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:Abstract. Bunched charges, as tn the 'irec eleciron l a ~ r ' .  
radiate more energy rhan uobunched ones. For a better 
understanding of how the form between p m d c s  
determine the coascnation of energy, we take the simple 
model of WO charges within a ua\clength of a sinusodoidal 
w a x ,  and show that the relalive phasc of the particle's 
molioo with respect to the wabe 1s modified b) tbe for= 
between the two parucles, and this erplans the extra work 
done b) the wave. The phasc shin is proporiional IO the 
cmitted field 3nd depends on the retardation (pancle 
dstancc divided by speed of lighl) and tums out to be 
independcnt oi distance 

1. Introduction 

When a charged particle is subject to an electromag- 
netic (EM) field and is then accelerated, it emits 
radiation. In particular, we call this 'synchrotron 
radiation' for ultrarelativistic particles in a magnetic 
field, and Compton (or Thompson) scattering for a 
particle in an electromagnetic wave. 

The radiation from a single particle can be calcu- 
lated from Lihard's formula (which is the Green's 
function of Maxwell's equations) [I]. 

For many electrons at random positions, the 
resulting radiation is an incoherent superposition of 
fields, and the total intensity is proportional to N ,  
the number of particles. But if the beam is modu- 
lated (the electrons are bunched) on a spatial scale 
comparable to the emitted wavelengths 'coherent' 
radiation is emitted with power proportional to N 2  
in addition to the 'incoherent' one, proportional to 
N 121. In particular we have this in free electron 
lasers (FEL) [3], and in the harmonic generation by 
the FEL or optical klystron [4]. 

As the modulated beam emits more radiation 
than an modu la t ed  one, it must lose more energy. 
But bow is this produced? The descriptions of 
the interchange of energy between the electron 
beam and radiation in the FEL do not tell us 

RksumC. Quand un faisceau de particules chargCes est 
modult, wmme dans le cas du 'laser i electrons libres', il 
h e t  plus de radiation qu'un faisceau non moduli. Pour une 
meillem compfihension de wmment les forces entre les 
charges determinent la conservation de I'hergie, nous 
prenons un simple modtle: deux charges qui se trouvent 
sous Paction d'une oode harmonique et i une distance entre 
elles infkieure i sa longuer d'onde, et nous montrons que la 
phase entre les charges et I'onde est modifik par la force qui 
s'exerce entre les particules, et cela eaplique le travail en plus 
fournit par I'oude. Ce dCphasage depend de la force et du 
temps que la lumidre emploie pour wuvrir leur distance, et 
risdte independent de cette distance. 

what is the force doing the extra work, as they 
assume the conservation of energy. In particu- 
lar, it is not evident how, while the increase in 
emitted power is independent of the distance 
between the two particles (as long as it is K A), 
the force between them decreases with the 
distance: how can this force produce a work indepen- 
dent of distance? 

This discussion is also relevant to the speed-up of 
emission of radiation when many oscillators are 
excited simultaneously by a short pulse and are 
within a coherence volume of the emitted radiation, 
as in the excitation of Msssbauer radiation by syn- 
chrotron radiation [5,6]. 

In order to analyse in detail the mechanism by 
which the various forces cause this extra work, we 
take a simple example: Thompson scattering of 
monochromatic radiation on two electrons spatially 
separated by a distance that is small with respect to 
the wavelength 

For a better physical understanding of the pro- 
cedure, we begin with a rough, naive description 
(simple enough to show the effect of retardation 
and phase shifts, but not quantitative), followed by 
a more formal and general description, using the 
scheme taken from the analysis of the classical 
model of the electron. 
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2. Radiation from one electron 

Let us first recall the energy balance and radiation 
pressure (moment- balance) in Thompson scatter- 
ing from one electron. 

The electron, of charge e and mass m, is in a plane 
monochromatic wave propagating in the z direction, 
with electric field along y:  

E = Eojsin(wr) (1) 

B = Eofsin(wf). (2) 
The amplitude of the motion is yo = eE0X2/4?mc2. 
We assume yo -zx X (which also implies non- 
relativistic motion). 

We also assume hw Q: mc2. 
This is the classical scheme for the description 

of Thompson (low-energy Compton) scattering 
and, using a Lorentz transformation and the 
Weisecker-Williams approximation, it can be used 
for an electron in an undulator (as in a FEL). 

The Lorentz-Abraham equation of motion is 

mi: = eE+ ev A B +  mror. (3) 
where 

(4) 

(ro is the 'classical electron radius') and the radiation 
reaction term r0 is a small perturbation; then we can 
write for they motion to first order: 

my = eE + mroj  (5) 
where y is taken from the solution of equation 
( 5 )  without radiation reaction (ro = 0) : j ( t )  = 
eE(r)/m. The steady state solution of equation (5 )  
gives: 

(6) j = eEo -(-coswt + tqsinwr).  
m 

The average radiated power is: 

m r o e 2 E i r  P = mroy = - sin (wt) = 4.E; (7) m2 

with ~ = 4 ? i e ~ c d ,  which, divided by the wave 
intensity trocJ$, gives the Thompson cross-section: 
U =  8&/3. 

P is emitted symmetrically fonvard and back- 
wards, and the work is done by the wave, then the 
corresponding momentum per unit time P/c is a 
force pushing the particle in the fonvard i direction. 
P must correspond to a work per unit time W done 

by the tield on the electron, and P/c to an average 
longitudinal force (radiation pressure): 

The radiation reaction force is very small, hut pro- 
duces a phase shift between F = eE and j;,  so that F 
and j are no longer in quadrature. 

3. Radiation from two electrons (naYve 
description) 

Let us now take two electrons, at positions n = -r/2 
and x = r / 2 ,  with oscillation amplitude yo Q: r <'A. 
Now the emitted power is four times larger than 
before, as we can understand by the fact that the 
emitted power is proportional to 2. 

Neglecting the Coulomb term, each particle emits a 
field which, at the position of the other, is 

E r ( f ) = - 3 E ( t - I ) .  r C (12) 

The equation of motion of each electron is as before, 
plus the force due to the radiation field of the other 
particle: 

(13) 
mji=eE-e-E(r-;) ro r +mroy. 

r 
Approximating: 

E(t - 2) N Eo sin ( wf -3 
'cI ~ ~ ( s i n w t  - - cos wt ) (14) 

C 

we get, as in equation (6), 

y = -2 (1 -?)cos Wf + - ( I  + :) sin wt. mc 

(15)  
The work per unit time and the radiation pressure on 
each particle are now: 

F = e@ = W/c. (17) 

If the segment connecting two particles is not perpen- 
dicular to the acceleration, but forms an angle B with 
it, equation (12) and then the result equation (16) are 
multiplied by cos 6. 

e2& . 
mw W = e E y = - s s m w r ( - c o s ~ f + ~ ~ s i n w t )  

W; see that, qualitatively, things operate in the 
right sense: the phase shift produced by the small 
interparticle force, which is proportional to ljr, is 
proportional to the retardation, which is propor- (8) 
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tional to r ,  so the work done is independent of r and 
is added to that of the radiation reaction. 

But the work has increased by a factor 2.5, not 2. 
And in the case where r is parallel to v the field pro- 
duced by one particle on the other is zero, so we do 
not understand how the extra work is done. 

4. Radiation from two electrons: a general 
description 

The reason is that we have neglected the Coulomb 
field; although it decreases as l/?, if the approxi- 
mation is pushed to second order, a term propor- 
tional to the square of the retardation, multiplied 
by it, still gives a term independent of r .  

In order to show this, let us write the electric field 
emitted at a distance r from a charge e to first order 
in v/c: 

e i‘ - v‘/c e (i’ A ((i’ - v’/c) A 6‘)) 47rq E = - 
1 ‘ 2  1 - 3 ? < . d / c + 7  1 -3?’.v‘/c 

(18) 
(where primed quantities refer to the time 
1’ = f - r‘/c) and calculate the Coulomb field 
alone, on a particle momentarily at rest, to 
fmt  order in U and in v. In this case we can write 
the primed quantities as series expansions of 
t - t’ = r’;c 1 r/c: 

r .  rZ .. 
c 2 3  

v = - - - v + - v  

3 2 .  r . .  
2 3  6c’ 

v =  v + - v  - -U 

r r2  
2 2  6 1  

i‘ = i + - (6 - (i. 6) i )  + - (( i .  ij)i - ij) 

(19) 
and substituting in the first term of equation (18) and 
taking for the moment v = 0, we find a term 

(the first term is the Coulomb field calculated at time 
t ,  i.e. neglecting the retardation: this, when summed 
over the two electrons, is zero). In the case where i 
is parallel to U, we get a ‘force’ equal to 2ij/3c3 as 
expected (the second term in equation (18) vanishes 
as the double vector product is zero). 

If we do the same algebra on the second term of 
equation (18), we find (still for 6 = 0): 

(21) 
e _. 47rqE2=-(v-(i.U)i). 
c3 

Equation (Zl), inserted in equation (13) instead of 
the retardation term (second term in the RHS of 

equation (14)) gives the same result as equation (16) 
(with the factor cos@; in particular a value 3 too 
large for B = r/2 and equal to zero for 8 = 0. 

This means that the correction is indeed due to the 
retardation of the Coulomb field (equation (20)). 

Adding equation (20) and (21) the two (?.U); 
terms cancel each other and we get an ‘equivalent’ 
force (between the two electrons) equal to mTov, inde- 
pendent of 8, equal to the so-called ‘self-force’ (last 
term in equation (3)) and therefore able to double 
the work and pressure on each particle. 

It is important to remember that by ‘equivalent 
force’ we mean that instead of a retarded force we 
can consider an instantaneous one plus an ‘equiva- 
lent’ force which corrects for the retardation. 

5. An additional remark 

What we have described here is part of the procedure 
used to calculate the reaction force in the classical 
electron model [7-IO]. We can now make an addi- 
tional remark if we keep also the terms of equation 
(19) linear in the acceleration it when substituting 
in equation (IS), we find, summing over the two elec- 
trons, the reaction term proportional to acceleration: 

e2 
4lieoE= --(v+(i.tj)i) 2 r  

which is interpreted as an additional inertial mass 
due to the interaction between the two particles. 
This is just equal to the interaction energy divided 
by c’, as shown in [I I] when i is perpendicular to 
6. When they are parallel, the result is twice as large 
(a similar remark is made in [12l). Physically, this can 
be interpreted in the following way: if particle 1 is at 
z = 0 and 2 at z = r, with acceleration in the positive 
z direction, and both are positive, 1 does positive 
work on 2, and 2 negative on 1. Therefore an energy 
Fu is transferred forward per unit time on a distance 
r .  This means a momentum Fur(c = e2v/cr, and as 
they are accelerated, a momentum change per unit 
time (i.e. a force) e‘alcr. This corresponds to a 
(slightly) non-equal acceleration of the charges 
because they repel each other and they are not linked 
together. If they were, the tension of the link would 
create a backward-travelling ‘hidden’ momentum 
which would compensate that part (see the ‘Poin- 
car6 stresses’ and the Trouton-Noble experiment 
[ 13- 161). 

6. Conclusions 

We have analysed the mechanism by which the force 
between two electrons causes a work corresponding 
to the increase in radiated power in coherent radi- 
ation. We have seen that the role of the interparticle 
force is to produce a phase shift between the external 
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force and the acceleration, which increases the work 
done by the force accelerating the charges; and the 
increase of the delay due to  the interparticle distance 
compensates the decrease in  field with the distance, 
so that the work is independent of the distance. 

This result can be used for a clearer understanding 
of the increased loss of energy and momentum from a 
beam of electrons, interacting, for example, with a 
magnetic field, when it emits ‘coherent’ radiation 
because it is modulated, as in a FEL and ’optical 
Mystron’ oscillator and harmonic generation 
schemes, and the ‘speed up’ of the decay of coher- 
ently excited Mossbauer media. 
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