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An approach for  nding the e¬ective properties of two-dimensional periodic rectangu-
lar checkerboard media is presented; it is demonstrated that one can take a relatively
simple model problem, an appropriate system of joined quarter planes, and that after
appropriate conformal transformation one can use this to solve for either periodic or
doubly periodic structures. Illustrative calculations involving three-phase media are
presented that, in limiting cases, recover earlier analyses. Useful asymptotic relations
are also given.
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1. Introduction

We consider here a class of two-dimensional rectangular periodic composites; each
rectangular cell can be composed of up to four di¬erent phases. The aim is to  nd
the e¬ective parameters associated with such a structure for linear materials in, say,
electrostatics; in later sections, for algebraic simplicity and clarity, we shall deal with
three di¬erent phases.

The evaluation of e¬ective parameters for related structures composed of two dif-
fering phases has a long history with many di¬erent approaches, it is only possible
to give here a ®avour of each of them, these are useful asymptotic results; represen-
tations and theorems for special cases (Bruggeman 1935; Keller 1963, 1964, 1987;
Dykhne 1971; Mendelson 1975; Milton & Golden 1990), or network resistance analo-
gies (Borcea & Papanicolaou 1998); numerical work using integral equations (Gaute-
sen 1988), or complex power series (Milton et al . 1981) or other expansion methods
(Helsing 1991); and e¬ective medium approximations or other methods (Clark &
Milton 1995) for establishing upper and lower bounds for the e¬ective properties
(Torquato 1991). Some of these methods also allow one to progress to considering
nonlinear composites (Talbot & Willis 1994).

Exact solutions for this class of problems, even for two-phase media, are quite
rare. There are, of course, the classical analyses of Rayleigh (1892) and Maxwell
(1904), and more recent work for square (Berdichevski 1985) or rectangular (Obnosov
1996, 1999a) checkerboard structures, and biperiodic cylindrical inclusions (Mityu-
shev 1997). The latter authors use complex analysis to formulate generalized Rie-
mann boundary-value problems known as R-linear conjugation, or Markushevich
problems. In general, the analysis of these R-linear conjugation problems appears to
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Figure 1. The four-lobe fan in the physical plane.

have placed an e¬ective block upon further progress; considerable ingenuity having
been required to solve for even these simple geometries. Here we develop an inverse
method that completely bypasses that approach, and leads relatively easily to more
general results (for more phases) that encompass these earlier checkerboard results.
In essence we take a solution for a simple geometry, a four-lobe fan, and then use
conformal mappings to this structure to deduce the general form for the equivalent
periodic and biperiodic media. Thus we are now only limited by the algebra associ-
ated with the four-lobe fan; the method itself can also be extended to other regular
biperiodic structures, such as rhomboid tilings. An advantage of obtaining exact solu-
tions, albeit to relatively simple geometrical structures, is that these then provide
sound checking mechanisms for numerical schemes and may also highlight asymptotic
schemes of value in more complex geometrical or higher-dimensional structures.

We consider here four-phase piecewise continuous stationary media that can be rep-
resented in terms of a vector  eld that is both solenoidal and irrotational; this encom-
passes several physical scenarios in electro- or magnetostatics, heat ®ow, hydrology
and elasticity. The language of the electrostatic analogy is used in later sections. In
each phase distinguished by the subscript p, where p = 1; : : : ; 4, we de ne a vector
 eld wp = (wpx; wpy) of the horizontal and vertical components wx, wy such that

r wp = 0 and r £ wp = 0:

It is most convenient to use complex variables, that is z = x + iy and wp(z) =
wpx ¡ iwpy . In each sector, « p (p = 1; : : : ; 4), the piecewise analytic functions wp(z)
are de ned. Since we have eigenproblems the results depend crucially upon the sin-
gularity behaviour at each vertex, from physical considerations these functions have,
at most, integrable singularities there. The boundary conditions between each phase
are that the normal components of wp are continuous across each boundary, and that
the tangential components of » pwp are similarly continuous; the constant parame-
ters » p correspond to a phase property of each medium. For ease of analysis these
parameters are taken to be real in the remainder of these notes, although this is not
a restriction upon the method.
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The plan of this paper is that in x 2 we give the general solution to a simple
four-lobe fan structure. In xx 3 and 4 we give the mappings, and analysis, required
for displaced ®ake and checkerboard structures. In x 5 we make comparisons with
two-phase structures and square checkerboards and give asymptotic results for `long
thin’ biperiodic structures. We conclude in x 6.

2. The four-lobe fan

As we shall ultimately conformally map into the four-lobe fan, the geometry of which
is shown in  gure 1, from periodic and doubly periodic structures, we shall pose the
problem in an intermediate ± -plane; later, ± (z) will de ne an appropriate map. For
algebraic ease we shall consider » 2 ² » 4 and, thus, that the materials in « 2 and « 4

are identical; this retains some symmetry in the problems.
In terms of the complex representation adopted here, and the lettering of  gure 1,

the boundary conditions are that

Im[i( » 1w1 ¡ » 2w2)] = 0; Im[w1 ¡ w2 ] = 0; on OA; (2.1)

Im[i( » 4w4 ¡ » 3w3)] = 0; Im[w4 ¡ w3 ] = 0; on OA0; (2.2)

Im[i(w4 ¡ w1)] = 0; Im[ » 4w4 ¡ » 1w1 ] = 0; on OB; (2.3)

Im[i(w2 ¡ w3)] = 0; Im[ » 2w2 ¡ » 3w3 ] = 0; on OB0: (2.4)

These conditions are probably most easily reduced to algebraic conditions and then
solved, using ideas related to Mellin transforms de ned in the complex ± -plane as in,
say, Craster (1997).

We search for eigensolutions of the form ~wk = Ak( ¶ ) ± 2 ¶ (k = 1; : : : ; 4), for some
parameter ¶ to be determined; the ~ distinguishes a single eigensolution from the full
solution wk that is formed from two eigensolutions. Equations (2.1){(2.4) describe
an eigenproblem with an in nite number of possible solutions. To  x upon a speci c
solution we also require conditions set at the origin or at in nity. For physical reasons
associated with our later periodic and doubly periodic examples, we restrict ¶ such
that j2 ¶ j < 1, and aim to  nd those two solutions for which ~wk is bounded at the
origin, or at in nity, respectively. The aim is to identify ¶ as an eigenvalue and also
the general form that the constants Ak( ¶ ) must take. To streamline notation we
introduce ¢ , ® , ° 2 and ° 3 as

¢ =
( ° 3 ¡ ° 2)

(1 + ° 2)(1 + ° 3)
; tan º ® =

1 + ¢

1 ¡ ¢
; ° 2 =

» 2

» 1
; ° 3 =

» 3

» 2
:

Substituting the representation for ~wk into the boundary conditions, eight algebraic
equations for the Ak, and their conjugates, are deduced, and these are solved straight-
forwardly. In the process of which an equation for ¶ is found as

4 ¢ 2(1 + cos 2 ¶ º ) = (1 ¡ cos 4¶ º ); (2.5)

from which
¶ = (1=º ) sin¡1 ¢ :

The other eigensolution is similarly found with eigenvalue ¡ [1=º ] sin¡1 ¢ ; these
together satisfy the required behaviour.

Proc. R. Soc. Lond. A (2000)



2744 R. V. Craster

W

W

4

3

W

W 2

1

A’ AO

B

B’

h

Figure 2. The geometry for the periodic problem in the physical plane.

An alternative, and arguably more elegant, method is to rewrite the boundary-
value problem (2.1){(2.4) as a Riemann{Hilbert problem (Craster & Obnosov 2000).
Ultimately this avoids the explicit treatment of simultaneous equations for the Ak( ¶ ).
Recently, Craster & Obnosov (2000) have used this approach (Appendix A of that
article), which allows us to proceed there with consideration of four arbitrary piece-
wise constant phases.

The solutions for the two relevant eigensolutions are used to construct the functions
wk . These wk are found as

w1( ± ) = ¬ ei º ® ± ¡2 ¶ +  e¡i º ® ± + 2¶ ; (2.6)

w2( ± ) = ([1 + ° 2 ] ¡ i[1 ¡ ° 2 ]e¡i º ¶ )
¬ ei º ®

2 ° 2
± ¡2¶ + ([1 + ° 2 ] + i[1 ¡ ° 2]ei º ¶ )

 e¡i º ®

2 ° 2
± + 2¶ ;

(2.7)

w3( ± ) =
1

4° 3 ° 2

[(1 + ° 3)([1 + ° 2] ¡ i[1 ¡ ° 2 ]e¡ iº ¶ ) + ( ° 3 ¡ 1)e¡2i º ¶

£ ([1 + ° 2] + i[1 ¡ ° 2]ei º ¶ )]¬ ei º ® ± ¡2 ¶ + [(1 + ° 3)([1 + ° 2] + i[1 ¡ ° 2 ]ei º ¶ )

+ ( ° 3 ¡ 1)e2iº ¶ ([1 + ° 2] ¡ i[1 ¡ ° 2 ]e¡ i º ¶ )] e¡i º ® ± + 2¶ ; (2.8)

w4( ± ) = ([1 + ° 2 ] + i[1 ¡ ° 2 ]ei º ¶ )
¬ eiº ®

2 ° 2
± ¡2¶ + ([1 + ° 2] ¡ i[1 ¡ ° 2]e¡i º ¶ )

 e¡i º ®

2 ° 2
± + 2¶ :

(2.9)

These solutions can be veri ed readily by substitution back into the boundary con-
ditions. The two real parameters ¬ and  that appear are unknown, and in each
following example these are found by applying additional ®ux conditions in each
cell. The branch cuts for ± § 2¶ lie along OA0 (0 to ¡ 1) and jarg( ± )j < º . These
solutions are instrumental in the following sections.

3. Periodic solutions

Now let us consider the strip-like geometry in the z-plane shown in  gure 2, that is,
we have semi-in nite strips of height h that periodically repeat. Under the action of
the mapping ± (z) = tanh( º z=2h) this harmonic problem maps the points to those
shown in  gure 3; the points A and A0, which were at §1 in the physical plane, now
map to §1. We now consider how this a¬ects the continuity boundary conditions,
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Figure 3. The positions of the points in the ± -plane.

clearly along OA, OA0, OB and OB0 we require the continuity conditions to hold. If
the problem is periodic, then the continuity conditions hold along AB, AB0 and also
along A0B, A0B0, thus in the ± -plane we recover precisely the four-lobe fan solution,
but with ± (z) now rede ned to be the tanh function. Thus we have immediately that
w1( ± ); : : : ; w4( ± ) are just equations (2.6){(2.9) again. Note the solutions are bounded
at in nity and have, at most, integrable singularities at the origin, as we also require.

The real constants ¬ ,  that appear in these formulae must now be determined
using ®ux conditions across each periodic cell:

a =
1

2h

h

¡h

Re[wp(0; y)] dy; b =
1

2l

l

¡l

Im[wp(x; 0)] dx; as l ! 1: (3.1)

It is convenient to evaluate each vertical and horizontal integral along the axes, and
there is no loss of generality in doing so. The subscript p takes the appropriate value
depending on which phase we are in, and wp has the arguments (x; y) associated
with z. Performing these integrals we obtain

¬ =
° 2

(1 + ° 2) cos º ®
a +

b

cos º ¶
;  =

° 2

(1 + ° 2) cos º ®
a ¡ b

cos º ¶
: (3.2)

We are now in a position to be able to calculate some e¬ective parameters; the
e¬ective resistivities (these are the reciprocal of the conductivities) along the x- and
y-axes are

» y =
1

2hb

h

¡h

Im[ » pwp(0; y)] dy and » x =
1

2la

l

¡l

Re[ » pwp(x; 0)] dx (3.3)

in the limit as l ! 1. Evaluating these integrals (see Appendix A) one  nds that

» x = » 2(1 + ¢ ); » y =
» 2

1 ¡ ¢
: (3.4)

Other e¬ective parameters, such as an e¬ective resistivity tensor, can be deduced. In
the complex notation we evaluate

» =
«

» pwp(z) dA
«

wp(z) dA =
a» x ¡ ib» y

a ¡ ib
; (3.5)

with « = p « p, and » p, wp take their respective values in each « p. That is, we,
in some sense, average over the area of the periodic cell. The representation of »
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Figure 4. The geometry of the rectangular checkerboard in the physical plane.

in (3.5) as [a» x ¡ ib» y ]=[a ¡ ib] can be shown to be valid for the doubly periodic
situation too and we elaborate on this at the end of x 4. The resulting complex » is
» = » xx ¡ i » xy = » yy + i » yx, where » ij are the components of an e¬ective resistivity
tensor.

The e¬ective energy dissipation is

D =
1

2lh «

» pjwp(z)j2 dA = » 2 a2(1 + ¢ ) +
b2

(1 ¡ ¢ )
; (3.6)

this is evaluated directly using integrals that appear in Obnosov (1996).
Several special cases emerge in the situations when phase properties are coincident;

these parallel the cases considered in x 5 b and are not explicitly given here. There are
also further simpli cations if one phase is either perfectly conducting or has in nite
resistance.

4. Doubly periodic solutions

Now let us consider the geometry in the z-plane shown in  gure 4, that is, a collection
of doubly periodic repeated rectangular cells of width l and height h under the action
of the mapping

^± (z) = sn((K(m)z=l) j m):

The function `sn’ is the Jacobi elliptic sinus function (Lawden 1989), K(m) is the
complete elliptic integral of the  rst kind, and the parameter m is implicitly found
from K(m)=K(1 ¡ m) = l=h. A simple and accurate approximation for h=l < 1 is
that m ¹ 1 ¡ 16 exp( ¡ º l=h) (cf.  gure 6), otherwise one can  nd m numerically
using standard root- nding algorithms. Under the action of the elliptic sinus, this
harmonic problem maps to that shown in  gure 5. This is not the same as the simple
four-lobe problem treated earlier but it is closely related, the only di¬erence being
the cuts along [ ¡ 1=

p
m; ¡ 1] and [1; 1=

p
m]. The limit as m ! 1 connects directly

with the periodic examples of x 3 as then

sn((K(m)z=l) j m) ! tanh
º z

2h
;

Proc. R. Soc. Lond. A (2000)
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Figure 6. The exact (solid line) and asymptotic (dashed and dotted lines) expressions
for m versus h=l (for h ½ l and h ¾ l).

and the cuts disappear. The doubly periodic nature of the problem is manifest in
the ^± -plane, as for the continuity conditions we require

Im[w1]BC1
= Im[w2]B 0 C2

; Im[i » 1w1 ]BC1
= Im[i » 2w2 ]B 0 C2

; (4.1)

Im[w4]BC4
= Im[w3]B 0 C3

; Im[i » 1w4 ]BC4
= Im[i » 3w3 ]B 0 C3

; (4.2)

and these conditions are automatically satis ed by solving the four-lobe fan problem
in the ^± -plane. However, we also have the conditions

Im[w1]AC1
= Im[w4]A 0 C4

; Im[ » 1w1 ]AC1
= Im[ » 4w4]A 0 C4

; (4.3)

Im[w2]AC2
= Im[w3]A 0 C3

; Im[ » 2w2 ]AC2
= Im[ » 3w3]A 0 C3

; (4.4)

that is, we must correctly connect the values of the functions on the upper (lower)
edges of each cut. To connect this problem with the four-lobe one, when we are upon
the cut we must take values on the imaginary ± -axis, while the remaining boundaries
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remain real, or imaginary. This is achieved by taking the transformation

± (z) =
^± 2(z)(1 ¡ m^± 2(z))

(1 ¡ ^± 2(z))

1=2

=
1 ¡ cn((2Kz=l) j m)

1 + cn((2Kz=l) j m)

1=2

; (4.5)

where cn is the Jacobi elliptic cosine function (Lawden 1989). Now, the eigenprob-
lem posed in terms of ± is solved using the four-lobe problem; the periodic problem
treated earlier does not require this last transformation. There is a minor complica-
tion in that this mapping leads to two four-lobe problems, but it is the continuity
conditions that are crucial. Moreover, the solution has, at most, integrable singular-
ities at the corner points of each cell, as we require. Thus the solutions for wp are
equations (2.6){(2.9) again, with ± rede ned as (4.5). Applying the ®ux conditions
(3.1) (but without requiring l ! 1) we  nd that

¬ =
° 2

(1 + ° 2)

cos º ¶

sin º ®

(a¼ (1 ¡ m) + b¼ (m))

(1 ¡ ¢ )
; (4.6)

 =
° 2

(1 + ° 2)

cos º ¶

sin º ®

(a¼ (1 ¡ m) ¡ b¼ (m))

(1 ¡ ¢ )
: (4.7)

Employing the de nitions of the e¬ective resistivities along the x- and y-axes and
performing some integrations we  nd that

» x = » 2
¼ (1 ¡ m)

¼ (m)

1 + ¢

1 ¡ ¢
; » y = » 2

¼ (m)

¼ (1 ¡ m)

1 + ¢

1 ¡ ¢
: (4.8)

The parameter ¼ (m), de ned as

¼ (m) =
(2=º )K(m)

P ¶ ¡(1=2)(1 ¡ 2m)
; (4.9)

appears throughout; P ¸ (z) is the Legendre function of the  rst kind. The ratio
¼ (m)=¼ (1 ¡ m) actually appears in all of the expressions associated with e¬ective
parameters and is

¼ (m)

¼ (1 ¡ m)
=

l

h

P ¶ ¡(1=2)(2m ¡ 1)

P ¶ ¡(1=2)(1 ¡ 2m)
; (4.10)

the geometric dependence is encapsulated in the l=h terms and, of course, in m, and
the material dependence in each phase is encapsulated in ¶ . An important special
case is when h = l, that is square checkerboards, then this ratio is simply unity
and the expressions for the e¬ective parameters simplify. Another limiting case is
high-contrast media, that is, » 2 ¾ » 1; » 3, then ¶ ¹ 1=2 and the ratio is then just
l=h.

Other explicit results can be found for » , the complex representation for the e¬ec-
tive resistivity tensor, and for D, the e¬ective energy dissipation. For » we could
evaluate the integrals explicitly using results derived in Obnosov (1996). Alterna-
tively, one notes that

«

» pwp(z) dA =
l

¡l

h

¡h

» p[wpx ¡ iwpy ] dydx

=
l

¡l

2ha» x dx ¡
h

¡h

2lb» y dy = 4lh(a» x ¡ ib» y);
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and

«

wp(z) dA =
l

¡l

h

¡h

[wpx ¡ iwpy ] dydx = 4lh(a ¡ ib):

Thus,

» =
a» x ¡ ib» y

a ¡ ib
= » 2

1 + ¢

1 ¡ ¢

a( ¼ (1 ¡ m)=¼ (m)) ¡ ib( ¼ (m)=¼ (1 ¡ m))

a ¡ ib
: (4.11)

The energy dissipation is calculated using integrals from Obnosov (1996) as

D = » 2
1 + ¢

1 ¡ ¢
a2 ¼ (1 ¡ m)

¼ (m)
+ b2 ¼ (m)

¼ (1 ¡ m)
: (4.12)

5. Asymptotic limiting cases

Several limiting cases emerge, either with fewer phases when we can compare with
recent results or in cases when there is high contrast between the phases, or geomet-
rically the cells within the checkerboards are square or long and thin. Some aspects
of these cases are explored in this section.

(a) Square checkerboards

For square checkerboards, h = l, there are substantial simpli cations and, for
instance, D is just

D = » 2
1 + ¢

1 ¡ ¢
(a2 + b2); (5.1)

which reduces to the well-known Keller (1964), Dykhne (1971) result when » 1 = » 3.
The crucial parameter here is now just ¢ and we can, for instance, set » 3 !
1 and have one cell with an in nite resistivity and ¢ ¹ (1 + ° 2)¡1. Results of
this nature characterizing the behaviour near junctions between corners with high-
contrast media can be useful when used in network approximations (Borcea & Papan-
icolaou 1998) and can allow one to extend asymptotic results to three dimensions
(Keller 1987).

(b) Two-phase checkerboards

There are two sub-cases here.

Case (i). » 1 = » 3. We then have a chessboard structure; the following simpli ca-
tions ensue: ° 3 = 1=° 2, ° 2 = ° with ¢ = (1 ¡ ° )=(1 + ° ):

w1( ± ) = ¬ ei º ® ± ¡2¶ +  e¡i º ® ± + 2¶ ;

w2( ± ) = i
1 + ¢

1 ¡ ¢
[ ¬ e¡i º ® ± ¡2 ¶ ¡  ei º ® ± + 2¶ ];

(5.2)

w3( ± ) = ¡ ¬ e¡3i º ® ± ¡2 ¶ ¡  e+ 3i º ® ± + 2¶ ; (5.3)

w4( ± ) = ¡ i
1 + ¢

1 ¡ ¢
[ ¬ e3i º ® ± ¡2¶ ¡  e¡3i º ® ± + 2¶ ]: (5.4)
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For periodic media the real constants are

¬ =
(a cos º ¶ + b)

2 sin º ®
;  =

(a cos º ¶ ¡ b)

2 sin º ®
; (5.5)

thus, the e¬ective resistivities along the x- and y-axes are

» x =
2 » 1 » 2

( » 1 + » 2)
; » y = 1

2
( » 1 + » 2): (5.6)

These are the results one would get from a simple electrical resistance analogy; this
network approximation and viewpoint is often of considerable use, see recent work
by Borcea & Papanicolaou (1998). For checkerboard bi-periodic media the constants
are modi ed to

¬ =
cos º ¶

2 sin º ®
(a¼ (1 ¡ m) + b¼ (m));  =

cos º ¶

2 sin º ®
(a¼ (1 ¡ m) ¡ b¼ (m)): (5.7)

The e¬ective resistivities along the x- and y-axes are

» x =
p

» 1 » 2
¼ (1 ¡ m)

¼ (m)
; » y =

p
» 1 » 2

¼ (m)

¼ (1 ¡ m)
; (5.8)

which recovers the results in Obnosov (1996). One can similarly evaluate » and D
and show that these also correspond to this limiting case.

Case (ii). » 1 = » 2 = » 4. We have isolated rectangular inclusions embedded within
a di¬erent phase; the following simpli cations ensue: ° 2 = 1, ° 3 = ° with ¢ =
( ° ¡ 1)=2(1 + ° ). The explicit solutions for w1 are w3 are

w1( ± ) = ¬ ei º ® ± ¡2¶ +  e¡i º ® ± + 2¶ ;

w3( ± ) = ¡ (1 ¡ 2 ¢ )[ ¬ e¡3i º ® ± ¡2¶ +  e3iº ® ± + 2 ¶ ];
(5.9)

where, of course, w2 = w4 = w1, and w1 holds in this extended region. Using these
we rapidly deduce that for periodic media the real constants are

¬ =
1

2 cos º ®
a +

b

cos º ¶
;  =

1

2 cos º ®
a ¡

b

cos º ¶
: (5.10)

Thus, after integration, the e¬ective resistivities along the x- and y-axes are

» x =
» 1

2

( » 1 + 3» 3)

( » 1 + » 3)
; » y =

2 » 1( » 1 + » 3)

(3 » 1 + » 3)
: (5.11)

For checkerboard bi-periodic media the real constants change to

¬ =
(a¼ (1 ¡ m) + b¼ (m))

2 cos º ®
;  =

(a¼ (1 ¡ m) ¡ b¼ (m))

2 cos º ®
; (5.12)

with the e¬ective resistivities along the x- and y-axes as

» x = » 1
¼ (1 ¡ m)

¼ (m)

(3» 3 + » 1)

( » 3 + 3 » 1)
; » y = » 1

¼ (m)

¼ (1 ¡ m)

(3 » 3 + » 1)

( » 3 + 3 » 1)
: (5.13)

Proc. R. Soc. Lond. A (2000)



Periodic checkerboard composites 2751

0 1 2

2

3

4

aspect ratio h/l

r x

(a) 

0

1

2

3

r x

(b) 

1 2
aspect ratio h/l

Figure 7. The exact (solid line) and asymptotic (dotted and dashed lines) expressions (5.14)
and (5.15) for » x versus h=l. (a) » 1 = 10, » 2 = 0:1; (b) » 1 = 0:5, » 2 = 6.

This recovers the results of Obnosov (1999a); it is important to note that the results
there were deduced in a totally di¬erent manner using homogeneous R-linear con-
jugation Riemann boundary-value problems. It is intriguing that these solutions can
be found using the present approach; it is suggestive that many R-linear conjugation
Riemann boundary-value problems are actually relatively simple problems that have
been mangled and contorted by some conformal mapping such that their  nal form
looks quite formidable.

(c) Thin strips

The asymptotic limit as h ½ l, i.e. long thin strips, is also inviting. Here the
parameter m can be found to behave asymptotically as m ¹ 1 ¡ 16 exp( ¡ º l=h), and
this is reasonably accurate even for h=l relatively large, 0:8 say. The other limit when
h ¾ l can also be approached and then m ¹ 16 exp(¡ º h=l). Both these asymptotic
expressions for m are shown versus the exact solution in  gure 6.

Since we have the exact solutions to hand, we can explicitly investigate this limit
using asymptotic representations of the Legendre and elliptic functions. For the spe-
cial case (i) of x 5 b, i.e. when » 1 = » 3, we consider » x. The range of validity of the
asymptotic expression for m is suggestive that expansions such as

» x ¹
2» 1 » 2

( » 1 + » 2)
1 ¡

h

º l
2 ® + 2Á( 1

2
+ ¶ ) + º cot[ º ( 1

2
+ ¶ )] + 4 log 2

+ O(exp( ¡ º l=h)); for h ½ l; (5.14)

will be good over a wide range of h, l and not just for h ½ l; indeed this appears to
be the case, sample values are shown in  gure 7. In (5.14) the parameter ® is now
Euler’s constant and Á is the Psi function de ned in the usual manner (Abramowitz
& Stegun 1969). Similarly, if h ¾ l one  nds that

» x ¹
( » 1 + » 2)

2
1 ¡

l

º h
(2 ® + 2Á( 1

2
+ ¶ ) + º cot[ º ( 1

2
+ ¶ )] + 4 log 2)

¡1

+ O(exp( ¡ º h=l)); for h ¾ l: (5.15)

Comparative plots are shown in  gure 7.
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These asymptotic approximations are excellent versus the full solution. Similar
 gures can be shown for » y and for the more complicated three-phase media, but
these lend nothing new to the discussion. It is also interesting to note that Gautesen’s
(1988) asymptotic study of the integral equation representations underlying a two-
phase checkerboard also led to expressions containing similar combinations of ® and
the Á function; it is now clear from whence these combinations appear.

It also suggests that there is an asymptotic approach to the full problem which
would generate these approximations directly, and that this might be useful to pursue
for more complicated geometries; this is currently under investigation.

6. Concluding remarks

Previous exact analyses of two-phase media have used solutions to so-called R-linear
conjugation Riemann boundary-value problems, also known as Markushevich prob-
lems. Here we demonstrate that, at least for checkerboard media, that approach
is redundant. The contortions involved in the underlying conformal mapping mean
that if one attempts to solve the bi-periodic boundary-value problem directly, then
it appears to be extremely complicated; doubly periodic boundary-value problems
involving Jacobi elliptic functions are not to be approached by the faint-hearted.
It may well be the case that many other Markushevich problems can be explicitly
solved once one realizes that there are underlying simpli cations to be exploited.

The approach whereby one begins with a simple problem and then one uses subse-
quent mappings to this to generate periodic and bi-periodic eigensolutions should be
of wider value. Indeed, many other model e¬ective media problems of varying com-
plexity, and involving more phases, can be treated in the manner we outline here;
for instance, diamond tilings, media involving cracks or ribbon-like inclusions, and
media that are composed of many phases. Further examples and extensions are cur-
rently under investigation. The asymptotic analysis of x 5 c also suggests that there
is an approximate approach that could exploit matched asymptotic expansions, and
this too is under investigation.

The new scheme described herein reproduces recently found results, avoiding con-
siderable contortions and analysis, and we extend those results to a class of three-
phase media, thus showing how the two-phase problems emerge as special cases; to
our knowledge, these are the  rst exact doubly periodic three-phase checkerboard
results to have been deduced. Indeed, bar some coated circular inclusion problems
(Nicorovici et al . 1993) and recent results by Obnosov (1992, 1999b) they are, to our
knowledge, the  rst exact three-phase e¬ective parameters to be deduced at all.

It is perhaps also worthwhile pointing out that since one now has the exact solu-
tions for wp in each phase these can be further used to track the motion of speci c
particles; this should also be investigated further.

I am grateful for the ¯nancial support of an EPSRC Advanced Fellowship and I thank Professor
Obnosov for useful interactions.

Appendix A. Useful integrals

These integrals are evaluated in Obnosov (1996) and are useful herein:

1

h

h

0

tanh
º iy

2h

§ 2 ¶

dy =
e§ i º ¶

cos º ¶
;

1

l

l

0

tanh
º x

2h

§ 2 ¶

dx = 1; as l ! 1;

(A 1)
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1

h

h

0

± § 2¶ (iy) dy =
e§ i º ¶

¼ (1 ¡ m) cos º ¶
;

1

l

l

0

± § 2 ¶ (x) dx =
1

¼ (m) cos º ¶
; (A 2)

where ± is de ned in (4.5). We also use several integrals that can be deduced from
these, such as

1

h

0

¡h

tanh
º iy

2h

§ 2¶

dy =
e¨ i º ¶

cos º ¶
; (A 3)

which can be deduced using simple transformations. In addition

1

lh « 1

± ¡2¶ (z) dA =
i

¢

e¡i º ¶

¼ (1 ¡ m)
¡

1

¼
: (A 4)
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