1
o 1)
which states that the electromotive force & induced in a
circuit is equal to the negative time derivative of the mag-

netic flux ¢ linking the circuit, and the flux-cutting law
dé=pXB-dl 2)

which states that the electromotive force across an element
dl moving with a velocity v through a magnetic field B is
equal to their triple scalar product. Upon integrating over
the circuit, this gives the induced electromotive force

&= _fuXBdl (3)

For uniform and mutually perpendicular B, v, and [ the
flux-cutting law is simply

&= Bul (4)

In many simple cases both induction laws lead to the same
value of induced electromotive force. This has been the
source of much confusion,
since it then appears that the
two induction laws are merely
alternate expressions for the
samething, orthat one of them
is completely general and
the other merelya special case.
The most outstanding by-pro-
ducts of this misunderstanding
are the innumerable d-c
generators without moving contacts which have been
invented (and do not work). It is a simple matter to
construct examples in which the correct value of induced
electromotive force is given by: (a) equation 1 and not by
equation 3, (b) equation 3 and not by equation 1, (¢) the
sum of equations 1 and 3, neither equation 1 nor equation 3
nor the sum of the two. .

There are actually two kinds of electromagnetic induc-
tion: motional and transformer induction. The electro-
motive force generated by motion through a constant mag-
netic field is a pure case of motional induction. The elec-
tromotive force generated in a stationary circuit by the
variation of the magnetic field with time is a pure case of
transformer induction. In general, both types of induction
are involved in a given case. One source of confusion is
that there is 7ot a one to one correspondence between the
two types of induction and the two common induction laws.
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The flux linking law, § = — d¢/dt, and the flux

cutting law, &= Bvl, often erroneously are con- itself is. Does the magnetic

sidered as merely different ways of expressing

the same phenomena.

to dispel the confusion surrounding the subject
of electromagnetic induction.

The flux-cutting law gives exactly the electromotive force
caused by motional induction. The flux-linking law some-
times includes both types of induction and sometimes does
not. Hence, if the flux-cutting law is used alone, the trans-
former induction will be lacking. If the flux-linking law is.
used alone, part or all of the motional induction will be lack-
ing. If both laws are used together, part or all of the
motional induction may be counted twice, and sometimes
the flux-linking law calls for an electromotive force when
there is none at all. The rule for foolproof application of
the flux-linking law, which does not seem to have been
enunciated previously, will be given later. The case in
which the flux-linking law calls for an induced electromotive
force which does not exist have been classified by one
means or another as a substitution of circuit. It has been
stated ad hoc, as a fundamental principle, that “no voltage
can be induced by a substitution of circuit.”’! Actually,
this will appear as an obvious deduction from the funda-
mentals discussed in this article.

Another source of confusion, rather less well recognized,
can be traced back to the choice of “field theory”” underly-
ing the analysis of the problem. When the source of the
magnetic field is moving, the
question arises as to what the
motion of the magnetic field

field move as if rigidly at-
tached to its source, does it re-
main stationary while the
source moves through its own
field, does it behave with a mo-
tion in between these two, or is
there some entirely different alternative? Each different
answer is the basis of a different field theory. The two most
used theories for the solution of ordinary engineering prob-
lems are the moving field theory, which assumes that the
field moves as if rigidly attached to its source, and the sta-
tionary field theory, which assumes that the field remains
fixed while the source moves through its own field. In
addition, there is, of course, relativity theory in which the
field is not an entity which can be characterized by the
property of motion, The purpose of this article is to
clarify the phenomena of electromagnetic induction and
not to discuss the scope and limitations of the various field
theories; all the examples treated here fall well within the
scope of the moving and stationary field theories.

This article attempts

The total induced electromotive force is a measurable
quantity and, as such, any correct theory must lead to the
same value. The total electromotive force is the sum of
electromotive forces caused by both motional and trans-
former induction. The defining concepts and formulas for
transformer and motional induction are the same for both
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types of field theories. However, calculated by different
field theories, in general, they will have different values.
(An analogy about distance between two fixed points in two
different co-ordinate systems may be helpful. While the
individual co-ordinate differences are different in the two
co-ordinate systems, the distance itself is variant.) Hence,
for a clear understanding of motional and transformer
induction, the underlying difference between field theories
must be understood. For successful solution of a problem,
it is essential not to change field theories used in the middle
of the problem. In some circles it is believed that presence
of transformer or motional induction depends merely on the
choice of reference axis.! That this is erroneous will be-
come obvious from the examples treated. The change, if
any, is actually caused by a change of theory and not a
change of axis.

PARADOXES

Unipolar Generator. 'The Faraday disk is one of the oldest
and best known of the experiments which sharply differen-
tiate between the flux-cutting and flux-linking laws. This
form of unipolar generator consists of a circular conducting
disk rotating in a constant uniform magnetic field perpen-
dicular to it, as shown in Figure 1. A voltmeter and leads
complete the circuit through brush A on the conducting axle
and brush B on the rim. Calculating the induced electro-
motive force by means of the flux-cutting law, equation 3:

e=wB [, “rdr )
&§=(1/2)wBR? (6)
Using the flux-linking law, equation 1, however, leads to

8=0 7

because there is no flux-linking the circuit. Even if the
generator were tilted so that the flux linked the circuit, the
time derivative is zero and hence there is still no induced

CNP Figure 1. Fara-
day’s disk
R—U
MAGNETIC B
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U

electromotive force. Which is correct? Experiment veri-
fies equation 6, hence this example is a pure case of motional
induction. It is ironical that the induction law attributed
to Faraday does not hold for his own device.

D-C Generator.2  Consider the scheme shown in Figure 2.
The conductor in the magnet air gap swings back and
forth like a trapeze bar about the horizontal leads which
are connected to the meter. Its velocity is given by v=u,,
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cos wt. The amplitude of swing is taken as small, so that
the error made by considering the velocity to be horizontal
is negligible. An alternating current is supplied to the
exciting coil so that the magnetic field in the air gap is
B=B,, cos wt and is uniform over the path of swing. The
field in the gap is positive when it is directed upward. The
velocity of the bar is positive when swinging from left to
right. When the bar is swinging to the right, the magnetic
field is in the upward direction. When the bar reaches the
right extremity of its swing, the magnetic field has de-
creased to zero. The direction of the field reverses at the
same time as the velocity of the bar. Therefore, on the back-
swing the bar travels through a magnetic field directed
downward; as a result, the electromotive force induced in
the wire is alway in the same direction, thereby giving a
pulsating direct voltage.

The motionally induced electromotive force, from the
flux-cutting law, equation 4, is

&= Byl cos® wt (8
or
&§=1/2Bpvyl + 1/2Bpop! cos 2 wt 9

Hence this d-c generator has a constant voltage component
of 1/2B,p,! and a double-frequency a-c component of
1/2B,v,! cos 2 wt. It is interesting to notice that there is
an alternating electromotive force over and above the con-
stant electromotive force generated by motional induction

/

- Figure 2. D-¢
v generator

Let us calculate the induced electromotive force by the
flux-linking law

¢=B-A (10)
¢ = (B, cos wt){Ir)cos 6 (11)
¢ = B,lr cos ot sin wt (12)
&= Bplrw (cos? wt—sin? wt) (13)
&= Byl cos 2 wt (14)

This is not in agreement with results of the flux-cutting law,
equation 9. Experiment verifies that the flux-linking law
gives the correct result.
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1115 mteresting to note that iMiaxwell’s €¢quauon 1or trans-
former induction

0B ds (15
e=- ot )

gives

&= —1/2Bytml + 1/2Bponl cos 2 ot (16)

as the electromotive force generated by transformer induc-
tion. There is a constant component of induced electro-
motive force caused by transformer action. If this electro-
motive force is omitted, this device appears to be a d-c
generator without moving contacts. The same, of course,
would be true if only the transformer induction were con-
sidered. If the electromotive force caused by both types of
induction are added together, however, the d-c components
cancel and the a-c components add to give the result ob-
tained from the flux-linking law.

Commutating Magnet. Consider a magnet with a loop
around one leg, as shown in Figure 3. In the loop is a volt-
meter M. The upper end of the loop is completed by
means of a pair of spring clips which are capable of acting
as a pair of sliding contacts. The magnet is moved upward,
separating the spring contacts and completing the circuit
through the magnet. The magnet continues to move up-
ward until the magnet and its flux are separated from the
loop.

Before calculating the induced electromotive force, if
any, we must decide whether to use the moving field theory
or the stationary field theory, since the source of the field,
the magnet, is in motion. For the moment let us avoid
this decision by considering the equivalent problems of
holding the magnet stationary and moving the meter,
leads, and spring clip instead. The flux linking the circuit is

&= Blx 17)

The flux-linking law, equation 1, gives

pm ™ (18)
- dt

or

&= Bly (19)

The flux-cutting law, equation 4, gives

&=0 (20)

because the portion of the circuit in the magnetic field is not
moving and the moving portion is not in the magnetic field.
Since the magnetic field does not vary with time, there is no
transformer induction; this is pure motional induction,
which, in this case, is zero. Although the flux-linking law
states that there is an induced electromotive force, experi-
ment verifies that there is none.? The breakdown of the
flux-linking law in this case has been excused and dismissed
by the statement ‘“no voltage can be induced by a sub-
stitution of circuit.””? The exact cause of this failure will
be explained later.

Let us now return to the original problem with the magnet

stationary ncla thcory.  1HC UHIOVis UGl titly Lalls A2
the field to move as if rigidly attached to the magnet.

- Therefore, the portion of the circuit in the magnetic field,

the magnet leg itself, has no velocity through the magnetic
field and, hence, there is no motional induction, equation
20. The flux-linking law again gives the erroneous result
of equation 19. Analyzing the problems with the station-
ary field theory is more complex. Here the field is assumed
to be stationary, so that the magnet leg actually moves

N
N
N
S Figure 3. Com-
S J mutating magnet
s x 2 _1!
f 7
®
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through its own magnetic field. A motionally induced
electromotive force, given by equation 4, is produced and
has the value

&= Bul (21)

The magnetic field is building up from zero to full strength
in the leading edge of the magnet leg and collapsing from
full strength to zero in the trailing edge of the leg. Since
the trailing edge is inside the circuit, the time variation of
magnetic field at that location causes a transformer induced
electromotive force in the circuit and as given by equation
15 is

&= — Bul (22)

The total induced electromotive force is zero since the trans-
former component exactly cancels the motional component.
Here again the flux-linking law, which is insensitive to choice
of theory, gives the erroneous result given by equation 19.

Linear Motion Inductor.* A cylindrical metal tube moving
axially along a straight conductor, carrying a steady cur-
rent, is shown in Figure 4. On the inner and outer surfaces
are two fixed brushes making contact with the cylinder in
order to complete the voltmeter circuit through the cylinder.
Will the induced electromotive force depend on the permea-
bility of the cylinder?

First calculate the induced electromotive force with the
flux-linking law. Let B, be the magnetic field in free space,
B the field in the cylinder, and B, the component of the field
contributed by the atoms composing the cylinder. Then
B=B, +B,=uB, The flux linking the circuit is

o=J S BdS (23)

T2
¢=x/ Bdr—l—(l—-x)f B,dr+C (24)
n r

moving as s.hown in Fi.gure 3. First, we will analy?e the o=x nel FU—1) "L ic 25)
problems using the moving field theory and, second, with the 2ar o 2mr
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o= tn Pur—xt+0)+C (26)
27r i
The flux-linking law then gives
g=— L (D)o In 2 27)
21r 71

Next calculate the induced electromotive force by the
flux-cutting law, equation 3. According to the moving
field theory, the field B, moves with the cylinder and the
field B—B,=B, does not. Hence the moving elements of

Figure 4. Linear
motion inductor

the circuit only move through the field B, and the motion-
ally induced voltage is, by equation 3

T2
&= U/ Bydr (28)
T

1 2
&=—0ln— (29)
21r n
Since there is no time variation of magnetic field there is no
transformer induction by equation 15. If the stationary
field theory is used to analyze this example, the transformer
induction due to the building up of the field from B to B in
the leading edge of the cylinder is given by equation 15 as
T2

8=2L (1=woln- (30)

7L
The motional induction is given by equation 3 as

74 r:
8=E——vln—?
T 71

(31)

Addition of equation 30 and 31 gives the total electromotive
force based on the stationary field calculations and is ex-
actly the same as equation 29, the total electromotive force
as calculated by the moving field theory. Experiment
verifies equation 29, and reveals another failure of the flux-
linking law.

ELECTROMAGNETIC INDUCTION THEORY

Forces. To calculate the behavior of an electrodynamic
system, the forces exerted on charges must be known.

444 Cohn—Electromagnetic Induction

Charges experience certain forces which are related to their
magnitudes
together with their

(a). Positions.
(6). Velocities.
(¢). Accelerations.

The differential formulas for these forces are, respectively,

dqy dg,
42F, ____q‘__qz_r (323)
4mer’
dgidgsvr X (02 X
d2F1=H q1aq201 (02 r) (32b)
4ar3
dq\d.
£2F, = _# qiagaaz (32c)
4mr

where 42F is the differential force exerted on charge dg, by
charge dg,, v, is the velocity of dg,, v, is the velocity of dg,, a,
is the acceleration of dg,, and u is the permeability. When
the discrete charges are sufficiently concentrated, the rela-
tion

Idl = vdq (33)

allows equations 32b and 32c to be expressed in the normal
form involving current elements

1, 1nd, dly X~
szIZ#;QhX( 2 X ) (34b)

477

[.qu1(112 aIz
PF = — 1 ¢ 34
T T (34e)
Charges also experience forces due to radiation, thermal,
chemical, and contact phenomena.  As these are outside the
scope of the subject of this article they will not be discussed
here.

Fields. Fields may be considered as mathematical con-
structs. Their purpose is to simplify the determination of
the forces experienced by charged particles. For each
type of force there is a type of field suitable for its specifica-
tion. These are, respectively,

(a). Electrostatic field.
(6). Magnetic field.
(¢). Vector-potential field.

The differential formulas for these fields are, respectively

. dqr
dE = 35
E 4rert (352)
d
JB— udgave Xr (85b)
4773
d
dA =M 202 (35¢)
4qr
or in terms of current elements
ILodl
dB::”Z 2 Xr (36b)
4rd
Ld
dA =" L. (360
4nr

By expressing the force formulas of the preceding section in
terms of the foregoing fields {and integrating once), consider-
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able simplification of formulas 1s obtained. The force for-
mulas are then, respectively

dF\=dqp.E (37a)

dF1=dqieiXB (37b)
0A

dF1= —dq1 a (37C)

The “field concept” allows the “divide and conquer” tech-
nique to be applied to the problem of finding the forces.

Electromagnetic Induction. 'When the forces which are
exerted on charged particles by magnetic and vector-poten-
tial fields are explained in terms of an (hypothetical) elec-
tric field, this electric field is said to be generated by electro-
magnetic induction. In other words, if a charged particle
experiences a force, we may consider that this force is
caused by an electric field. If the force is actually caused
by a magnetic or vector-potential field, we may consider
this equivalent electric field as being generated by electro-
magnetic induction. This definition reduces all the force
formulas to the form

dF =dgE (38)

where the magnetic field is replaced by an equivalent elec-
tric field given by

Ey=vXB (39)

and the vector-potential field is replaced by an equivalent
electric field given by

Ep=—— (40)

Figure 5. Differ-

ential area swept

out by motion of
circuit element

enables the force to be calculated from one resultant field.
The total electric field is then given by

E=E+Ey+Er (41)

Substituting equations 39 and 40 into equation 41 gives
04
E=Es+v><3——a (42)

(This formula is actually the Lorentz force formula for a
unit charge, which physicists usually write as F=E+vXB.

The E of Lorentz’s formula is the E,-—%? of the equation

and is'written out for the purpose of emphasizing the concep-
tual basis.)

May 1949

E, is the electric field given by
E;=—Vy (43)

Where ¢ is the scalar potential, E,, is the electric field gener-
ated by motional induction, and E, is the electric field
generated by transformer induction.

Transformer Induction. In a case of pure transformer
induction there is no motion of material bodies. The
formulation of this type of induction is given by

0A

Er= > (40)

Transformer induction may be formulated in terms of the

-
1

Figure 6. Rotating loop in a constant uniform magnetic field

magnetic field since the vector-potential and magnetic
fields are intimately related as follows

B=V XA (44)
Taking the curl of both sides of equation 40, permuting the

0
Vx with 3 and substituting equation 44 gives

- 5
vV XEr o (45)
which is simply Maxwell’s differential formulation of Fara-
day’s induction law. Integrating both sides of equation 45
over the surface bounded by a circuit and transforming the
left hand side by Stoke’s theorem gives

OB
f Epdl=— / f A (46)

which is Maxwell’s integral formulation of Faraday’s induc-
tion law. The electromotive force generated by trans-
former induction is the line integral of E,,

gr=_f Erdl (47)
In terms of the vector potential it is

04
- —dI (48)

&r=
T ot

In terms of the magnetic field it is

oB
- _ =, 15
br _/ ot ds (15)

Note that the formulation in terms of the magnetic field
can give only the total induced electromotive force in cir-
cuits which are essentially closed loops. The vector-poten-
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tial formulation is capable of giving the voltage induced in
any individual element of a circuit.

Motional Induction. In a case of pure motional induction
there is no variation of magnetic field with time. The for-
mulation of this type of induction is given by

Ey=vXB 39

This law was derived by Lorentz from the force formula of

aK v
pal 1IN e

! I I

Figure 7. Example of motional induction covered by the com-
bined formula

Biot and Savart.
The electromotive force generated by motional induc-
tion is the line integral of E,,

Ear= f Eppdl (49)

gar= [ oXB-dl (50)

A Combined Induction Law. In the general problem, both
types of induction, transformer and motional, occur. It is
therefore convenient to have both types combined in one
formula.

The total electric field intensity due to both types of in-
duction is the sum of equations 39 and 40

0A
E= vXB—--b—t (51)
The line integral of the induced electric field intensity along
a circuit gives the total electromotive force induced in the
circuit, which is

b b 24
&= o X B-dl— —dl (52)
" a Ot

This is the general formula for the induced voltage in a cir-
cuit. It is when this general form is put into special forms
that paradoxes arise. These are caused by ignorance or
violation of the limiting restrictions imposed by the trans-
formation into the special form. If the second integral in
equation 52 is put in terms of the magnetic field, the equa-
tion is immediately restricted to closed loop circuits and
becomes

OB
8=quB-dI—//$-dS (53)

Although we have one formula here, it is essentially no
simpler than using the individual formulas for §,, and §&,.
To obtain a simpler expression, both terms must be com-
bined under one integral sign.

Transforming the first term to an integral over the same
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surface as the second term by means of Stoke’s theorem
gives

OB
s=—/f|:5;—v><(v><8):|-ds ) (54)

The right-hand side of the following vector integral theorem
for the time rate of change of the flux through a moving
area

d de= oB
W B-ds= a+vV-B—-V X(oXB) |-dS (55)

reduces (except for the minus sign) to the right-hand side of
equation 54 since

v-B=0 (56)

Substituting equation 55 into equation 54 gives

- B-dS 57
g=—n : (67)

which is F. E. Neumann’s law of induction.
The magnetic flux linking the circuit is given by the
following equation

o= [ [B-ds (58)

Substituting this into Neumann’s formula gives
g g

d¢
g=—— 1)
Strangely enough, this is the form in which Faraday’s flux-
linking law is normally presented. It is of significance to
note that Maxwell’s formulation of Faraday’s law, equation
15, does not include motional induction.

In order to obtain the limitations on this combined for-
mula, equation 1, let us examine in detail the meaning of
the first integral in equation 52.

Rearranging the integral gives

.

Ex=[." BoXdl (59)

As shown in Figure 5, p Xd[ is the differential area swept
out per unit time by an element of the circuit. This trans-
formation states that all motion resulting in the generation

M Figure 8. Example
of motional induc-
tion not covered
by the combined
formula

Rl

I I !

\t\

of electromotive force changes the path of integration.
The path of integration must be taken as moving with the
material substance composing it, otherwise the electric fields
experienced by the charged particles of the material will not
be the same as the electric fields taken in the integration.
All fields generated in reference frames other than the refer-
ence frame of the material may just as well be fictional, be-
cause there is nothing to observe their effect. Only the elec-
tric fields experienced by the charged particles produce an
observable effect, and in order to calculate these fields, the

ELECTRICAL ENGINEERING
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motion of the paths of integration must be identical with the
motion of the material comprising this path at the instant
considered.

This point must be kept in mind because it is the basis of
the misapplication of the flux-linking (or combined) induc-
tion law. This combined induction law is applicable to all
closed circuits of constant or changing shape, moving in any
way through a constant or changing magnetic field, with
sliding contacts or without, provided that the motion of
every element of the paths of integration is identical with
the motion of the matter comprising that path at the in-
stant considered. To illustrate this limitation, consider
Faraday’s disk, shown in Figure 1: The radius of the disk
from the center to the brush on the rim is the path of inte-
gration and it does not move with the material comprising
the path. The flux-linking law, therefore, is not applicable
to this case.

Examples Fostering Confusion. In the majority of elemen-
tary text books all induction is implied to be merely one
type of phenomena, even though this is not explicitly stated.
The two formulas

do
g=——

7 (1)
&= Bulsin 8 (60)

are presented as two different ways of expressing the same
thing. This implication is usually substantiated by deriv-
ing one from the other and by solving problems which give
the same result from both formulas.

One example usually given is the rotating coil in a con-
stant uniform magnetic field shown in Figure 6.

Equation 60 gives directly
&=2Bul sin 8 (61)

Equation 1 gives

d
&= —i[erB cos ] (62)
&=2 Brél sin 0 (63)
&=2Bul sin 0 (64)

which is identical to equation 61.

Another example usually given is the wire moving
through a constant uniform magnetic field with its ends in
sliding contact with two long parallel wires as shown in
Figure 7.

Equation 60 gives directly
= — Bul (65)

Equation 1 gives
&= E(Bl ) 66
=Bl (66)

&= — Bl (67)

which is identical to equation 65.

It is unfortunate that the equivalence of these two for-
mulas is stressed by the application of the foregoing tech-
nique because it leads to the formation of two schools of
thought (both wrong!). One group believes all induction

May 1949

phenomena can be handled with the flux-cutting law,
while another believes that the flux-linking law is all-inclu-
sive. Adherents of these two schools go to extremes in the
invention of ad foc explanations to bring all induction
phenomena within the scope of their equation.?

Examples Avoiding Confusion. Tt would be a good principle
if problems bringing out the difference between the two for-

MOTIONAL
INDUCTION

le-fv5.a

| l

TRANSFORMER
INDUCTION

e[ B-s| |e-gffEa

(% %K)

COMBINED
INDUCTION

FLUX CUTTING FLUX LINKING
LAW LAW
- --do
(% %) (23 %)

Figure 9. Relation between the induction laws

* Completely general when combined
*% Flux must be uniform, and B, v, and | must be mutually orthogonal
*+% Afotion of material and path of integration must be identical

mulas were given instead ol special problems emphasizing
similarity. If in the foregoing two problems, a time vary-
ing magnetic field were given instead of a constant one, the
flux-cutting law no longer would give the correct answer
but the flux-linking law would. With constant magnetic
fields both examples are pure cases of motional induction
but with variable fields they have both motional and trans-
former induction. The second problem, if altered slightly
by substituting a long conducting strip moving with a
velocity v in place of the long parallel wires and cross wire
as shown in Figure 8, provides a simple example in which
the flux-linking law is no longer applicable and in which the
correct answer is provided by the flux-cutting law.

SUMMARY

The relationship between the various induction laws is
summarized in Figure 9. Only the combined use of both
motional and transformer induction (both inside the large
dotted rectangle) will guarantee validity of results in all
cases of induction. When using any of the restricted laws
external to the dotted rectangle, care must be used to avoid
violation of restrictions incident to such law (as noted in
parenthesis).
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