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Lograngian Methods for High Speed Motion. By C. G. Darwiw.
[Read 8 March 1920.]

1. In the later developments of Bohr’s* spectrum theory, it
1s necessary to calculate the orbits of electrons moving with such
high velocities that there is a sensible increase of mass. The selection
of the orbits permitted by the quantum theory almost necessitates
the treatment of such problems by Hamiltonian methods. Working
on these lines Sommerfeldt and others have caleulated with g very
high degree of success those spectra which involve the motion of
a single electron. But the application of the Hamiltonian function
involves a knowledge of the momentum corresponding to .any
generalized coordinate, and in the formulation of most problems
the momenta are not known « prior: but must be calculated from
the corresponding velocities. In other words the formation of the
Hamiltonian function must in general be preceded by that of the
Lagrangian. An exception occurs in precisely the problems referred
to above; for, the electromagnetic theory furnishes directly values
for the momentum and kinetic energy of a moving electron in
terms of its velocity, and the velocity can be eliminated between
them so as to obtain the Hamiltonian function. Butin even slightly
more complicated cases this simple relation is destroyed-—thus the
problem of a single electron in a constant magnetic field can only
be solved by introducing the artificial conception of rotating axes
—and in general it will be necessary to follow the direct course of
finding the Lagrangian function in terms of the generalized velocities,
and then deducing from it the momenta and the Hamiltonian
function in the usual way.

If more than one particle is in motion another difficulty enters.
For the interaction of two moving particles depends on ‘a set of
retarded potentials and the effect of the retardation is readily seen
to be of the same order as the increase of mass with velocity. The
calculation of the retardation can only be carried out by expansion
and so the results are only approximate. This is not surprising since
the methods of conservative dynamics cannot apply to such effects
as the dissipation of energy by radiation, effects Inevitably required
by the electromagnetic theory, though they do not oceur in actuality.
We can also see from the fact that these radiation terms are of
the order of the inverse cube of the velocity of light, that it will
be useless to expand beyond the inverse square.

* N. Bohr, Kgl. Dan. Wet. Selsk., 1918.
T A. Sommerfeld, Ann. Phys., vol, 51, p. 1, 1916,
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1 i ingle electron in an
. We first consider the motion of a sing ;
rbiQtrary electric and magnetic field varying in any nllan.z.er thfll;
?—,’he time and position. If m is the mass for low velocities,

momentum is known to be mv/B, where B =+V'1 — o*/c* Stggt;rﬁ%
from this we have quasi-Newtonian equations of motion

type
dt
e
The force F, is given from the field E, H as the vector ¢E + o [v,H],

d {%z} ~F, . (21).

i i icle’s motion. E and H
v is the velocity vector of the partic and ]
Z;}Lerse expressed in terms of the scalar and vector potentials in

1 0A
the form E = — grad ¢ — oo and H = curl A.

Then if r, is the vector z, y, z we have as the vector equation of
motion A
¢ “ ..(2:2),
%{%i‘l} = —e grad ¢ — 5W+C[i‘1,curlA] (2-2)

=+ 1—13C" ' )
Whelrztﬂé be\gny onta /of three generalized coordinates representing

the position of the particle. Take the scalar product of (2-2) by

or . or _ ob b
@1' Then 31n§e Tk we have

Gradn)-afa G- R G

A L

T dt By 9 By 9q
= IBQ ('— mlozﬁl)’
do 0 . tor.
where 1, = 39 3 the Lagrangian operato
or B op _ .
Again — e (%, grad qS) ==y, e, B
The remainder can be reduced to
oy OB _a @) ...... (2:3),
61 (rl’a_q) - C <8q *dt
dA oA OA. OA_  OA.
where %=W+%w+8yy+ 5 °
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and so is the total change of A at the moving particle. (2-3) can
be reduced to — %1 D, (1, A).

Thus the whole equation of moti i
Logramsian funtns q motion can be derived from a

L=—mC% ~ e, + 6—01 (], A) ... (2-4).

This is valid for any fields of force including explicit de
) en
ﬁf ¢ and A on the time. The first term in L,gwhilc):h reduc%s g)eic]}clz
netic energy for low velocities, differs from it in general. It is
very closely connected with the “world line” of the particle..

3}.1 To treat of the case where several moving particles interact
Weds all start by supposing that there is a second particle present
un bergomga constrained motion so that its coordinates are imagined
13;)1 e known functions of the time. The same will then be true of
{:) e potentials it generates. The motion of e, will then be governed

¥ (2-4)1f ¢ and A are expressed in terms of the motion of e,. These

potentials are given by
p=— A_2 t .
+ (Fy, 1y — 1y)/C7 Cr+ (tz:rz—rl)/om(g b
In these expressions 72 = (r, — r;)? and the values are to be retarded

values. If the time of retardation b
Sabetuted ) e e e calculated and the result

¢ = 22_[__6’_2 {f22+ (ty, 1, — 1y) (i'zar2_r])2},A= 2] tz_'

- T ace ; - 22.(32),

where now ry, r, refer to the same instant of ti i i
I Iy, time. ¢ 18 a -
rrflatlon vahd_to C~2, but the value of A has only(/)beennfill)lrr)lff}‘(olo
the degree C~! on account of the further factor 1 in (2-4) which
18 to multiply it. Then substituting in (2-4) we obtain

- _ €€ ee 2+ (f,, v, — 1) — 2
L m, 028, 72__2;_022 { 2+ (B, 1y 7‘1) (b, By)
_(fy, 1y — 1'1)2}

r3
The equations of motion are unaffected by adding to L the expres-
d ey (B, 1, — 17)
dt 2C?

the time and so contributes no t i
C no terms to the equations of motion.
The second contributes nothing because for any function f we have

F:] ((—%f(ql, Qa5 s t)) = 0.

L, .
sion — myC2P, . The first is a pure function of

.
|
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. The new form of L then reduces to

L= — 0ty — m0py — 200 o [

202 | r
(Fy, T — 1) (B, 5 — 1'1)} ...... (3+4).

+ 73

From the complete symmetry of this form the roles of ¢; and e, may
be interchanged. Further from the covariance of the operator I
for point transformations, both may be included in the dynamical
system, so that if ¢ is any generalized coordinate involving both
r, and r,, the equations of motion will be of the form B, L = 0.

For the sake of consistency, as the last term in (3-4) is only an
approximation valid to C, the first two should be expanded only
to this power. The first term will give

1
— my 0% + Im,f% 4 3k myfd

Generalizing our result to the case of any number of particles

in any external field we have

. 1
L= Sim? + 5 g mbt — Seh + T3 (hA) — 22 ?;f
ey ((by, 1) (B, 2y — 1) (By, 7o — rl)} .
+ 22 {7-12 e ...(3'B).

The double summations are taken counting each pair once only.
4. The transition to the Hamiltonian now follows the ordinary

rules. We find momenta p = aaé and solve for the ¢’s in terms of

the p’s. This can be done in spite of the cubic form of the equations
in the ¢’s by use of the approximation in powers of C. The Hamil-

tonian function will then be H = Zpg — L and the equations of
motion will be the canonical equations ¢ = %%, p=— %I If p,

be the momentum corresponding to r;, the Hamiltonian in these
coordinates will be

€16,

712

s 3y B w43 % (p,A)+ED
Im, 8C2m3 ! Cm, Y
_ 2 (P, ) |, (1T —Ty) (Py, Ty — 1'1)} 1
=2 2C%mymy { T12 * 70° -4
All the applications of general dynamics, such as the Hamilton

Jacobi partial differential equation, follow from this. Asin ordinary
dynamics, many problems can be conveniently solved in the La-
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* grangian form. The solution will usually depend on finding integrals
corresponding to coordinates which do not oceur explicitly in L
and if ¢ and A do not involve the time explicitly there is also the
energy integral. This has the form

imt? + 3§ Tlrd 4 Sed 4 TX U6
C? 1o

212 (flrz) (4,1, —1) (b, 1, — ry)

+ X 3202 {‘ + e
This completes the development of the method. Its direct applica-
tions are naturally somewhat limited, since, even with the large
order terms only, there are comparatively few problems that are
soluble. A problem of some interest that can be solved completely

1s the motion of two attracting particles, where their masses have a
finite ratio*.

} = const....(4-2).

* A discussion of this problem by the present writer will be found in Phil. M. ag.,
Vol. 39, p. 537 (1920), together with a somewhait fuller account of the general theory.





