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Abstract. Bunched charges, as in the ‘free electron laser’,
radiate more energy than unbunched ones. For a better
understanding of how the forces between particles
determine the conservation of energy, we take the simple
mode] of two charges within a wavelength of a sinusodoidal
wave, and show that the relative phase of the particle’s
motion with respect to the wave is modified by the force
between the two particles, and this explains the extra work
done by the wave. The phase shift is proportional to the
emitted field and depends on the retardation (particle
distance divided by speed of light), and turns out to be
independent of distance.

1. Introduction

When a charged particle is subject to an electromag-
netic (EM) field and is then accelerated, it emits
radiation. In particular, we call this ‘synchrotron
radiation’ for ultrarelativistic particles in a magnetic
field, and Compton (or Thompson) scattering for a
particle iz an electromagnetic wave.

The radiation from a single particle can be calcu-
lated from Liénard’s formula (which is the Green’s
function of Maxwell’s equations) [1].

For many electrons at random positions, the
resulting radiation is an incoherent superposition of
fields, and the total intensity is proportional to N,
the number of particles, But if the beam is modu-
lated (the electrons are bunched) on a spatial scale
comparable to the emitted wavelengths ‘coherent’
radiation is ernitted with power proportional to N2
in addition to the ‘incoberent’ one, proportional to
N {2]. In particular we have this in free electron
lasers (FEL) [3], and in the harmonic generation by
the FEL or optical klystron [4].

As the modulated beam emits more radiation
than an unmodulated one, it must lose more energy.
But how is this produced? The descriptions of
the interchange of energy between the electron
beam and radiation in the FEL do not tell uvs

Résmmé, Quand un faisceau de particules chargées est
modulé, comme dans le cas du ’laser # electrons libres’, il
émet plus de radiation qu'un faisceau non modulé, Pour une
meilleure compréhension de comment les forces entre les
charges determinent la conservation de I'énergie, nous
prenons un simple modéle: deux charges qui se trouvent
sous 'action d’une onde harmonigque et 4 une distance entre
efles inférieure 4 sa longuer d’onde, et nous montrons que la
phase entre les charges et 'onde est modifiée par la force qui
s’exerce entre les particules, et cela explique le travail en plus
fournit par I'oude. Ce déphasage dépend de la force et du
temps que la lumiére emploie pour couvrir leur distance, et
résulte indépendent de cette distance.

what is the force doing the exira work, as they
assume the conservation of energy. In particu-
lar, it is not evident how, while the increase in
emitted power is independent of the distance
between the two particles (as long as it is < ),
the force between them decreases with the
distance: how can this force produce a work indepen-
dent of distance?

This discussion is also relevant to the speed-up of
emission of radiation when many oscillators are
excited simultaneously by a short pulse and are
within a coberence volume of the emitted radiation,
as in the excitation of Massbauer radiation by syn-
chrotron radiation [3,6].

In order to analyse in detail the mechanism by
which the various forces cause this extra work, we
take a simpie example: Thompson scaftering of
monochromatic radiation on two electrons spatially
separated by a distance that is small with respect to
the wavelength.,

For a better physical understanding of the pro-
cedure, we begin with a rough, naive description
(simple encugh to show the effect of retardation
and phase shifts, but not quantitative), followed by
a more formal and general description, using the
scheme taken from the analysis of the classical
model of the electron.
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2. Radiation from one electron

Let us first recall the energy balance and radiation
pressure (momentura balance) in Thompson scatter-
ing from one electron.

The electron, of charge e and mass m, is in a plane
monochromatic wave propagating in the z direction,
with electric field along y:

E = Eyjsin(wr) (1)

B = Fy®sin(wt). @

The amplitude of the motion is yy = eEgA?/dmmc?.
We assume yy <€ A {(which also implies non-
relativistic motion).

We also assume fw < me”.

This is the classical scheme for the description
of Thompson (low-energy Compton) scattering
and, using a Lorentz transformation and the
Weisziacker—Williams approximation, it can be used
for an electron in an undulator (as in a FEL).

The Lorentz—Abraham equation of motion is

mi = eE + ev A B + mrof (3)
where

S S
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4)

{rg is the “classical electron radius’} and the radiation
reaction term 7y Is a small perturbation; then we can
write for the y motion to first order:

mp = eE + mryy (5)

where j is taken from the solution of equation
(5) without radiation reaction (rg=0): #(f)=
eE(f)/m. The steady state sclution of equation (5)
gives:

. EEQ .
=-—{(=coswt sinw?). 6
3 =20 (= coswr -+ wmysinw) (®)

The average radiated power is:

2 2
P=mni = mzﬁsinz( f) = %K:Eo (7)
with & = 4meerd, which, divided by the wave
intensity zeocE%, gives the Thompson cross-section:
cg= 8« a / 3.

P is emitted symmetncally forward and back-
wards, and the work is done by the wave, then the
corresponding momentum per unit time P/c is a
force pushing the particle in the forward Z direction.

P must correspond 1o 2 work per unit time W done
by the field on the electron, and P/c to an average
iongitudinal force (radiation pressure):

. EEy .
W=¢Ep= —0 S wi{— cosw! + wry sinwt)

(@)

W = e Egro/3me = LnE} 9

F=eBy= %3 sinwi(— coswt + wry sin we)
. (10)

F =By /3me* = W/e. (11)
The radiation reaction force is very small, but pro-

duces a phase shift between F = e£ and j, so that F
and y are no longer in guadrature.

3. Radiation from two electrons (naive
description)

Let us now take two electrons, at positions x = —r/2
and x = r/2, with osciliation amplitude yy < r < A
Now the emitted power is four times larger than
before, as we can understand by the fact that the
emitted power is proportional to

Neglecting the Coulomb term, each particle emits a
field which, at the position of the other, is

E() = ——E(r—w) (12)

The equation of motion of each electron is as before,

plus the force due to the radiation ficld of the other
particle:

o _op_dopf

mj = eE—e2E(t—2) +mnj. (13)

Approximating:

- wt
= Ey (sm wt — — ©os wt)

(14)

we get, as in equation (6),

.__ﬂ 0 erpky .
y= ( r)cos :+ — 1+ sin wt.

Mw

(15)
The work per unit time and the radiation pressure on
each particle are now:

2
=9Ey= Se E%ro'“é.‘;E%

6me 6

(16)

F=eByp=W/e (17
If the segment connecting two particles is not perpen-
dicular to the acceleration, but forms an angle # with
it, equation (12) and then the result equation (16} are
multiplied by cosé.

We see that, qualitatively, things operate in the
right sense: the phase shift produced by the small
interparticle force, which is proportional to 1/, is
proportional to the retardation, which is propor-
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tional to r, so the work done is independent of r and
is added to that of the radiation reaction.

But the work has increased by a factor 2.5, not 2.
And in the case where r is parallel to © the field pro-
duced by one particle on the other is zero, so we do
not understand how the extra work is done.

4. Radiation from two electrons: a general
description

The reason is that we have neglecied the Coulomb
field; although it decreases as 1/, if the approxi-
mation is pushed to second order, a2 term propor-
tional to the square of the reta.rdation, multiplied
by it, still gives a term independent of r.

In order to show this, let us write the electric field
emitted at a distance r from a charge e to first order
in v/e:

4 E-——— P —'v'/c _(F'A((F'—v’/c)/\if’)}
0 -3 -v'fc o' 1-3/-v"f¢
(18)
(where primed quantjties refer to the time

t'=t—+"/c) and calculate the Coulomb field
alone, on a particle momentarily at rest, to
first order in ¥ and in @. In this case we can write
the primed quantities as series expansions of
t—t'=rfexrfe

r. .
vETvtaat
P=pf— r—s'v

2(:2 6c’

4
©o. o
_r2+6§(r-v)—ﬁ(r-'u)

"2 a” ayn .
+-6-;((r-v)r—'v)
{19}

and substituting in the first term of equation (18) and
taking for the moment v = 0, we find a term

o ((‘ )"%”)

(the first term is the Coulomb field calculated at time
t, 1.e. neglecting the retardation: this, when summed
over the two electrons, is zero). In the case where H
is parallel to %, we get a ‘force’ equal to 28/3¢° as
expected (the second term in equation (18) vanishes
as the double vector product is zero).

If we do the same algebra on the second term of
equation (18), we find (still for ¢ = 0):

(7 - D)F). (21)

Equation (21), inserted in equation (13} instead of
the retardation term (second term in the RHS of

F g (6 = (- 9)F)

4?TEOE] {20)

e ..
4reg By = = (o —

equation (14)) gives the same result as equation (16)
(with the factor cosf); in particular a value 2 too
large for 8 = w/2 and equal to zero for 4 = 0.

This means that the correction is indeed due to the
retardation of the Coulomb field (equation (20)).

Adding equation (20) and (21) the two (F-&)F
terms cancel each other and we get an ‘equivalent’
force (between the two electrons) equal to mery®, inde-
pendent of 4, equal to the so-called ‘self-force’ (last
term in equation (3)} and therefore able to double
the work and pressure on each particle.

It is important to remember that by ‘equivalent
force’ we mean that instead of a retarded force we
can consider an instantaneous one plus an ‘equiva-
lent’ force which corrects for the retardation.

5. An additional remark

‘What we have described here is part of the procedure
used to calculate the reaction force in the classical
electron model [7-10). We can now make an addi-
tional remark: if we keep also the terms of equation
(19) linear in the acceleration ¢ when substituting
in equation (18), we find, summing over the two elec-
trons, the reaction term proportional to acceleration:
e .
dregE = Z (% -+ (7 O)F)
which is interpreted as an additional inertial mass
due to the interaction between the two particles.
This _is just equal to the interaction energy divided
by ¢, as shown in [11] when # is perpendicular to
©. When they are paraliel, the result is twice as large
(a similar remark is made in [12]). Physically, this can
be interpreted in the following way: if particle 1 is at
z==0and 2 at z = r, with acceleration in the positive
z direction, and both are positive, 1 does positive
work on 2, and 2 negative on 1. Therefore an energy
Fuv is transferred forward per unit time on a distance
r. This means a momentum Fur/c = e’v/cr, and as
they are accelerated, 2 momentum change per unit
time (ie. a force) e’u/cr. This corresponds to a
(slightly) nom-equal acceleration of the charges
because they repel each other and they are not linked
together. If they were, the tension of the link would
create a backward-travelling ‘hidden’ momentum
which would compensate that part (see the ‘Poin-
caré stresses’ and the Trouton-Noble experiment
[13-16]).

(22)

6. Conclusions

We have analysed the mechanism by which the force
between two electrons causes a work corresponding
to the increase in radiated power in coherent radi-
ation. We have seen that the role of the interparticie
force is to produce a phase shift between the external
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force and the acceleration, which increases the work
done by the force accelerating the charges; and the
increase of the delay due to the interparticle distance
compensates the decrease in field with the distance,
so that the work is independent of the distance.

This result can be used for a clearer understanding
of the increased loss of energy and momentum from a
beam of electrons, interacting, for example, with 2
magnetic field, when it emits ‘coherent’ radiation
because it is modulated, as in a FEL and ‘optical
klystron® oscillator and harmonic generation
schemes, and the ‘speed up’ of the decay of coher-
ently excited Mdssbauer media.
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