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The relations between an energy–momentum tensor and its corresponding energy–momentum
four-vector are discussed. A particular emphasis is put on conditions guaranteeing that spatial
integrals of the energy–momentum densities pertain to a true four-vector. Cases where such
integrals arenot components of a true four-vector are analyzed and the usefulness of the notion of
a false four-vector is pointed out. Results are used for explaining Lorentz transformation properties
of ‘‘hidden momentum.’’ © 2000 American Association of Physics Teachers.
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I. INTRODUCTION

As is well known, fields’ energy–momentum density a
their flux density are represented byTm0 andTm i entries of
the fields’ energy–momentum tensor.1 ~Greek indices range
from 0 to 3 and Latin ones range from 1 to 3. The diago
metricgmn is ~1,21,21,21!. The symbol ,m denotes the par
tial differentiation with respect toxm. i, j , andk denote unit
vectors in thex, y, andz directions, respectively.! It follows
that the fields’ overall energy and momentum are related
the integrals

‘‘ pm’ ’ 5
1

c E Tm0 d3x, ~1!

which is carried out on the entire three-dimensional spac
The four quantities on the left-hand side of~1! are en-

closed in quotation marks because it is not evident that t
transform as entries of a true four-vector. As a matter of fa
specific examples where the left-hand side of~1! is not a
four-vector are presented in this work. In such cases,
left-hand side of~1! is called a false four-vector. This issue
the main topic of this work, which discusses sufficient co
ditions thatpm is a true four-vector and their implications.
is further explained why this issue is relevant to the Lore
transformation of ‘‘hidden momentum.’’

Section II presents a condition that guarantees that~1! is a
true four-vector.1 Section III includes examples of electro
magnetic fields that illustrate this condition. One of the
systems contains ‘‘hidden momentum.’’ Some mistakes c
cerning Lorentz transformations of ‘‘hidden momentum
which have been published recently2 are explained in Sec
IV. Concluding remarks are presented in Sec. V.

II. SUFFICIENT CONDITIONS FOR
ENERGY–MOMENTUM FOUR-VECTOR

As stated above, the four quantitiesTm0 represent energy
and momentum densities, respectively.~A division by c is
required for the momentum density. In an energ
momentum four-vector, energy is divided byc. It is assumed
that a brief terminology like that of the first statement of th
section will not be misunderstood.! Hence, if one takes the
values ofTm0 at t50 and carries out an integration on th
entire three-dimensional space, the overall energy and
mentum associated withTm0 is obtained.

Consider two inertial frames,S and S8, and the four
quantities ‘‘pm’’ obtained in S. The corresponding integra
1007 Am. J. Phys.68 ~11!, November 2000 http://ojps.aip.or
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tion carried out inS8 uses the tensorial quantitiesT8m0 as
found in S8 at t850. This point means that the integral ca
ried out inS8 depends not just on the Lorentz transformati
of Tmn from S to S8 but alsoon the time adjustment neede
for having the simultaneous quantities atS8. This kind of
adjustment might affect the integral~1! and is the reason fo
the quotation marks used on the left-hand side of this exp
sion.

Landau and Lifshitz discuss this issue and prove that
continuity equation for a charge

j ,m
m 50 ~2!

is a sufficient condition for obtaining the same amount
charge in any inertial frame,3 namely, for regarding the elec
tric charge as a Lorentz scalar.

In their discussion, Landau and Lifshitz begin with a pro
of charge conservation. The proof uses the four-dimensio
Gauss theorem for an integral carried out on the four-volu
included between two hyperplanes,S1 and S2 , defined by
x05T1 and x05T2 . Later, they state that ‘‘the proof pre
sented clearly remains valid also for any two integr
* j mdSm , in which the integration is extended over any tw
infinite hypersurfaces~and not just the hyperplanesx0

5const! which each contain all of three-dimensional space
Thus, one concludes that, in particular, the overall chargQ
takes the same value forx05T at the inertial frameS and at
x805T8 at S8. This outcome means that charge transfor
as a Lorentz scalar.

The foregoing discussion is extended later to energ
momentum tensors and their corresponding glo
four-vectors,4 where the four components of the latter a
spatial integrals of the corresponding tensor compone
They find that

T,n
mn50 ~3!

guarantees energy–momentum conservation. This relatio
calculated and used by Landau and Lifshitz for provi
energy–momentum conservation of a system which cons
of charged matter and electromagnetic fields.5 As in the case
of charge,~3! can also be used for proving that spatial int
grals of Tm0 ~divided by c! are components of the energy
momentum four-vector.

It should be noted that the calculation of Landau and L
shitz proves that the energy–momentum tensor of elec
magnetic fields
1007g/ajp/ © 2000 American Association of Physics Teachers
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mn5

1

4p S FmaFbngab1
1

4
FabFabgmnD ~4!

doesnot satisfy ~3! but

T,n
mn52

1

c
Fmn j n . ~5!

Evidently, this relation is inconsistent with condition~3!,
which requires a null four-divergence. Hence, one conclu
that, excluding particular cases,energy and momentum o
electromagnetic fields should not be regarded as entries
true four-vector.

Examples illustrating this conclusion are presented in
following section. Special attention is devoted to the case
‘‘hidden momentum.’’

III. EXAMPLES OF LORENTZ TRANSFORMATION
OF ELECTROMAGNETIC FIELDS

In the examples of this section, effects of the followin
Lorentz ‘‘boost,’’

Ln
m5S g gu/c 0 0

gu/c g 0 0

0 0 1 0

0 0 0 1

D , ~6!

are examined.u denotes the three-velocity of the boo
which is parallel to thex axis andg5(12u2/c2)21/2. This
transformation casts quantities measured in an inertial fra
S into another frameS8.

As is well known,6 in the case of electromagnetic field
the energy density is

T005
1

8p
~E21B2! ~7!

and the momentum density is

1

c
Ti05

1

4pc
~EÃB! i . ~8!

A. A free electromagnetic wave

Let us consider a monochromatic plane electromagn
wave7 traveling in thex direction. In the frameS, the fields
are

E5E sin~kx2vt !j , ~9!

B5B sin~kx2vt !k, ~10!

whereB5E andk5v/c. The wavelength of this field is

l52p/k. ~11!

This system does not contain charges and the ener
momentum tensor of the fields satisfies the null fo
divergence~3!. Hence, one expects that the overall ene
and momentum of the fields are components of a true fo
vector.

Let us calculate the energyE and the momentump en-
closed in a rectangular parallelpiped having a base wh
area is unity and its height~which takes thex direction! is l.
It means that this rectangular parallelpiped contains
complete wavelength. Due to the symmetry of the syst
1008 Am. J. Phys., Vol. 68, No. 11, November 2000
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the rectangular parallelpiped correctly represents the gen
problem. The calculation is carried out att50. Using ~7!,
~9!, ~10!, and~11!, one finds

E5E
0

lE
0

1E
0

1 1

8p
~E21B2!dx dy dz5

l

8p
E2. ~12!

In a similar manner, one replaces~7! with ~8! and obtains for
the x component of the momentum

px5
1

c E0

lE
0

1E
0

1 1

4p
EyBz dx dy dz5

l

8pc
E2. ~13!

Other components of the momentum vanish. Now,
energy–momentum four-vector is written by means of
energy and momentum8

Pm5~E/c,p!. ~14!

Using these results, one realizes that the expected true f
momentum is

Pm5
E2l

8pc
~1,1,0,0!. ~15!

Let us apply the Lorentz transformation~6! and calculate
the fields atS8 for t850. Using the appropriate formulas9

one obtains

Ey85g~11u/c!Ey , ~16!

Bz85g~11u/c!Bz . ~17!

It means that the electric and magnetic fields increase by
same factorg(11u/c) and that their product increases b
the square of this quantity.

Let us now synchronize the time atS8. In S, a point on
the left-hand side of the rectangular parallelpiped is

xL
m5~0,0,y,z! ~18!

and a corresponding point on its right-hand side is

xR
m5~0,l,y,z!. ~19!

Applying the Lorentz transformation~6!, one finds that~18!
remains unchanged, whereas the transformation of~19! takes
the form of

xR8
m5~lgu/c,lg,y,z!. ~20!

This result indicates that a time synchronization is requi
before an integration ont850 values can take place.

The fields travel at the speed of lightc. Hence, att850,
the right-hand side of the rectangular parallelpiped is at

x̄R8
m5~0,lg~12u/c!,y,z!. ~21!

This outcome means that in the case of free electromagn
waves, the rectangular parallelpiped contracts by the fa
g(12u/c). Combining this result with the factor represen
ing the increase of the fields as given in~16! and ~17!, one
finds

P8m5g3~11u/c!2~12u/c!Pm5g~11u/c!Pm. ~22!

The same result is also obtained from the application of
Lorentz transformation~6! to the four-momentum~15!.
Therefore, this analysis illustrates the claim that for free el
tromagnetic fields whose energy–momentum tensor satis
the null four-divergence~3!, the overall energy and momen
tum are components of a true four-vector.
1008E. Comay



te

tro

e
et
re

an

i

o
th
el
he
ic

u
e

ul
L
h

c
es
to

um

-
,
ts
-

of
l
ti

ey

at

.’
p

ight-
en-

aci-
r to
tem

ten-
y–
ts
ned
re

f a
ting
ged

h
m.
hat
the
ly
oss

ose

xis
f
es
orm

ame
e
the
B. A parallel plate capacitor

A parallel plate capacitor is discussed here. The sys
contains fields and charges and relation~5! holds for the
four-divergence of the energy–momentum tensor of elec
magnetic fields. Hence, the null four-divergence~3! does not
hold at some points of space. For this reason, one exp
that the overall energy and momentum of electromagn
fields are entries of a false four-vector. The calculation p
sented below confirms this expectation.

This device has been used in discussions of Lorentz tr
formations of fields and matter under pressure~Refs. 10 and
11!. Relevant calculations required here can be found
these articles. Hence, several points are cited here and
derivation procedure is omitted. The capacitor consists
three parts: its plates, the electric field emerging from
positively charged plate and ending on the negativ
charged one,uEu5Ex , and a gas enclosed between t
plates. The pressure of this gas balances the electrostat
traction between the plates.

The energy and momentum enclosed inside a rectang
parallelpiped whose bases lie on the two plates, respectiv
are calculated. As in the previous example, this rectang
parallelpiped represents the general problem correctly.
V0 denote the volume of this rectangular parallelpiped. T
capacitor is motionless inS and the energy of the electri
field is V0E2/8p. The magnetic field of the system vanish
and, therefore, the electromagnetic momentum vanishes,
It follows that the electromagnetic energy and moment
can be written as a false four-vector,

‘ ‘ PF
m’ ’ 5

V0E2

8pc
~1,0,0,0!. ~23!

Let us use the Lorentz transformation~6! and find the
respective quantities inS8. As is well known, the electric
field component which is parallel to the ‘‘boost’’ is un
changed and yields no magnetic field.9 On the other hand
the self-volumeV0 of the rectangular parallelpiped contrac
by a factorg21. Therefore, inS8, the energy and momen
tum of the electromagnetic fields are

‘‘ PF8
m’ ’ 5

V0E2

8pg
~1,0,0,0!. ~24!

On the other hand, if one treats~23! as a true four-vector and
applies the Lorentz transformation~6! to it, one obtains

‘‘ P̄F8
m’ ’ 5

V0E2g

8p
~1,u/c,0,0!. ~25!

Evidently, ~24! and ~25! are not the same, proving that~23!
is a false four-vector.

It is further proved10,11 that the energy and momentum
the gas enclosed between the plates~or of another materia
under pressure, used for balancing the electrostatic attrac
between the plates! also belongs to this class, namely th
are components of a false four-vector. Only thesumof these
two false four-vectors is a true four-vector, thereby illustr
ing the self-consistency of special relativity.

C. A device containing ‘‘hidden momentum’’

Let us examine a device containing ‘‘hidden momentum
It is designed so that electric and magnetic fields take sim
1009 Am. J. Phys., Vol. 68, No. 11, November 2000
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expressions and integrals and other calculations are stra
forward. This feature of the discussion facilitates the pres
tation of the underlying laws of physics.

The device contains a solenoid and a parallel plate cap
tor whose magnetic and electric fields are perpendicula
each other. Again, as in the previous example, the sys
contains charges and currents that yield~5! for the four-
divergence of the electromagnetic energy–momentum
sor. Hence, the null four-divergence of the energ
momentum tensor,~3!, does not hold. Therefore, one expec
that the electromagnetic energy and momentum obtai
from the integration of their corresponding densities a
components of a false four-vector.

Let us examine a closed pipe that takes the form o
circumference of a square. The pipe is made of an insula
material and contains an incompressible positively char
fluid that flows frictionlessly along it~see Fig. 1!. ~This kind
of uniformly charged fluid is just a hypothetical matter whic
enables a simple mathematical treatment of the proble!
The pipe is covered with a negative electric charge t
screens the electric field of the charged fluid. Hence, in
inertial frameS where the closed pipe is motionless, on
magnetic field is generated by the closed loop. The cr
section of the pipe is small with respect to its length.

The corners of the pipe are placed at four points wh
coordinates areX561 and Y561, respectively. An infi-
nitely long pile of such pipes makes a solenoid whose a
coincides with thez axis. ~As in a standard treatment o
solenoids, the insulating material used for building the pip
is thin enough, so that the current can be regarded as unif
on the solenoid’s circumference.! In its interior, this solenoid
generates a uniform magnetic field in thez direction

B5Bk, ~26!

whereas the external field vanishes.
Let r denote the charge density of the fluid,s the area of

the pipe’s cross section, andv the fluid’s velocity. Thus the
electric current along the pipe isI 5rvs. Let N denote the
number of closed pipes per unit length in thez direction.
Thus the magnetic field~26! is

B5
4p

c
Nrsvk . ~27!

Fig. 1. A solenoid whose cross section is a square, is motionless in a fr
S, and its axis coincides with thez axis. The solenoid is placed between th
plates of a capacitor. The four arrows denote the electric current along
solenoid~see the text!.
1009E. Comay
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The other component of the device is a parallel plate
pacitor whose plates are parallel to the~x, z! plane and are
placed atY,21, Y.1, respectively~see Fig. 1!. The plates
are made of an insulating material, each of which is cove
uniformly with a surface charge density6rc , respectively.
In the region between the plates, the capacitor generat
uniform electric field in they direction,

E5Ej . ~28!

In a discussion of quantities related to ‘‘hidden mome
tum,’’ one has to consider interaction terms of the solen
and the capacitor. For this reason, self-interaction term
the solenoid with itself, as well as those of the capacitor
ignored. Moreover, since the capacitor’s plates are mad
an insulating material, the self-energy of the capacito
charges is independent of the solenoid. Similarly, since
hypothetical solenoid’s uniformly charged fluid is incom
pressible, its electric state is assumed here to be unaffe
by the electric field of the capacitor.

The electromagnetic interaction dependent momen
density is bilinear in the magnetic field~27! and in the elec-
tric field ~28!. The calculation is restricted to the volumeV0

inside a cube21<x<1, 21<y<1, 21<z<1 ~henceV0

58 is used below!. Evidently, due to the symmetry of th
device, this cube represents the entire problem correctly

The interaction dependent momentum of the electrom
netic fields is obtained from the integration of the moment
density on the volume. Only thex component of the momen
tum is nonzero and the calculation is straightforward,

px~elec!5E
21

1 E
21

1 E
21

1 1

4pc
EyBz dx dy dz5

8

c2
NrsvEy ,

~29!

where~27! is used.
This electromagnetic momentum is compensated by

mechanical momentum of the system.11–13 The mechanical
momentum is included in the charged fluid that moves alo
the closed pipes of the solenoid. This quantity is calcula
below.14

The force exerted by the capacitor’s electric field on
moving charges of the fluid is balanced by a mechan
pressure gradient. The fluid’s pressure difference,DP, be-
tween a point atY51 and a point atY521 renders a force
exerted on the portion of the fluid which flows along t
pipes’ segments atx561. The force is

f152DPsj . ~30!

~Note that j is a unit vector and not a current.! This force
balances the force exerted by the capacitor’s field on
portion of the charged fluid

f252srEj , ~31!

where 2s is the volume of the charged fluid at each of t
X561 segments of a pipe. In this way one finds an expr
sion for the pressure difference

DP52rE. ~32!

The energy–momentum tensor of a macroscopic bod
rest depends on its energy densitye and its pressureP,14
1010 Am. J. Phys., Vol. 68, No. 11, November 2000
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Tmn5S e 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P
D . ~33!

This tensor is used here for the fluid that moves paralle
the x axis. Performing a Lorentz transformation on~33! for
the fluid at theY521 segment, one finds

Tmn5S e ~e1P!v/c 0 0

~e1P!v/c P 0 0

0 0 P 0

0 0 0 P
D , ~34!

where terms proportional tov2 and higher powers ofv are
omitted, due tov!c.

Analogous expressions are obtained for the liquid at
Y51 segment. Here the motion is leftward and the factov
is replaced by2v. The pressure at each of theY561 seg-
ments is uniform. It follows that the integration of the m
chanical momentum density is straightforward. Thus o
finds that the mechanical momentum enclosed within
cubeV0 is

px~mech!524DPsNv/c2528rEysNv/c2, ~35!

where~32! is used. This result proves that, as expected,12 the
sum of the electromagnetic momentum~29! and the me-
chanical momentum~35! vanishes for the motionless syste
discussed.

Now let us turn to the inertial frameS8 and use the Lor-
entz transformation~6! for the quantities obtained above. A
stated, only the interaction part of components associa
with the solenoid with those of the capacitor are treated h
The volume of the cube undergoes a Lorentz contraction
the factorg,

V085V0 /g. ~36!

The magnetic field of the solenoid increases by a factog
and also yields an electric field in they direction,9

B~sol!8 5gBk, ~37!

E~sol!8 5gB
u

c
j , ~38!

whereB is the quantity used in~26!.
Similarly, the fields of the capacitor are

E~cap!8 5gEj , ~39!

B~cap!8 5gE
u

c
k, ~40!

whereE is the quantity used in~28!.
The foregoing expressions show that inS8, the interaction

part of the electromagnetic momentum density consists
two terms: the product of~39! and~37! and that of~38! and
~40!. The integration of the momentum density is just a m
tiplication by the volume~36!. Hence, using the above
mentioned products and~29!, one finds

px~elec!8 5
1

4pc
8gBE~11u2/c2!5g~11u2/c2!px~elec! .

~41!
1010E. Comay
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This interaction part of the electromagnetic momentum i
counterpart of the ‘‘hidden momentum’’ as seen inS8.

Let us turn to the mechanical part, namely to the ‘‘hidd
momentum.’’ The interesting element is the fluid at theY
561 segments of the solenoid. TheY521 side is treated
first. At S, the four-velocity of the liquid is (1,v/c,0,0)
~here, as above, powers ofv which are greater than 1 ar
ignored!. Thus, using the Lorentz transformation~6!, one
finds that atS8, this four-velocity takes the form

n~y521!8m 5g~11uv/c2,~u1v !/c,0,0!. ~42!

Now one has to synchronize the time atS8. Assume that the
time at S is t50. Thus the four-vector of a point on th
bottom left part is

XL
m5~0,21,21,z! ~43!

and at the right end of theY521 segment

XR
m5~0,1,21,z!. ~44!

Applying the Lorentz transformation~6!, one finds that at
S8, these points are

XL8
m5~2gu/c,2g,21,z!, ~45!

XR8
m5~gu/c,g,21,z!. ~46!

The time synchronization is done so that all events atS8
are examined att850. It follows that the four-vector~46!
must be shifted byDt52gu/c2. Using ~42!, one finds that
in S8, the liquid’s three-velocity is

vx5
u1v

11uv/c2 . ~47!

Thus, the fluid element, which inS was at~46!, is seen inS8
at t850 at

XR9
m5S 0,

1

g~11uv/c2!
,21,zD . ~48!

A similar calculation yields for point~45! the t850 values

XR9
m5S 0,

21

g~11uv/c2!
,21,zD . ~49!

This calculation shows that the charged liquid at theY
521 side undergoes a Lorentz contraction by a factor

a5
1

g~11uv/c2!
. ~50!

On the other hand, the charge which is distributed u
formly on the insulating material of the pipes is motionle
in S ~and there screens the electric field of the charged flu!.
The static charge undergoes the ordinary Lorentz contrac
of 1/g. It means that inS8, the complete screening does n
hold any more and the net charge density per unit are
Y521 is

r~area!8 5r~area!@g~11uv/c2!2g#5r~area!guv/c2, ~51!

where

rarea5rsN ~52!
1011 Am. J. Phys., Vol. 68, No. 11, November 2000
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is the density of the positive charge inS. This outcome must
be consistent with the solenoid’s electric field~38!, as seen in
S8.

Indeed, inS8, the nonvanishing electric field emanatin
from the Y521 side of the solenoid indicates that th
charge density at this part is nonzero, too. The followi
calculation shows that the charge density obtained abov
the precise quantity.

Taking the uniform electric field at the inner part of th
moving solenoid~38!, the value of the magnetic field~27!
and relation~51! for the charge density atS8, one obtains

E~sol!8 5
gu

c2 4pNrsv j5
guv
c2 4pr~area!j54pr~area!8 j . ~53!

Thus one finds that~51! and ~38! are consistent with the
Maxwell equation divE54pr. This is an example of the
self-consistency of relativistic electrodynamics.

The nonzero charge density~53! is a relativistic effect
which emphasizes the claims presented above. Although
mean charge density vanishes inS, the currentj m is nonzero
there. Hence a nonzero charge arises inS8 and yields a
nonzero three-force.

The mechanical ‘‘hidden momentum’’ is obtained fro
the pressure-related terms of the Lorentz transformation
the tensor~34! and from the corresponding tensor which pe
tains to theY51 part of the solenoid, where2v replacesv
of ~34!. Performing the calculations for the terms which a
proportional to the pressureP, one finds the required tenso
component forY521,

T~press!810 5g2
v
c S 11

u2

c2DPY521 . ~54!

For theY51 part of the solenoid, one replacesv by 2v
in ~54! and obtains an analogous expression.

As in the previous cases, the integration of each par
Y561 reduces to a multiplication by the volume of the flu
~which contracts by a factorg21!. Thus one adds the contri
bution of the two sides and finds

px~press!524gS 11
u2

c2D vDPNs/c25gS 11
u2

c2D px~press! ,

~55!

where~35! is used. Hence, as inS, one finds that inS8, too,
the mechanical part~55! of the ‘‘hidden momentum’’ bal-
ances its electromagnetic counterpart~41!.

IV. A PREVIOUS DISCUSSION OF LORENTZ
TRANSFORMATION OF ‘‘HIDDEN MOMENTUM’’

The problem of Lorentz transformation of ‘‘hidden mo
mentum’’ has been discussed recently in the literature.2 Sec-
tion III of Ref. 2 contains a general discussion of this pro
lem, where the following Lorentz transformation formula
are postulated:

Uelm5g~U01v"P0!, ~70!

Pelm5g~P01U0v/c2!, ~71!

Umech5g~m0c21v"Ph!, ~73!

Pmec5g~Ph1m0v!. ~74!
1011E. Comay
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HereU0 andP0 are the system’s rest frame electromagne
energy and momentum, respectively.m0 is the mechanica
rest mass,Ph is the rest frame mechanical momentum, a
Uelm andPelm ~Umec andPmec! are the system’s electromag
netic ~mechanical! energy and momentum, respective
~The numbering of the quoted equations is as in Ref. 2.!

The analysis carried out in this work clearly proves th
these equations are incorrect. The capacitor of Sec. III B
be used as a counterexample to~70!–~74!. Evidently, in the
rest frame of the capacitor there is no electromagnetic
mentum and no mechanical~‘‘hidden’’ ! one. Thus one sub
stitutesP05Ph50 in ~70!–~74! and examines the outcom
in the frameS8. Equation~24! clearly shows that inS8 there
is no electromagnetic momentum, contrary to~71! which is
Pelm5gU0v/c2 ~note that the electromagnetic energyU0

Þ0!. Similarly, as ~24! shows, inS8, the electromagnetic
energyreducesby the factorg, unlike ~70!.

Moreover, the mechanical quantities do not transform l
~73! and ~74!. This is proved in detail in Refs. 10 and 1
Only thesumof the mechanical and electromagnetic ene
and momentum false four-vectors transforms as a true f
vector.

A system containing ‘‘hidden momentum’’ is discussed
Sec. III C. The results found there can also be used for
proving ~70!–~74!. Thus, in S8, the ‘‘hidden momentum’’
part of the mechanical momentum is given in~55!. As seen,
it is g(11u2/c2) times the mechanical ‘‘hidden momen
tum’’ of the rest frame. This outcome negates~74!. More-
over, ~41! above shows that the interaction part of the el
tromagnetic momentum is increased by the same fa
g(11u2/c2), contrary to~71!.

Obviously, the postulated equations~70!–~74! are incon-
sistent with the null four-divergence condition of~3!. This
point casts a new light on the significance of this condition
the case of a relativistic treatment of energy and momen
of classical systems.

V. CONCLUDING REMARKS

The usefulness of the notion of false four-vectors is
plained. These objects are associated with spatial integra
energy and momentum density, as given by an ener
momentum tensor which does not satisfy the null fo
divergence~3!. Following a discussion of Landau and Li
shitz, it is proved here that a null four-divergence is
sufficient condition for having a true energy—momentu
four-vector whose components are obtained from spatia
tegrals of corresponding densities. Examples illustrating
subject are presented in Sec. III. It is shown there that in
case of a free electromagnetic wave, whose ener
momentum tensor has a null four-divergence, the integral
the appropriate densities are related to a true four-vector
the other hand, in examples of systems of fields and cha
~or currents!, integrals of energy and momentum densities
electromagnetic fields are related to a false four-vector. T
property also holds for the mechanical sector of the syst
Only the sum of the mechanical and electromagnetic fa
four-vectors is a true four-vector.

Note added (Received 6 March 2000): In his Response to
this work,15 Hnizdo claims that the problem discussed abo
can be treated in two alternative~and mutually contradictory!
ways. One method of calculation treats quantities in the s
dard way and shows that only the overall energy and m
1012 Am. J. Phys., Vol. 68, No. 11, November 2000
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mentum of the system transform like components of a fo
vector, whereas energy–momentum of fields as well as th
of matter, transform like a false four-vector. The oth
methodpostulatesthat the electromagnetic and the mecha
cal parts do transform like four-vectors. The second
proach is called the covariant method. The domain of va
ity of each method is the main topic of this note.~For a
discussion of the notion of the domain of validity of a theor
the reader is referred to Rohrlich’s book.16!

The starting point of this note is the validity of Maxwel
ian electrodynamics for a system whose charge densit
bounded. This matter is denoted below by the term stand
Maxwellian basis. Moreover, even in cases which do
belong to the domain of validity of classical physics, th
theory is assumed to bemathematicallycorrect. In such
cases, only mathematical aspects of the theory are con
ered.

The phenomenon of charge quantization motivates the
troduction of particles carrying a quantized quantity
charge into the theory. Two kinds of charged particles
discussed here. Particles of the first kind are tiny obje
whose volume is small~say, a sphere whoser .0!. The other
kind is an elementary classical point charge. Particles
these kinds are called hereinafter extended charges and
charges, respectively. Four cases are discussed below.

A. A single extended charge

This system falls within the domain of validity of the sta
dard Maxwellian basis. The particle is stabilized by means
a Poincare´ force. The energy—momentum of the entire sy
tem transforms like a four-vector and the electromagne
and the mechanical parts of the energy–momentum tra
form like false four-vectors.~References and discussions
the Poincare´ force can be found on the appropriate pages
Refs. 16 and 17.!

B. A single point charge

In classical physics, an elementary particle is pointli
~see Ref. 1, pp. 43 and 44!. Hence, in this case, no Poinca´
forces can exist. If one applies the laws of the standard m
wellian basis to a point charge, then very serious proble
arise. Two of these problems are the infinite energy and
4/3 factor obtained for the momentum components, if a L
entz transformation is applied to a motionless charge. T
covariant method solves the latter problem. If this approa
is augmented by a mass renormalization procedure wh
removes the infinite energy of the fields, then results ag
with those obtained from a different analysis.18 Here, the
interaction of fields of a single particle is removed from t
system’s energy–momentum tensor.

C. A system which consists of more than one extended
charge

This system, like that of caseA, is explained perfectly by
the standard Maxwellian basis, because its charge densi
bounded.

D. A system which consists of more than one point
charge

A self-consistent solution of this problem can be achiev
if its two-particle interaction is the same as the limit of a
1012E. Comay
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analogous system of extended charges whose radius ten
zero. Thus, as in case C, the energy of the interaction fi
transforms as shown by the standard Maxwellian basis.
attempt to do it differently is inconsistent with special re
tivity. Indeed, the kinematics of particles entails a uniq
Lorentz transformation of their position and velocity. Henc
the mechanical energy and momentum of the system tr
form like those of an analogous system belonging to casC.
It follows that there is no room for ambiguity of the laws
transformation of mechanical energy and momentum.
this reason, the postulate used for~73! and ~74! of Ref. 2 is
wrong. Illustrations of this matter are given in Refs. 10 a
11. In particular, see Ref. 11, Sec. II B, pp. 1030–1032.

The foregoing discussion shows that the covariant met
applies to caseB and to theself-interactionof particles be-
longing to caseD. ~A self-consistent presentation of a theo
where self-interactions of point charges are removed fr
the energy–momentum tensor can be found in Ref. 18.! Un-
like ~73! and ~74! of Ref. 2, the mechanical part does n
transform covariantly. In his Response,15 Hnizdo does not
even try to settle this contradiction.

Now, the overall energy–momentum~which is the sum of
the mechanical and the electromagnetic parts! transforms co-
variantly. Hence, since the mechanical part does not tra
form covariantly, the electromagnetic part must follow su
in order to compensate for noncovariant effects of the m
chanical part.

In Ref. 4 of his Response, Hnizdo discusses results
tained from an analysis of infinitely long devices. His claim
do not affect the validity of this work, because, in spec
relativity, energy density is defined locally and one may e
amine appropriate finite volumes, which are parts of the
tire device. This approach is analogous to a standard t
book discussion of a parallel-plate capacitor. This issue
be explained briefly as follows.̀ is not a number but a limit
1013 Am. J. Phys., Vol. 68, No. 11, November 2000
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of a sequence. Let the device be enclosed within a c
whose linear size isL. The integration of field quantities is
carried out within another cube, which is concentric with t
former, and whose linear size is 1020L. Now consider a se-
quence of such devices whereL→`. Everything is OK for
every element of the sequence and the results are valid.
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We respond to Comay’s criticism of the use of covariant definitions of the electromagnetic and
mechanical energy–momenta in an analysis of the role of hidden momentum in the total energy–
momentum four vector of a macroscopic body. ©2000 American Association of Physics Teachers.
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In his paper,1 Comay calls the use in Ref. 2 of covaria
definitions of the ‘‘electromagnetic’’ and ‘‘mechanical’’ con
tributions to the total energy and momentum of a mac
scopic body ‘‘mistakes.’’ He illustrates in detail, using th
examples of a free electromagnetic wave, a charged cap
tor, and a current-carrying solenoid inside a charged cap
tor, the well-known fact that the energy and momentum
the electromagnetic field in a system~i.e., the ‘‘electromag-
netic’’ energy–momentum! form a covariant four vector
only when the four divergence of the field’s energy
momentum tensor vanishes. Similarly, he shows that the
den mechanical momentum in his third example, obtained
the integral of the simultaneous values of the momentu
density component of the energy–momentum tensor of
charged fluid that is the current carrier in the system, d
not transform as the momentum part of an energ
momentum four vector. Here again, the reason for this is
the four divergence of the fluid’s energy–momentum ten
can be shown not to vanish. Only the total energ
momentum of the system, i.e., the sum of the electrom
netic and mechanical contributions, is a covariant four v
tor, as the four divergence of the total energy–moment
tensor of a closed system vanishes.3

This is shown also in Ref. 2, where detailed calculatio
on the examples of finite exactly solvable systems4 illustrate
the fact that only the total energy–momentum is a covar
four vector when the standard definitions are used for
electromagnetic and mechanical contributions. And it
shown in Ref. 5, without relying on any specific examp
how the noncovariant ‘‘electromagnetic’’ and ‘‘mechanica
energy–momenta calculated using the standard ene
momentum tensors combine to form a covariant four vec
of the total energy–momentum of a macroscopic body t
carries general stationary macroscopic charge and/or cu
distributions.

The employment of definitions that separately impose
relativistic four-vector covariance on the electromagnetic a
nonelectromagnetic~‘‘mechanical’’! energy–momenta ha
been pioneered by Rohrlich6 as a procedure that needs n
explicit consideration of nonelectromagnetic forces to d
with the problem of the noncovariance of the energ
momentum of the electron in classical electron theory. T
use of this procedure has been criticized on numerous o
sions by proponents of the standard definitions, as these
sufficient to produce a covariant total energy–moment
when the contribution of nonelectromagnetic forces, nec
sary for the stability of an extended particle, to the energ
momentum of the classical electron is included.~That has
been shown already by Poincare´,7 and the nonelectromag
netic stresses needed for the stability of an extended cha
1014 Am. J. Phys.68 ~11!, November 2000 http://ojps.aip.or
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particle are usually called Poincare´ stresses.! Comay’s criti-
cism is a relapse into yet another round of that old debate8 in
regard to which it has now been recognized by seve
authors9 that the point here is not that only one of the pr
cedures of Rohrlich’s covariant definitions and Poinca´
stresses is a ‘‘correct’’ one while the other is ‘‘wrong,’’ bu
that either procedure can be used for the purpose of c
structing a covarianttotal energy–momentum of a system
that has electromagnetic and nonelectromagnetic com
nents. The recent third edition of Jackson’s classic text
classical electrodynamics10 has a thorough discussion of th
problem of the electromagnetic mass, Poincare´ stresses, and
covariant definitions without expressing any preference
one of the two procedures over the other.

We reiterate here the point emphasized in Refs. 2 an
namely that the covariant definitions have a formal chara
akin to the procedure of the renormalization of mass in qu
tum electrodynamics, which is carried out in a covaria
fashion separately from any nonelectromagnetic contribu
to the rest mass of a charged particle.~In fact, it can be
argued that a mass renormalization with a negative none
tromagnetic mass is implied also in classical electrodynam
whenever a charged body is assigned a rest mass th
smaller than the electromagnetic mass due to the bo
charge distribution.! In principle, the electromagnetic
energy–momentum arising from a macroscopic distribut
of charge and current is measurable separately from
body’s ‘‘mechanical’’ energy–momentum~unlike in the
electron or any other ‘‘elementary’’ particle!, and the stan-
dard electromagnetic and mechanical energy–mome
would agree observationally with the covariantly defin
quantities only in one inertial frame of reference, namely
reference frame in which the standard and covariant de
tions coincide.

The purpose of a covariant-definition procedure for a m
roscopic system is that of the construction of a covari
total energy–momentum, and the separately covariant ‘‘el
tromagnetic’’ and ‘‘mechanical’’ energy–momenta obtain
in such a procedure serve only that purpose. The covar
definitions of the electromagnetic and mechanical energ
momenta were used in Ref. 2 not because they are the
‘‘correct’’ definitions of such quantities for the systems
question, but to show how the covariant-definition proc
dure, along with the Poincare´ stresses procedure of the sta
dard definitions, would consistently take into account the
istence of hidden mechanical momentum.

1E. Comay, ‘‘Lorentz transformation of a system carrying ‘Hidden Mome
tum,’ ’’ Am. J. Phys.68, 1007~2000!.

2V. Hnizdo, ‘‘Hidden momentum and the electromagnetic mass of a cha
1014g/ajp/ © 2000 American Association of Physics Teachers
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