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The relations between an energy—momentum tensor and its corresponding energy—momentum
four-vector are discussed. A particular emphasis is put on conditions guaranteeing that spatial
integrals of the energy—momentum densities pertain to a true four-vector. Cases where such
integrals arenot components of a true four-vector are analyzed and the usefulness of the notion of
a false four-vector is pointed out. Results are used for explaining Lorentz transformation properties
of “hidden momentum.” © 2000 American Association of Physics Teachers.

[. INTRODUCTION tion carried out inS’ uses the tensorial quantitidg#° as
found inY’ att’=0. This point means that the integral car-

their flux density are represented By® and T# entries of ried ovut in%’ depepds not just on thg Lorer_1tz transformation
the fields’ energy—momentum tengofGreek indices range of T# from > th but alsoon the t_|me adjustment' needed
from 0 to 3 and Latin ones range from 1 to 3. The diagonaf© having the simultaneous quantities &t. This kind of
metricg,,, is (1,—1,—1,—1). The symbol  denotes the par- adjustment might affect the integrél) and |s.the reason for
tial differentiation with respect ta. i, j, andk denote unit the quotation marks used on the left-hand side of this expres-

vectors in thex, y, andz directions, respectivelylt follows sion.

that the fields’ overall enerav and momentum are related t Landau and Lifshitz discuss this issue and prove that the
the integrals 9y %ontinuity equation for a charge

As is well known, fields’ energy—momentum density and

1 j“=0 (2

“ =5f THO d3x, (1) “
o _ . _ _ is a sufficient condition for obtaining the same amount of
which is carried out on the entire three-dimensional space. charge in any inertial frameénamely, for regarding the elec-

The four quantities on the left-hand side @) are en-  tric charge as a Lorentz scalar.
closed in quotation marks because it is not evident that they |n their discussion, Landau and Lifshitz begin with a proof
transform as entries of a true four-vector. As a matter of factpf charge conservation. The proof uses the four-dimensional
specific examples where the left-hand side(df is not a  Gauss theorem for an integral carried out on the four-volume

four-vector are presented in this work. In such cases, thgcluded between two hyperplaneS, and S,, defined by
left-hand side of1) is called a false four-vector. This issue is x°=T, andx°=T,. Later, they state that “the proof pre-

the main topic of this work, which discusses sufficient con-ganted clearly remains valid also for any two integrals

ditions thatp* is a true four-vector and their implications. It fj*#dS,, in which the integration is extended over any two

is further explained why this issue is relevant to the Lorentz ¢ . " ; 0
transformation of “hidden mormentum.” 4nfinite hypersurfaces(and not just the hyperplanes

Section Il presents a condition that guarantees s a = cons} which each contain all of three-dimensional space.

true four-vector: Section Il includes examples of electro- Thus, one concludes that, in particular, the overall ch@ge

magnetic fields that illustrate this condition. One of these@Kes the same value faP=T at the inertial framet and at

. : , 0_ :
systems contains “hidden momentum.” Some mistakes con¥ =1 atX'. This outcome means that charge transforms
cerning Lorentz transformations of “hidden momentum” @S @ Lorentz scalar. o
which have been published receftgre explained in Sec.  The foregoing discussion is extended later to energy—

IV. Concluding remarks are presented in Sec. V. momentum ~tensors and their corresponding global
four-vectors; where the four components of the latter are

spatial integrals of the corresponding tensor components.
II. SUFFICIENT CONDITIONS FOR They find that

ENERGY-MOMENTUM FOUR-VECTOR
TAY=0 (3

vV

As stated above, the four quantiti®&° represent energy

and momentum densities, respectivelf. division by ¢ is  gyarantees energy—momentum conservation. This relation is
required for the momentum density. In an energy—cajculated and used by Landau and Lifshitz for proving
momentum four-vector, energy is divided bylt is assumed ~ energy—momentum conservation of a system which consists
that a brief terminology like that of the first statement of this of charged matter and electromagnetic fildss in the case
section will not be misunderstogdHence, if one takes the of charge,(3) can also be used for proving that spatial inte-
values of T#? att=0 and carries out an integration on the grals of T#0 (divided byc) are components of the energy—
entire three-dimensional space, the overall energy and menomentum four-vector.
mentum associated wiffi* is obtained. It should be noted that the calculation of Landau and Lif-
Consider two inertial framesy and %', and the four shitz proves that the energy—momentum tensor of electro-
guantities ‘p*” obtained in 2. The corresponding integra- magnetic fields
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1 1 the rectangular parallelpiped correctly represents the general
Te' = S N ZFaﬂFaﬁgMV (4)  problem. The calculation is carried out &t 0. Using (7),
(9), (10), and(11), one finds
doesnot satisfy (3) but
N1l 1 A
1 5=f f f —(E2+B?)dxdy dz= —E?2. (12)
T == ZF*,. (5) 0JoJo8m 8
’ c
. . L ) i . In a similar manner, one replac€gd with (8) and obtains for
EV|_dentIy, Fh|s relation is |_nconS|stent with conditigB), the x component of the momentum
which requires a null four-divergence. Hence, one concludes
that, excluding particular casesnergy and momentum of RY R N,
electromagnetic fields should not be regarded as entries ofa Px~¢ 0JoJodm E,B,dxdydz 8mC E*. (13
true four-vector :
Examples illustrating this conclusion are presented in théther components of the momentum vanish. Now, the
following section. Special attention is devoted to the case ofnergy—momentum four-vector is written by means of the

“hidden momentum.” energy and momentuin
P#=(&lc,p). (19
Using these results, one realizes that the expected true four-
[ll. EXAMPLES OF LORENTZ TRANSFORMATION momentum is
OF ELECTROMAGNETIC FIELDS E2)
In the examples of this section, effects of the following P“=8WC(1,1,O,O. (15)

Lorentz “boost,” .
Let us apply the Lorentz transformati@f) and calculate

y yulc 0 O the fields atS’ for t’=0. Using the appropriate formulds,
., yulc y 0 O one obtains
b=l 0 1 o © Ey=v(1+ulc)Ey, (16)
0 0 01 B.=1vy(1+ulc)B,. 17

are examinedu denotes the three-velocity of the boost |t means that the electric and magnetic fields increase by the

i i i — 21~2\—1/2 i . .
which is parallel to thex axis andy=(1-u/c%)" " This  gsame factory(1+u/c) and that their product increases by
transformation casts quantities measured in an inertial framge square of this quantity.

% into another framg’. o Let us now synchronize the time &t. In 3, a point on
As is well known;' in the case of electromagnetic fields, the |eft-hand side of the rectangular parallelpiped is
the energy density is
. xt*=(0,0y,2) (18)
TOOZ%(EZ“L B?) (7 and a corresponding point on its right-hand side is
and the momentum density is Xg=(0\,y,2). (19
_ Applying the Lorentz transformatio(6), one finds that18)
—T'0=4—(EXB)i . (8) remains unchanged, whereas the transformatiqa®ftakes
¢ me the form of
A. A free electromagnetic wave XL = (AYUIC A7, 2). (20

Let us consider a monochromatic plane electromagnetigpis result indicates that a time synchronization is required
wave traveling in thex direction. In the framé, the fields before an integration otf =0 values can take place.

are The fields travel at the speed of light Hence, at’ =0,
E=E sin(kx— wt)j, (9)  the right-hand side of the rectangular parallelpiped is at
B=B sin(kx— wt)k, (10) Xg“=(0Ny(1—ulc),y,2). (21)

whereB=E andk=w/c. The wavelength of this field is ~ This outcome means that in the case of free electromagnetic
waves, the rectangular parallelpiped contracts by the factor
A=2mlk. (11 y(1—u/c). Combining this result with the factor represent-
This system does not contain charges and the energying the increase of the fields as given(it6) and(17), one
momentum tensor of the fields satisfies the null four-finds
divergence(3). Hence, one expects that the overall energy T 3 201 _
and momentum of the fields are components of a true four- PIE=y (1+ule)(1-uic)Pe=y(1+ulc)P~  (22)
vector. The same result is also obtained from the application of the
Let us calculate the energy and the momentunp en-  Lorentz transformation(6) to the four-momentum(15).
closed in a rectangular parallelpiped having a base whos€herefore, this analysis illustrates the claim that for free elec-
area is unity and its heiglttvhich takes thex direction is\.  tromagnetic fields whose energy—momentum tensor satisfies
It means that this rectangular parallelpiped contains oné¢he null four-divergencé3), the overall energy and momen-
complete wavelength. Due to the symmetry of the systemtum are components of a true four-vector.
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B. A parallel plate capacitor — —

A parallel plate capacitor is discussed here. The system
contains fields and charges and relati@ holds for the <—
four-divergence of the energy—momentum tensor of electro-

magnetic fields. Hence, the null four-divergeri8gdoes not I y
X
—>

hold at some points of space. For this reason, one expects
that the overall energy and momentum of electromagnetic \l/
fields are entries of a false four-vector. The calculation pre-
sented below confirms this expectation.

This device has been used in discussions of Lorentz trans-
formations of fields and matter under press(Refs. 10 and
11). Relevant calculations required here can be found in
these articles. Hence, several points are cited here and the
derivation procedure is omitted. The capacitor consists of + + + + +
three parts: its plates, the electric field emerging from the
positively charged plate and ending on the negativelyrig. 1. A solenoid whose cross section is a square, is motionless in a frame
charged one|E|=E,, and a gas enclosed between thes, and its axis coincides with theaxis. The solenoid is placed between the
plates. The pressure of this gas balances the electrostatic flates pf a capacitor. The four arrows denote the electric current along the
traction between the plates. solenoid(see the text

The energy and momentum enclosed inside a rectangular
parallelpiped whose bases lie on the two plates, respectively,
are calculated. As in the previous example, this rectangul
parallelpiped represents the general problem correctly. L
V, denote the volume of this rectangular parallelpiped. Th
capacitor is motionless i and the energy of the electric

xpressions and integrals and other calculations are straight-
prward. This feature of the discussion facilitates the presen-

éation of the underlying laws of physics.

The device contains a solenoid and a parallel plate capaci-

U o ; tor whose magnetic and electric fields are perpendicular to
2
f'elg 'tShVOEf /87TihThe| mtagnetlc f'?.Id of the stystem V.aE'ShetSeach other. Again, as in the previous example, the system
and, (neretore, the electromagnetic momentum vanishes, 108, yqing charges and currents that yi¢kl for the four-

It follows _that the electromagnetic energy and rnomenturTI:iivergence of the electromagnetic energy—momentum ten-
can be written as a false four-vector, sor. Hence, the null four-divergence of the energy—
VoE? momentum tensok3), does not hold. Therefore, one expects
Y PE" =5 -(1,000. (23)  that the electromagnetic energy and momentum obtained
from the integration of their corresponding densities are
Let us use the Lorentz transformati@f) and find the components of a false four-vector.
respective quantities i&’'. As is well known, the electric Let us examine a closed pipe that takes the form of a
field component which is parallel to the “boost” is un- circumference of a square. The pipe is made of an insulating
changed and yields no magnetic fil@n the other hand, material and contains an incompressible positively charged
the self-volumeV, of the rectangular parallelpiped contracts fluid that flows frictionlessly along itsee Fig. 1 (This kind
by a factory 1. Therefore, in3’, the energy and momen- of uniformly charged fluid is just a hypothetical matter which

tum of the electromagnetic fields are enables a simple mathematical treatment of the problem.
5 The pipe is covered with a negative electric charge that
«pran VoE (1,0,0,0 (24 ~ Screens the electric field of the charged fluid. Hence, in the

F 8wy T inertial frameX where the closed pipe is motionless, only

On the other hand, if one trea(@3) as a true four-vector and magnetic field is generated by the closed loop. The cross

. X . : section of the pipe is small with respect to its length.
applies the Lorentz transformatid6) to it, one obtains The cornerspor; the pipe are placgd at four poignts whose
2

VoE“y coordinates areX=*1 and Y= *1, respectively. An infi-
87 (1u/c,0,0). (25 nitely long pile of such pipes makes a solenoid whose axis
) ] coincides with thez axis. (As in a standard treatment of
Evidently, (24) and (25) are not the same, proving thé23)  splenoids, the insulating material used for building the pipes
S8 _false four-vectorb 11 is thin enough, so that the current can be regarded as uniform
It is further proved®** that the energy and momentum of on the solenoid’s circumferenden its interior, this solenoid

the gas enclosed between the plai@sof another material generates a uniform magnetic field in thelirection
under pressure, used for balancing the electrostatic attraction

between the plat¢salso belongs to this class, namely they ~ B=BKk, (26)

are components of a false four-vector. Only Huenof these  \yhereas the external field vanishes.

two false four-vectors is a true four-vector, thereby illustrat- | et » denote the charge density of the fluglthe area of

ing the self-consistency of special relativity. the pipe’s cross section, ardthe fluid’s velocity. Thus the
electric current along the pipe Is=pvs. Let N denote the
number of closed pipes per unit length in thalirection.

“Er,u,u _
F

C. A device containing “hidden momentum” Thus the magnetic fiel26) is
Let us examine a device containing “hidden momentum.” B= 4—7TN suk 27)
It is designed so that electric and magnetic fields take simple c P '
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The other component of the device is a parallel plate ca- e 0 0 O
pacitor whose plates are parallel to the 2 plane and are
placed aty<—1, Y>1, respectivelysee Fig. 1L The plates THr= 0P 00 (33)
are made of an insulating material, each of which is covered 0O 0 PO
uniformly with a surface charge densityp., respectively. 00 0 P
In the region between the plates, the capacitor generates a
uniform electric field in they direction, This tensor is used here for the fluid that moves parallel to
the x axis. Performing a Lorentz transformation 38) for
E=E;j. (28) the fluid at theY=—1 segment, one finds
In a discussion of quantities related to “hidden momen- € (e+Pp/c 0 0
tum,” one has to consider interaction terms of the solenoid (e+P)vlc P 0 O
and the capacitor. For this reason, self-interaction terms of T#"= 0 0 » ol (39
the solenoid with itself, as well as those of the capacitor are
ignored. Moreover, since the capacitor's plates are made of 0 0 o P

an insulating material, the self-energy of the capacitor's
charges is independent of the solenoid. Similarly, since thd/N€
hypothetical solenoid’s uniformly charged fluid is incom- Omitted, due tw<c. _ o
pressible, its electric state is assumed here to be unaffectedAnalogous expressions are obtained for the liquid at the
by the electric field of the capacitor. Y=1 segment. Here the motion is leftward and the factor
The electromagnetic interaction dependent momentunis replaced by-v. The pressure at each of the= = 1 seg-
density is bilinear in the magnetic fie(@7) and in the elec- ments is uniform. It follows that the integration of the me-

tric field (28). The calculation is restricted to the volurwg ~ chanical momentum density is straightforward. Thus one
inside a cube-1<x<1, —1<y<1, —1<z<1 (henceV, finds that the mechanical momentum enclosed within the

=8 is used below Evidently, due to the symmetry of the CubeVo is

device,. this cu'be represents the entire problem correctly. Py(mech = —4APsNy/c2= —8pEyst/cz, (35)
The interaction dependent momentum of the electromag- ] .

netic fields is obtained from the integration of the momentunivhere(32) is used. This result proves that, as expecfetie

density on the volume. Only thecomponent of the momen- Sum of the electromagnetic momentui29) and the me-

tum is nonzero and the calculation is straightforward, ghanical &nomenturtBS) vanishes for the motionless system
iscussed.

here terms proportional to? and higher powers of are

1 1 (11 8 Now let us turn to the inertial fram&’ and use the Lor-
Px(eleg = f_lf_lj_l Zc5vBe dxdydz ey NpsvE,, entz transformatiot6) for the quantities obtained above. As
stated, only the interaction part of components associated
(29) with the solenoid with those of the capacitor are treated here.
where(27) is used. The volume of the cube undergoes a Lorentz contraction by

This electromagnetic momentum is compensated by thg1e factory,
mechanical momentum of the systétil® The mechanical Vi=V,l7. (36)
momentum is included in the charged fluid that moves along o o
the closed pipes of the solenoid. This quantity is calculated The magnetic field of the solenoid Increases by a fagtor
below and also yields an electric field in thyedirection;

The force exerted by thg capacitor’s electric field on Fhe B(,sol): yBK, (37)
moving charges of the fluid is balanced by a mechanical
pressure gradient. The fluid’s pressure different®, be- , u.
tween a point a¥ =1 and a point a¥ = —1 renders a force Eson = VBEJ' (38)
exerted on the portion of the fluid which flows along the

pipes’ segments at=+ 1. The force is whereB is the quantity used ii26).

Similarly, the fields of the capacitor are

fi=—APsj. (30) E{cap= YEI, (39

(Note thatj is a unit vector and not a currentThis force u

balances the force exerted by the capacitor’s field on this B(cap)zyEEkl (40)

portion of the charged fluid
whereE is the quantity used ii28).

f,=2spEj, (31 The foregoing expressions show tha®in, the interaction

part of the electromagnetic momentum density consists of

where 2 is the volume of the charged fluid at each of thetwo terms: the product of39) and(37) and that of(38) and

X= =1 segments of a pipe. In this way one finds an expresf40). The integration of the momentum density is just a mul-

sion for the pressure difference tiplication by the volume(36). Hence, using the above-
mentioned products an@9), one finds

AP=2pE. (32 L
T 2/02y_ 2/ .2
The energy—momentum tensor of a macroscopic body at Px(eteo 47TC8YBE(1+U 1€%)=y(1+UC%)Pyeteo -
rest depends on its energy densit@nd its pressur@®,‘* (41
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This interaction part of the electromagnetic momentum is as the density of the positive charge3n This outcome must

counterpart of the “hidden momentum” as seenih. be consistent with the solenoid’s electric fi€&8), as seen in
Let us turn to the mechanical part, namely to the “hidden,’.
momentum.” The interesting element is the fluid at tfie Indeed, in%’, the nonvanishing electric field emanating

==+1 segments of the solenoid. Tite= —1 side is treated from the Y=—1 side of the solenoid indicates that the
first. At X, the four-velocity of the liquid is (1/c,0,0) charge density at this part is nonzero, too. The following
(here, as above, powers of which are greater than 1 are calculation shows that the charge density obtained above is
ignored. Thus, using the Lorentz transformati@f), one  the precise quantity.

finds that atS’, this four-velocity takes the form Taking the uniform electric field at the inner part of the
moving solenoid(38), the value of the magnetic fiel®7)
viyo gy =y(1+ uv/c?,(u+v)/c,0,0). (42)  and relation(51) for the charge density &', one obtains

Now one has to synchronize the time3at. Assume that the
time at> is t=0. Thus the four-vector of a point on the
bottom left part is

, yu . yuv . ;.
E(soD:?‘l'WNPSUJ: c2 47Tp(area)J:477p(areaJ- (53

Thus one finds that51) and (38) are consistent with the

Xt=(0,-1,-12) (43 Maxwell equation d\E=4mp. This is an example of the
. self-consistency of relativistic electrodynamics.
and at the right end of th€=—1 segment The nonzero charge densitg3) is a relativistic effect

_ which emphasizes the claims presented above. Although the
Xg=(01-12). (44 mean charge density vanisheslinthe curreng* is nonzero

Applying the Lorentz transformatiof6), one finds that at there. Hence a nonzero charge arisestin and yields a

Y, these points are nonzero three-force.
The mechanical “hidden momentum” is obtained from
X[ #=(—yulc,—y,—172), (45  the pressure-related terms of the Lorentz transformation of
the tenso(34) and from the corresponding tensor which per-
Xg“=(yulc,y,—12). (46)  tains to theY=1 part of the solenoid, where v replaces

of (34). Performing the calculations for the terms which are
proportional to the pressur@, one finds the required tensor
component forY=—1,

The time synchronization is done so that all event¥ at
are examined at’ =0. It follows that the four-vecto46)
must be shifted byAt=— yu/c?. Using(42), one finds that

inS’, the liquid’s three-velocity i , u?
%', the liquid’s three-velocity is T(r}r?ess:yzg l+?73y=,1. 54
u+v
UsT 1% un/c? (47) _ For theY=1 part of the solenoid, one rgplacesby —-v
in (54) and obtains an analogous expression.
Thus, the fluid element, which B was at(46), is seen ir%,’ As in the previous cases, the integration of each part of
att’=0 at Y= *1 reduces to a multiplication by the volume of the fluid

(which contracts by a factoyp™1). Thus one adds the contri-

1 bution of the two sides and find
x1=| 0, ’_1,2)_ 48 ution of the two sides and finds
R y(1+uv/c?) (“48) U2 U2
__ bl 2_ halll
A similar calculation yields for pointd5) thet’ =0 values ~ Px(press™ 47’( 1+ = vAPNs/co=y| 1+ o2 | Px(press -
1 (55)
" — — i : NN
Xg=10, YT uwicd)’ 1,2)- (490 where(35) is used. Hence, as i, one finds that ir%.’, too,

the mechanical partc5) of the “hidden momentum” bal-
This calculation shows that the charged liquid at tfie ances its electromagnetic counterp@r).
= —1 side undergoes a Lorentz contraction by a factor

1
a=——>+ (50) IV. A PREVIOUS DISCUSSION OF LORENTZ

y(1+uu/ct) TRANSFORMATION OF “HIDDEN MOMENTUM”
On the other hand, the charge which is distributed uni- . .
formly on the insulating material of the pipes is motionless The problem of Lorentz transformation of “hidden mo-
in 3. (and there screens the electric field of the charged)fiuid Mentum” has been discussed recently in the literafuBec-
The static charge undergoes the ordinary Lorentz contractiofion Il of Ref. 2 contains a general discussion of this prob-
of 1/y. It means that irS.’, the complete screening does not I€m. where the following Lorentz transformation formulas
hold any more and the net charge density per unit area &'€ Postulated:

Y=—11is Uem=y(Ug+V-Py), (70
P(area= Pareal Y(1+Uv/C?) = y]=p(areayUv/c?,  (51) Peim= ¥(Po+Ugv/c?), (71
where U mecr= Y(MoC2+V-P}), (73
Pares= PSN (52) Pmec= ¥(Pp+mgVv). (74)
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HereU, andP, are the system’s rest frame electromagneticnentum of the system transform like components of a four-
energy and momentum, respectively, is the mechanical Vvector, whereas energy—momentum of fields as well as those
rest massP,, is the rest frame mechanical momentum, andof matter, transform like a false four-vector. The other
Ui and Pap, (U e and Pyred) are the system’s electromag- methodpostulateghat the electromagnetic and the mechani-

netic (mechanical ener and momentum, respectivel _cal partls do transform IiI§e four-vectors. The S?CO”O' ap-
(The riumbering %f the c?goted equations is as in Eéf. 2 y proach is called the covariant method. The domain of valid-

The analysis carried out in this work clearly proves thatlty Of €ach method is the main topic of this noi&or a
these equations are incorrect. The capacitor of Sec. Il B caf]iScussion of the notion of the domain of validity of a theory,
be used as a counterexample(T@)—(74). Evidently, in the the reader is referred to Rohrlich's bot.

rest frame of the capacitor there is no electromagnetic mo- 1 N€ starting point of this note is the validity of Maxwell-
mentum and no mechanicéthidden” ) one. Thus one sub- ian electrody_namlcs fpr a system whose charge density is
stitutesP, =P, =0 in (70)—(74) and examines the outcome bounded. This matter is denoted below by the term standard

in the frame.. Equation(24) clearly shows that iit." there Maxwellian basis. Moreover, even in cases which do not

: lect i t i 74) which i belong to the domain of validity of classical physics, this
is no electromagnetic momentum, contrary(fd) which is 041" s assumed to bmathematicallycorrect. in such

_ 2 -
Peim=yUoV/c” (note that the electromagnetic enerbly  cases only mathematical aspects of the theory are consid-
#0). Similarly, as(24) shows, inX’, the electromagnetic gre(.
energyreducesby the factory, unlike (70). _ The phenomenon of charge quantization motivates the in-
Moreover, the 'mF.,'Chanlcal quantltlgs'do not transform ||kqi-oduction of particies Carrying a quantized quantity of
(73) and (74). This is proved in detail in Refs. 10 and 11. charge into the theory. Two kinds of charged particles are
Only thesumof the mechanical and electromagnetic energygiscussed here. Particles of the first kind are tiny objects
and momentum false four-vectors transforms as a true fouyhose volume is smaikay, a sphere whose>0). The other
vector. o L _ kind is an elementary classical point charge. Particles of
A system containing “hidden momentum” is discussed in {hese kinds are called hereinafter extended charges and point

Sec. I C. The results found there can also be used for dis(:harges respectively. Four cases are discussed below.
proving (70)—(74). Thus, inY’, the “hidden momentum”

part of the mechanical momentum is given(§b). As seen, A. A single extended charge

. . 2 2 . . ‘“ . _
it is y(1+u’/c") times the mechanical “hidden momen This system falls within the domain of validity of the stan-

toligr (odflihaeb(r)(\alst‘at ;L%Tvi' tggﬁﬁ;iﬁ?é?:cgggat(gﬁ)bmi?;eélec_dard Maxwellian basis. The particle is stabilized by means of
’ ; S P a Poincardorce. The energy—momentum of the entire sys-
tromagnetic momentum is increased by the same fact

14 u2/c2 71 Yem transforms like a four-vector and the electromagnetic
¥ urc ), contrary to(71). . . and the mechanical parts of the energy—momentum trans-
Obviously, the postulated equatiofi8)—(74) are incon- ¢4 jike false four-vectors(References and discussions of

sistent with the null four-divergence condition @). This  he poincardorce can be found on the appropriate pages of
point casts a new light on the significance of this condition ingets 16 and 17.

the case of a relativistic treatment of energy and momentum

of classical systems. . .
B. A single point charge

In classical physics, an elementary particle is pointlike
V. NCLUDING REMARK M o
CONCLUDING S (see Ref. 1, pp. 43 and AHence, in this case, no Poincare

The usefulness of the notion of false four-vectors is exforces can exist. If one applies the laws of the standard max-
plained. These objects are associated with spatial integrals ®fellian basis to a point charge, then very serious problems
energy and momentum density, as given by an energyarise. Two of these problems are the infinite energy and the
momentum tensor which does not satisfy the null four-4/3 factor obtained for the momentum components, if a Lor-
divergence(3). Following a discussion of Landau and Lif- entz transformation is applied to a motionless charge. The
shitz, it is proved here that a null four-divergence is acovariant method solves the latter problem. If this approach
sufficient condition for having a true energy—momentumis augmented by a mass renormalization procedure which
four-vector whose components are obtained from spatial infemoves the infinite energy of the fields, then results agree
tegrals of corresponding densities. Examples illustrating thigvith those obtained from a different analyfsHere, the
subject are presented in Sec. lIl. It is shown there that in théteraction of fields of a single particle is removed from the
case of a free electromagnetic wave, whose energySystem’s energy—momentum tensor.
momentum tensor has a null four-divergence, the integrals of
the appropriate Qensities are related to a true four-vector. Op A system which consists of more than one extended
the other hand, in examples of systems of fields and charge(‘:q‘,]arge
(or currents, integrals of energy and momentum densities of
electromagnetic fields are related to a false four-vector. This This system, like that of cask, is explained perfectly by
property also holds for the mechanical sector of the systenthe standard Maxwellian basis, because its charge density is
Only the sum of the mechanical and electromagnetic falsdounded.
four-vectors is a true four-vector.

Note added (Received 6 March 2000) his Response 10 A system which consists of more than one point
this work;™ Hnizdo claims that the problem discussed abovecharge
can be treated in two alternativand mutually contradictojy
ways. One method of calculation treats quantities in the stan- A self-consistent solution of this problem can be achieved
dard way and shows that only the overall energy and moif its two-particle interaction is the same as the limit of an
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analogous system of extended charges whose radius tendsdb a sequence. Let the device be enclosed within a cube
zero. Thus, as in case C, the energy of the interaction fieldwhose linear size i&. The integration of field quantities is
transforms as shown by the standard Maxwellian basis. Aarried out within another cube, which is concentric with the
attempt to do it differently is inconsistent with special rela- former, and whose linear size is?0. Now consider a se-
tivity. Indeed, the kinematics of particles entails a unlquequence of such devices whekte- . Everything is OK for

Lorentz transformation of their position and velocity. Hence, :
the mechanical energy and momentum of the system tran&very element of the sequence and the results are valid.

form like those of an analogous system belonging to €ase o .
. Lo Electronic mail: eli@tauphy.tau.ac.il
It follows that there is no room for ambiguity of the 1aws of 3 ") sngay and E. M. LifshitzThe Classical Theory of Field®erga-
tra_msformatlon of mechanical energy and momentum. FOr mon, Oxford, 1975 pp. 77—80.
this reason, the postulate used {@8) and(74) of Ref. 2 is 2V/. Hnizdo, “Hidden momentum and the electromagnetic mass of a charge
wrong. lllustrations of this matter are given in Refs. 10 and and current carrying body,” Am. J. Phy85, 55—65(1997.
11. In particular, see Ref. 11, Sec. II B, pp. 1030-1032.  ®See Ref. 1, pp. 71-73.
The foregoing discussion shows that the covariant methodSee Ref. 1, p. 78.
applies to cas® and to theself-interactionof particles be- ZSee Ref. 1, pp. 80-83.
longing to casd. (A self-consistent presentation of a theory _See Ref. 1, p. 81,
where self-interactions of point charges are removed from,>¢€ Ref. 1, pp. 110-117.
the energy—momentum tensor can be found in Ref. W8- gzzg EZI' i g' gg'
ltlrlt(';lerls(]‘?c)\?;)mar(]:g\(/;ﬁ)agrl Relf' ﬁ! the me(i%%nlcgl dpag does not 10w, Rindler and J. Denur, “A simple relativistic paradox about electro-
ly. In his .R(?Spo Hnizdo does not static momentum,” Am. J. Phy%6, 795 (1988.
even try to settle this contradiction. Y. Comay, “Exposing ‘hidden momentum,’” Am. J. Phy64, 1028
Now, the overall energy—momentufwhich is the sum of (1996.
the mechanical and the electromagnetic paremsforms co-  !2s. Coleman and J. H. Van Vleck, “Origin of "Hidden Momentum Forces
variantly. Hence, since the mechanical part does not trans-on Magnets,” Phys. Rev171(5), 1370-1375(1968, and references
form covariantly, the electromagnetic part must follow suit, therein.

in order to compensate for noncovariant effects of the me?’L. Vaidman, “Torque and force on a magnetic dipole,” Am. J. PI58.
chanical part. 978-983(1990, case |l

. . . 14
In Ref. 4 of his Response, Hnizdo discusses results oh;>¢€ Ref. 1, p- 85.

tained from an analysis of infinitely long devices. His claims ' Hnizdo. “Response to ‘Lorentz transformation of a system carrying
do not affect the validity of this work, because, in specialq- docn Momentum,’ * Am. J. Phys68, 1014(2000.

L. . y. . ! ! P 18F. Rohrlich, Classical Charged ParticlefAddison—Wesley, Reading,
relativity, energy density is defined locally and one may ex- \ 1965), pp. 3-6.
amine appropriate finite volumes, which are parts of the en=ig comay, “Lorentz Transformation of Electromagnetic Systems and the
tire device. This approach is analogous to a standard text-4/3 problem,” z. Naturforsch., A: Phys. S@6, 377—383(1991).
book discussion of a parallel-plate capacitor. This issue caffe. Comay, “Decomposition of Electromagnetic Fields into Radiation and

be explained briefly as followse is not a number but a limit ~ Bound Components,” Am. J. Phy§5, 862-867(1997).
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Response to “Lorentz transformation of a system carrying
‘Hidden Momentum,’” by E. Comay [Am. J. Phys. 68, 1007 (2000)]

V. Hnizdo
National Institute for Occupational Safety and Health, 1095 Willowdale Road,
Morgantown, West Virginia 26505

(Received 31 January 2000; accepted 15 March 000

We respond to Comay'’s criticism of the use of covariant definitions of the electromagnetic and
mechanical energy—momenta in an analysis of the role of hidden momentum in the total energy—
momentum four vector of a macroscopic body. 2@00 American Association of Physics Teachers.

In his papert Comay calls the use in Ref. 2 of covariant particle are usually called Poinas&resse$.Comay’s criti-
definitions of the “electromagnetic” and “mechanical”’ con- cism is a relapse into yet another round of that old debate,
tributions to the total energy and momentum of a macrofegard to which it has now been recognized by several
scopic body “mistakes.” He illustrates in detail, using the authors that the point here is not that only one of the pro-
examples of a free electromagnetic wave, a charged capadiedures of Rohrlich’s covariant definitions and Poincare
tor, and a current-carrying solenoid inside a charged capacstresses is a “correct” one while the other is “wrong,” but
tor, the well-known fact that the energy and momentum ofthat either procedure can be used for the purpose of con-
the electromagnetic field in a systdire., the “electromag- structing a covariantotal energy—momentum of a system
netic” energy—momentuinform a covariant four vector that has electromagnetic and nonelectromagnetic compo-
only when the four divergence of the field’'s energy—nents. The recent third edition of Jackson's classic text on
momentum tensor vanishes. Similarly, he shows that the hidslassical electrodynamitbhas a thorough discussion of the
den mechanical momentum in his third example, obtained agroblem of the electromagnetic mass, Poincaresses, and
the integral of the simultaneous values of the momentumeovariant definitions without expressing any preference for
density component of the energy—momentum tensor of thene of the two procedures over the other.
charged fluid that is the current carrier in the system, does We reiterate here the point emphasized in Refs. 2 and 5,
not transform as the momentum part of an energy-namely that the covariant definitions have a formal character
momentum four vector. Here again, the reason for this is tha@kin to the procedure of the renormalization of mass in quan-
the four divergence of the fluid’s energy—momentum tensotum electrodynamics, which is carried out in a covariant
can be shown not to vanish. Only the total energy—fashion separately from any nonelectromagnetic contribution
momentum of the system, i.e., the sum of the electromagto the rest mass of a charged particlln fact, it can be
netic and mechanical contributions, is a covariant four vecargued that a mass renormalization with a negative nonelec-
tor, as the four divergence of the total energy—momentuniromagnetic mass is implied also in classical electrodynamics
tensor of a closed system vanisHes. whenever a charged body is assigned a rest mass that is

This is shown also in Ref. 2, where detailed calculationssmaller than the electromagnetic mass due to the body’s
on the examples of finite exactly solvable systéitisstrate  charge distribution. In principle, the electromagnetic
the fact that only the total energy—momentum is a covarianenergy—momentum arising from a macroscopic distribution
four vector when the standard definitions are used for th@f charge and current is measurable separately from the
electromagnetic and mechanical contributions. And it isbody’s “mechanical” energy—momentuntunlike in the
shown in Ref. 5, without relying on any specific example,electron or any other “elementary” partigleand the stan-
how the noncovariant “electromagnetic” and “mechanical” dard electromagnetic and mechanical energy—momenta
energy—momenta calculated using the standard energywould agree observationally with the covariantly defined
momentum tensors combine to form a covariant four vectoguantities only in one inertial frame of reference, namely the
of the total energy—momentum of a macroscopic body thateference frame in which the standard and covariant defini-
carries general stationary macroscopic charge and/or curretions coincide.
distributions. The purpose of a covariant-definition procedure for a mac-

The employment of definitions that separately impose théoscopic system is that of the construction of a covariant
relativistic four-vector covariance on the electromagnetic andotal energy—momentum, and the separately covariant “elec-
nonelectromagnetid“mechanical”) energy—momenta has tromagnetic” and “mechanical” energy—momenta obtained
been pioneered by Rohrliftas a procedure that needs noin such a procedure serve only that purpose. The covariant
explicit consideration of nonelectromagnetic forces to deatlefinitions of the electromagnetic and mechanical energy—
with the problem of the noncovariance of the energy—momenta were used in Ref. 2 not because they are the only
momentum of the electron in classical electron theory. The'correct” definitions of such quantities for the systems in
use of this procedure has been criticized on numerous occguestion, but to show how the covariant-definition proce-
sions by proponents of the standard definitions, as these agiire, along with the Poincastresses procedure of the stan-
sufficient to produce a covariant total energy—momentunglard definitions, would consistently take into account the ex-
when the contribution of nonelectromagnetic forces, necesstence of hidden mechanical momentum.
sary for the stability of an extended particle, to the energy—
momentum of the ClaSS|caI_e|,ECtron is include@ihat has E. Comay, “Lorentz transformation of a system carrying ‘Hidden Momen-
been shown already by Poincdrand the nonelectromag- tum, " Am. J. Phys.68, 1007(2000.
netic stresses needed for the stability of an extended charged. Hnizdo, “Hidden momentum and the electromagnetic mass of a charge

1014 Am. J. Phys68 (11), November 2000 http://ojps.aip.org/ajp/ © 2000 American Association of Physics Teachers1014



and current carrying body,” Am. J. Phy&5, 55—65(1997). when suitable dimensions of the systems are sufficiently large.

3Comay cites in detail from the proof of this statement in L. D. Landau and °V. Hnizdo, “Covariance of the total energy—momentum four vector of a
E. M. Lifshitz, The Classical Theory of Field$ergamon, Oxford, 1975 charge and current carrying macroscopic body,” Am. J. Pegs.414—
There are several such proofs in the literature, the oldest going back some418(1998.

80 years: H. Weyl,Space-Time-MattetDover, New York, 1950 first ®F. Rohrlich, “Self-energy and stability of the classical electron,” Am. J.
American printing of the 4th edition of 1922, Sec. 33; W. Palitigory of Phys. 28, 639-643(1960; “Electromagnetic momentum, energy, and
Relativity (Pergamon, London, 1958Sec. 21; C. MgllerThe Theory of mass,” ibid. 38, 1310-1316 (1970; Classical Charged Particles
Relativity (Clarendon, Oxford, 19%22nd ed., Sec. 6.2; C. W. Misner, K. (Addison—Wesley, Reading, MA, 1965 and 1990

S. Thorne, and J. A. WheeleGravitation (Freeman, San Francisco,
1973, Sec. 5.8, cas&).

4Comay’s examples are systems of infinite extension, and also of infinite
energy and, except in his second example, infinite momentum. While the S 40, 1282-12871972

use of such systems simplifies the requisite integrations, infinite SySter‘n%Reference 5 gives several references to the debate, both in the context of

are, strictly speaking, unphysical; moreover, the general theorem that guar- : :
antees that the total momentum of a stationary macroscopic system van-classical electron theory and the Trouton—Noble experirf@nthe latter,

ishes[see, e.g., L. Vaidman, “Torque and force on a magnetic dipole,” S€€ S. A. Teukolsky, Ref.)9 o _

Am. J. Phys58, 978-983(1990; V. Hnizdo, “Hidden mechanical mo- D. J. Griffiths and R. E. Owen, “Mass renormalization in classical elec-
mentum and the field momentum in stationary electromagnetic and gravi- trodynamics,” Am. J. Phys51, 1120-1126(1983; S. A. Teukolsky,
tational systems,’ibid. 65, 515-518(1997)] cannot be applied to an in- “The explanation of the Trouton—Noble experiment revisiteiid. 64,
finite system. Presumably, the assumption here is that when the systemsl104-11091996; F. Rohrlich, “The dynamics of a charged sphere and
Comay considers are finite, the relative contribution of the fringing fields the electron,”ibid. 65, 1051-10561997).

(and of the wave-packet “tails” in the case of a free electromagnetic®. D. JacksonClassical ElectrodynamicgWiley, New York, 1999, 3rd
wave to the quantities of interest can be shown to be arbitrarily small ed., Secs. 16.4-16.6.

"There is an English, modernized presentation of Poired/%06 paper on
the electron by H. M. Schwartz, “PoincaseRendincoti paper on relativ-
ity. I,” Am. J. Phys. 39, 1287-1294(1971); “Il,” 40, 862—-872(1972;
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