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INTRODUCTION

The Lorentz model of the electron as a small sphere charged with elec-
tricity, possessing mass on account of the energy of the electric field around
it, has proved very valuable in accounting for the motion and radiation of
electrons in a certain domain of problems, in which the electromagnetic
field does not vary too rapidly and the accelerations of the electrons are not
too great. Beyond this domain it will not go unless supplemented by further
assumptions about the forces that hold the charge on an electron together.
Nonatural way of introducing such further assumptions has been discovered,
and it seems that the Lorentz model has reached the limit of its usefulness
and must be abandoned before we can make further progress.

One of the most attractive ideas in the Lorentz model of the electron, the
idea that all mass is of electromagnetic origin, appears at the present time
to be wrong, for two separate reasons. First, the discovery of the neutron
has provided us with a form of mass which it is very hard to believe could be
of electromagnetic nature. Secondly, we have the theory of the positron—
a theory in agreement with experiment so far as is known—in which positive
and negative values for the mass of an electron play symmetrical roles.
This cannot be fitted in with the electromagnetic idea of mass, which insists
on all mass being positive, even in abstract theory.

The departure from the electromagnetic theory of the nature of mass
removes the main reason we have for believing in the finite size of the
electron. It seems now an unnecessary complication not to have the field
equations holding all the way up to the electron’s centre, which would then
appear as a point of singularity. In this way we are led to consider a point
model for the electron. Further reasons for preferring the point-electron
have been given by Frenkel (1925).*

We are now faced with the difficulty that, if we accept Maxwell’s theory,
the field in the immediate neighbourhood of the electron has an infinite
mass. This difficulty has recently received much prominence in quantum
mechanics (which uses a point model of the electron), where it appears as

* See pp. 526 and 527 of Frenkel’s paper. The reason on p. 518 is not valid according
to present-day knowledge.
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a divergence in the solution of the equations that describe the interaction
of an electron with an electromagnetic field and prevents one from applying
quantum mechanics to high-energy radiative processes. One may think
that this difficulty will be solved only by a better understanding of the
structure of the electron according to qﬁanpum laws. However, it seems
more reasonable to suppose that the electron is too simple a thing for the
question of the laws governing its structure to arise, and thus quantum
mechanics should not be needed for the solution of the difficulty. Some new
physical idea is now required, an idea which should be intelligible both in
the classical theory and in the quantum theory, and our easiest path of
approach to it is to keep within the confines of the classical theory.

A possible line of attack is to modify Maxwell’s theory so as to make the
energy of the field around the singularity that represents an electron finite.
This method has been tried by Born, but it leads to great complexity, and
its present outlook is not very hopeful.

We shall here proceed from the opposite point of view. We shall retain
Maxwell’s theory to describe the field right up to the point-singularity which
represents our electron and shall try to get over the difficulties associated
with the infinite energy by a process of direct omission or subtraction of
unwanted terms, somewhat similar to what has been used in the theory of
the positron. Our aim will be not so much to get a model of the electron
as to get a simple scheme of equations which can be used to calculate all
the results that can be obtained from experiment. The scheme must be
mathematically well-defined and self-consistent, and in agreement with
well-established ' principles, such as the principle of relativity and the
conservation of energy and momentum. Provided these conditions are
satisfied, it should not be considered an objection to the theory that it is
not based on a model conforming to current physical ideas.

We shall be working all the time with the ordinary Maxwell theory, and
thus we shall not be led to any essentially new equations. We shall be con-
cerned rather with getting a satisfactory physical interpretation for equa-
tions which are already well known. It may be wondered why this problem
was not solved long ago. A great deal of work has been done in the past in
examining the general implications of Maxwell’s theory, but it was nearly
all done before the discovery of quantum mechanics in 1925, when people
gave all their attention to the question of how an electron could remain
in an atomic orbit without radiating—a question we now know can be
answered only by going outside classical theory—and were thus not
interested in simply looking for the most natural interpretation their
equations will allow.
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THE FIELDS ASSOCIATED WITH AN ELECTRON

We shall deal first with the problem of a single electron moving in an
electromagnetic field. We shall use relativistic notation throughout, taking
the velocity of light to be unity. When we want to pass from the contra-
variant form K xto the covariant form K# of a vector, we shall use the funda-
mental tensor g# appropriate for flat space-time, with components ¢ = 1,
g\ = g% = g3 = — 1, the other components vanishing. We shall also some-
times use the scalar product notation

(K,L) = K, L# = KyLy— K, Ly — KyLy— Ky Ly, 1)

Let us suppose the world-line of our electron in space-time to be known
and to be described by the equations

2, = 2,(8), (2)

where the z,(s) are given functions of the proper-time s. We have, of course,
dzy/ds> 0. The electromagnetic potentials 4, at the point z, satisfy the
equations

04,

3.76 =0 (3)

04, = 4mj,, (4)

where j, is the charge-current density vector. With our present model of
the electron, j, vanishes everywhere except on the world-line of the electron,
‘where it is infinitely great. The singularity in j, may conveniently be
expressed in terms of §-functions, and is easily seen to be

= f 80y — 20) By — 21) Bty — 25) Bary — 2) ds (5)

for an electron of charge e. From the potentials 4, the field quantities F*
can be derived according to
T — 04r 04+

oz, ox, (6)

1 v

Equations (3) and (4) have many solutions and thus do not suffice to fix
the field. One solution is provided by the well-known retarded potentials
of Liénard and Wiechert. We shall call the field derived from these potentials
F#.. We can obtain other solutions by adding to this one any solution of
(3) and

04, =0, (7)
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‘representing a field of radiation. The particular solution that represents the

actual conditions in our one-electron problem will be the sum of the retarded
potentials and the potentials satisfying (7) that represent the incoming
electromagnetic waves incident on our electron. Thus, calling the actual
field F#*, and the incident field F4*, we have

in?

Fo = Fp 4 Fi. 8)

act —  re

Another important solution of (3) and (4) is that provided by the advanced
potentials. We call the field derived from it F/%_. We should expect F%_ to
play a symmetrical role to F#%, in all questions of general theory. Let us

therefore put, corresponding to (8),
Fiiy = Fla.+ Fiy (9)

C out?

defining in this way a new field F#, . This field is derivable from potentials
satisfying (7) and thus represents some field of radiation, and we should
expect it to play a symmetrical role in general theory to F'#%, so that it should
be interpretable as the field of outgoing radiation leaving the neighbourhood

of the electron. The difference
Fipqa=Fhy—Fiy (10)

out

would then be the field of radiation produced by the electron. This difference
may, from (8) and (9), be expressed as
Fiaa = Figs— Flae, (11)

which shows that it is completely determined by the world-line of the
electron. In the appendix it is calculated near the world-line and found to
be free from singularity and to have the value on the world-line

b (s, i)
mwrad™ g\ ds8 ds  ds® ds

(12)

Let us compare our result (11) with the usual one for the radiation pro-
"duced by an accelerating electron. For definiteness, suppose we have an
electron initially moving with constant velocity, then undergoing an
acceleration and finally getting again into a state of constant velocity.
According to the usual theory, the radiation emitted by the electron while
it is accelerating will be given by the value of F'#, at great distances from
the electron and at correspondingly great times after the time of the
acceleration. This will be equal to the value of the right-hand side of (11)
at these distances and times, since F'#_ will be zeroin this part of space-time.
Thus our result (11) for the radiation produced by an accelerating electron is
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in agreement with the usual one in that region of space-time where the usual
one is defined. Our result goes beyond the usual one in providing a definite
value for the field of radiation throughout space-time, which is an advantage
in giving us a meaning for the radiation field close to the electron. (The
usual theory gives this field inextricably mixed up with the Coulomb field.)
Our result also gives a meaning for the radiation field before its time of
emission, when it can have no physical significance. This, however, is
unavoidable if we are to have the radiation field well defined near the
electron.

Our theory has attained symmetry between the use of retarded and
advanced potentials. This symmetry will be maintained in all general
theoretical discussions, but it will not apply to practical applications, since
we then have F# given (very often it is zero), while its counterpart F,
is unknown. '

A field that we shall need in the future is f#*, defined as the actual field
minus the mean of the advanced and retarded fields,

S = Fits—3(Fley+ Fiay)- (13)

It is derivable from potentials satisfying (7) and is free from singularity
on the world-line of the electron. Itis,infact, from (8)and (9), just the mean
of the ingoing and outgoing fields of radiation,

fr = Y(E + Fin).

THE EQUATIONS OF MOTION OF AN ELECTRON

To complete our theory of the interaction between an electron and the
electromagnetic field we require equations of motion for the electron—
equations to determine the world-line which we assumed known in the
preceding section. We can get information on this question from the laws
of conservation of energy and momentum. We surround the singular world-
line in space-time by a thin tube, whose radius is much smaller than any
length of physical importance in our one-electron problem, and we calculate
the flow of energy and momentum across the (three-dimensional) surface
of this tube, using the stress tensor 7, of Maxwell’s theory, calculated from
the actual field F#, according to the formula*

C
4, = F,F) +1g,,F.zF*. (14)

* The usual derivation of the stress-tensor is valid only for continuous charge
distributions and we are here using it for point charges. This involves adopting as
a fundamental assumption the point of view that energy and momentum are localized
in the field in accordance with Maxwell’s and Poynting’s ideas.
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We then have the information that the total flow of energy (or momentum)
out from the surface of any finite length of tube must equal the difference
in the energy (or momentum) residing within the tube at the two ends of
this length, and must thus depend only on conditions at the two ends of
thislength. Inmathematicallanguage, the rate of flow of energy (or momen-
tum) out from the surface of the tube must be a perfect differential.

It is easily seen that the information obtained in this way is independent
of what shape and size we give to our tube (provided it is sufficiently small
for the Taylor expansions used in the calculations to be valid). If we take
two tubes surrounding the singular world-line, the divergence of the stress
tensor 07}, ,/0x, will vanish everywhere in the region of space-time between
them, since there are no singularities in this region and (7) is satisfied
throughout it. Expressing the integral

f ff 071, [0z, .dxydx, dx,dz,

over the region of space-time between a certain length of the two tubes as
a surface integral over the (three-dimensional) surface of this region, we
obtain immediately that the difference in the flows of energy (or momentum)
across the surfaces of the two tubes depends only on conditions at the two
ends of the length considered. Thus the information provided by the
conservation laws is well defined.

The calculations involved in getting this information are rather long and
are given in the appendix. We choose the simplest shape of tube, a tube
which is spherical, of constant radius e, for each value of the proper-time,
in that Lorentz frame of reference in which the electron is then at rest.
To save writing we put v, for dz,/ds and use dots to denote differentiations
with respect to s. We note for future use the elementary equations

vi=1 (15)
(VW) =0 (16)
(VW)+V2 =0 (17)

in the vector notation (1).

The result of the appendix is now that, with f# defined by (13), the flow
of energy and momentum out from the surface of any length of tube is
given by the vector

ﬁ—%—e%‘l o, —ev,f,]ds,

integrated over the length of tube, where terms that vanish with ¢ are
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neglected. This must depend only on conditions at the two ends of the length
of tube, so that the integrand must be a perfect differential, i.e.

se*e1o,—ev,f) = Bﬂ. (18)

This is as far as we can get from the laws of conservation of energy and:
momentum. To fix our equations of motion for the electron, we must make
some further assumption to fix the vector B,. From (18) we see that

(vB) = le2e1(vV) = 0, (19)

with the help of (16), which restricts our choice of B,. Apart from this,
B, may be any vector function of v, and its derivatives. The simplest B,
satisfying the restriction (19) is

B, = kv, (20)

where k is a constant. There are other possible expressions for B, satisfying
(19), for example,
B, = k'[V,+4(VV)3,],

k&’ being another constant, but they are all much more complicated than
(20), so that ene would hardly expect them to apply to a simple thing like
an electron. We therefore assume (20).
Substituting (20) into the right-hand side of (18), we see that the constant
k must be of the form
k= {e*ct—m, (21)

where m is another constant independent of ¢, in order that our equations
may have a definite limiting form when ¢ tends to zero. We then get

mo, = ev,f.s (22)

as our equations of motion for the electron. They are of the usual form of
the equations of motion of an electron in an external electromagnetic
field, with m playing the part of the rest-mass of the electron and f,’, the
actual field minus the mean of the advanced and retarded fields, playing
the part of the external field. »

- Equations (22) are not in a form suitable for application to practical
problems where we are given, not f,”, but the incident field ¥, },. The con-
nexion between these two fields is, from (13), (8) and (11),

—_ v 1 v
f,uv - Fpin+'§Fﬂrad

= F 5, +5e(i, v —i"v)) (23)

pin
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with the help of (12). Substituting this into (22) and using (15) and (17),
we get

mo,— 320, — 322, = ev, F %, . (24)
These are the same as the equations of motion obtained from the Lorentz
theory of the extended electron by equating the total force on the electron
to zero, if one neglects terms involving higher derivatives of v, than the
second. But whereas these equations, as derived from the Lorentz theory,
are only approximate, we now see that there ts good reason for believing them
to be exact, within the limits of the classical theory.

To discuss the significance of equations (24), let us take the equatlon with
#=0, describing the energy balance. The right-hand side, which gives the
rate at which the incident field does work on the electron, is equated to the
sum of the three terms mv,, — %e%j, and — 2e>V%,. The first two of these
are perfect differentials and the things they are the differentials of, namely
mv, and — %e%),, may be considered as intrinsic energies of the electron.
The former is just the usual expression for the kinetic energy of a particle
of rest-mass m, while the latter is what is called the ‘““acceleration energy”
of the electron (Schott 1915). Changesin the acceleration energy correspond
to a reversible form of emission or absorption of field energy, which never
gets very far from the electron. The third term — 2e2V2y, corresponds to
irreversible emission of radiation and gives the effect of radiation damping
on the motion of the electron. It is necessarily positive, since, according to
(16), 9, is orthogonal to the time-like vector v, and is thus a space-like vector,
and hence its square is negative.

Let us see how the kinetic energy term arises. The B , introduced in (18)
can be interpreted as minus the vector of energy and momentum residing
within the tube at any value of the proper-time. Thus, from (20) and (21),
the energy within the tube must be negative and must tend to —o0 as ¢
tends to zero. This negative energy is needed to compensate for the large
positive energy of the Coulomb field just outside the tube, to keep the total
energy down to the value appropriate to the rest-mass m. If we want a model
of the electron, we must suppose that there is an infinite ne}gative mass at
its centre such that, when subtracted from the infinite positive mass of the
surrounding Coulomb field, the difference is well defined and is just equal
to m. Such a model is hardly a plausible one according to current physical
ideas but, as discussed in the Introduction, this is not an objection to the -
theory provided we have a reasonable mathematical scheme.
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APPLICATION OF THE EQUATIONS OF MOTION

Let us now accept equations (24) as giving an exact description of the
motion of an electron in a specified incident field and investigate some of
their consequences. The equations involve #,, which means that the motion
will not be determined if we are given only the position and velocity of the
electron at one instant of time. We must also be given its acceleration.
The equations can then be used to determine the rate of change of the
acceleration and the whole motion will then be fixed.

As an interesting special case let us suppose there is no incident field,
so that we have the equations of motion

av,—¥,— Vv, =0, (25)

where a@ = 3m/2¢2. In general the electron will not now be moving with
constant velocity, as it would according to ordinary ideas, since we may
suppose it to be started off with a non-zero acceleration and it cannot then
suddenly lose its acceleration. Let us pass over to the notation z, y, 2, ¢
instead of 2y, 2,, 23, 2, and choose a system of co-ordinates so that the initial
velocity and acceleration aredn the direction of the x-axis, or, in relativistic
language, the initial velocity and acceleration four-vectors lie in the (xt)
plane. Then from symmetry considerations the motion must lie entirely
in this plane.
The equations (25) now become

ai— & —4({F2—2) = 0, (26)
af—F—i(F2—d2) = 0. (27)
Equations (15), (16) and (17) give )
2—22 =1, (28)
i —ad = 0, (29)

@F —2&)+ (F2—42) = 0,

from which we see that # times equation (26) minus ¢ times equation (27)
vanishes identically, so that either of these equations is equivalent to the
other. Eliminating { from (28) and (29), we get

x

b=rarew

which gives, on being substituted into (26),
E2

[l

ai —x+
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If & does not vanish, we may write this as

and integrate immediately, to get
as —log &+ tlog (1+422) = c,

where ¢ is a constant of integration. It is convenient to choose the origin
from which s is measured to make ¢ = —loga. We then have

i
Tram = %™

which can be integrated again, to give
log [+ (1 +2%)}] = e+,
where b is another constant of integration. We may write this result as
% = sinh (e** + b),}

. (30)
t = cosh (e% +b).

We now have that, as s tends to — oo, the velocity tends to a constant
value, given by # = sinhb or dx/dt = tanhb.. As s increases from —oo,
the motion departs from the asymptotic motion of constant velocity, and
the velocity steadily increases. For large values of s the velocity tends to
the velocity of light according to an extremely rapid law.

At this stage one would be inclined to say that there is a mistake in sign
in our equations and that we ought to have ¢~ instead of e in (30). With
this alteration we should have a theory in which, if an electron is disturbed
in any way and then left alone, it would rapidly settle down into a state of
constant velocity, with emission of radiation while it is settling down. This
would be a reasonable behaviour for an electron according to our present-day
physical ideas. However, it is not possible to tamper with the signs in
our theory in any relativistic way to obtain this result, without getting
equations of motion which would make the electron in the hydrogen atom
spiral outwards, instead of spiralling inwards and ultimately falling into
the nucleus, as it should in the classical theory. We are therefore forced to
keep the signs in (30) as they are and to see what interpretation we can give
to the equations as they stand. This will lead us to the most beautiful feature
of the theory.

The motion (30) is certainly never observed for an electron in the absence
of incident radiation. This does not give a contradiction between our theory



158 P. A. M. Dirac

and observation, however, since our equations of motion (25) admit of
alternative solutions, namely v,=constant, which are in agreement with
observation. We must merely impose the condition that these solutions
are the ones that occur in Nature. Let us see how this condition works in
a practical problem.

Suppose we have an electron which is disturbed by some electromagnetic
radiation incident on it and is then left alone. We may use our general
equations of motion (24) and must restrict ourselves to those solutions for
which the velocity is constant during the final period when the electron is
left alone. This will in general prevent us from having the velocity exactly
constant during the initial period before the disturbance has arrived and
will compel us then to have a motion of the form (30), with the electron
gradually building up a small acceleration. The difference of such a motion
from one of constant velocity is too small to show itself as a contradiction
with observation, so that we can get agreement between the solutions of
our equations and observed motions on these lines.

We now have a striking departure from the usual ideas of mechanics.
We must obtain solutions of our equations of motion for which the initial position
and velocity of the electron are prescribed, together with its final acceleration,
instead of solutions with all the initial conditions prescribed.

MOTION OF AN ELECTRON DISTURBED BY A PULSE

To study the rather unexpected results of the preceding section more
closely, let us take a typical special case, which is sufficiently simple to be
worked out completely. Suppose we have an electron initially at rest,
disturbed by a pulse of electromagnetic radiation passing over it. To simplify
the mathematics as much as possible, let us suppose the duration of the
pulse to be infinitely short, so that the electric force is represented by

a d-function, say
Ep=kélt—y) &,=6,=0, (31)

in the xyzt notation, where k is a constant, giving us a pulse polarized in

the direction of the x-axis and moving in the direction of the y-axis. We

shall consider a motion for which the electron remains always in the plane

y=0, z=0 in space-time (neglecting the magnetic effects of the pulse).
Substituting (31) into our equations of motion (24), we get

adi — i — B2 —&2) = k8(t)#, (32)

where « = 3k/2e. The equation involving f is not independent of this one
and may be ignored. Let us now suppose k to be sufficiently small for the
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velocity acquired by the electron to be small compared with the velocity
of light, so that we may neglect relativistic effects. Equation (32) then

reduces to
ai—& = kd(t), (33)

in which we may take the dot to denote differentiation with respect to ?.
Equation (33) shows that, at the time ¢ =0, & increases discontinuously by
an amount — , and before and after this time we have

ax—% = 0. (34)

According to the conclusions of the preceding section, we must take a
motion for which, after =0, 4 is a eonstant, ¢ say. We now have  zero just
after £=0, so it must have the value «x just before. The general solution of
(34) is

% = c e+ cy,

where ¢, and ¢, are constants of integration. To obtain the motion of our
electron before ¢ = 0, we must choose these constants of integration so that
Z=0fort = —ooand &=« for £= 0, the former condition taking into account
that the electron is initially at rest. This fixes ¢,=0and ¢; =«/a. Finally, we
have the condition that # must be continuous at {=0 (since there is no
o-function in &), which gives us ¢=¢,. Thus the solution of our equations

of motion is
% = Kkla.e%, t<0,1
(35)
= K/a, t>0. J

We can describe the motion by saying that the electron is, to a high
approximation, at rest for large negative values of ¢, but as ¢ approaches
zero it acquires a velocity and acceleration, in accordance with equations
(30), of such amounts that just before =0 the acceleration has the right
value to be exactly cancelled by the effect of the pulse, so that after t=0
the electron is left moving with constant velocity. It would appear here
that we have a contradiction with elementary ideas of causality. The electron
seems to know about the pulse before it arrives and to get up an acceleration
(as the equations of motion allow it to do), just sufficient to balance the
effect of the pulse when it does arrive. The electron will, of course, radiate
all the time it is accelerating and will thus be radiating before ¢=0.

The behaviour of our electron can be interpreted in a natural way,
however, if we suppose the electron to have a finite size. There is then no
need for the pulse to reach the centre of the electron before it starts to
accelerate It starts to-accelerate and radiate as soon as the pulse meets
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its outside. Mathematically, the electron has no sharp boundary and must
be considered as extending to infinity, but for practical purposes it may be
considered to have a radius of order a1, this being the distance within which
the pulse must arrive before the acceleration and radiation are appreciable.

The above interpretation leaves one further point to be examined.
Suppose we have a pulse sent.out from a place A and a receiving apparatus
for electromagnetic waves set up at a place B, and suppose there isan electron
on the straight line joining 4 to B. Then the electron will be radiating
appreciably at a time a~! before the pulse has reached its centre and this
emitted radiation will be detectable at B at a time a~! earlier than when
the pulse, which travels from A to B with the velocity of light, arrives.
In this way a signal can be sent from 4 to B faster than light. Thisis a funda-
mental departure from the ordinary ideas of relativity and is to be inter-
preted by saying that it is possible for a signal to be transmitted faster than
light through the interior of an electron. The finite size of the electron now
reappears in a new sense, the interior of the electron being a region of failure,
not of the field equations of electromagnetic theory, but of some of the elementary
properties of space-time. In spite of this departure from ordinary relativistic
ideas, our whole theory is the Lorentz invariant.

Some interesting points about the solution (35) of our problem may be
noted. In the first place, the total momentum acquired by the electron is

mKja = ek.

This is precisely the same as the momentum the electron would acquire
on an elementary theory which ignores the radiation damping completely.

Secondly, let us determine the spectral distribution of the radiation
emitted by the electron. The rate of emission of energy is 2e%i* and its
spectral distribution is given by the Fourier resolution of #. Thus the energy
emitted per unit frequency range will be

0 2
f Fpe2mivt dt

-

— 2,2
E,,—ge

= 262x2
= g6’k

0 : ‘ 2
f ela+2miv)t dt
i |

_ 2e2K?2 _ 2e4f2
T 3(a2+47?)  3m(1+4m21%a?)’

(36)

If we resolve the incident pulse into its Fourier components and suppose
each component to be scattered in accordance with Thomson’s formula,
we should obtain for the energy scattered per unit frequency range the
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value 2¢*%k?/3m?2. This is the same as (36) for values of v small compared
with a.

It has been suggested by Oppenheimer (1935), as a possible escape from
the discrepancy between theory and cosmic ray observations for the
penetrating power of fast electrons, that it may not be permissible to calcu-
late the scattering of the various Fourier components of the radiation
incident on an electron independently, but that the presence of the high-
frequency components may reduce the scattering of the low-frequency
components. We now see that this suggestion is not supported by our theory
and some other explanation of the discrepancy, such as the recently pro-
posed heavy electron, is needed.

EXTENSION TO SEVERAL ELECTRONS

The foregoing theory may easily be extended to apply to any number of
electrons interacting with each other and with a field of radiation. Let us
label the electrons by a suffix #n or m. The nth electron will have its own
retarded field F4’ .. and advanced field F%” ;, determined by its world-line,
and the difference

F

n, ra;

a= F'z’:ret—Fﬁtadv » (37)

may be considered as the radiation field produced by the nth electron.
Equation (12) will still apply for the value of this field on the world-line
of the electron producing it.
Generalizing (8), we have that the actual field is equal to the incident
field plus the sum of the retarded fields of all the electrons,
Fiey = F’;;"'Zanbl:ret' (38)

act —

Similarly, generalizing (9), we have

. v
Fﬁct"Fﬂ

out

+2nF'Irlbl:adv' (39)

Subtracting, we find that the total radiation field produced by the assembly
of electrons is
F#;d = F, _F'ﬂ’l = Zn(Fw'l":,}ret” F'ﬁl:adv):

out

which is thus the sum of all the above-defined radiation fields produced by
the electrons individually. Of course only the total radiation field is
observable, that for an individual electron being merely a mathematical
concept.

To get the field f# which must be inserted into the equations of motion (22)
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for the nth electron we must, generalizing (13), subtract the mean of the
retarded and advanced fields of this electron from the actual field, thus

S = F—3(F ror + FL aqv)- (40)
With the help of (38) we may write this as

fﬁvzpﬂv 2m=f=nFW1-et+ (F'u

n,ret

“Fﬂ a,dv)

Substituting this into (22) and proceeding along the same lines as those
which led to (24), we get the final equations of motion

= evvn{ 2 in Zm*nﬁjtgz,ret}‘ (41)

; 25 22
Mo, — §€*0,, — 3e*Viv,,

The field on the right-hand side here is just the incident field plus the
retarded fields of all the other electrons, which is in agreement with current
practice. It is interesting to remember that this result has been obtained
in a theory which is fundamentally symmetrical between retarded and
advanced potentials.

From (40), (38) and (39) we have

I = HFG+ FR) + 3 2 (P er + P12 aav)- (42)
Suppose now we are concerned with a problem in which
Fiw+Fr = 0. (43)

Then the field f#’ to be used in the equations of motion (22) for the nth
electron is just the sum of the mean of the retarded and advanced fields of
all the other electrons. The interaction of the electrons for this case has
been studied by Fokker (1929), who finds that the motion of all the electrons
may now be described by a variation principle

81 = 0. (44)

In our present notation I would have the form

I= Z‘fmds +1Z, m*nf(e(vm’ A \ZTACNF m*nf(e(" “) 0o,

Zy—Zp> V)
(45)

where the two double sums are to be taken over all pairs of electrons, and
in the first we must take for z,, and v,, their retarded values (with respect
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to the point on s,, considered), and in the second we must take their advanced
values.

When the condition (43) does not apply, Fokker’s variation principle (44)
will still hold provided we add on to I the terms

Se f (AL + Ak ), ds,, (46)

involving the potentials of the mean of the ingoing and outgoing fields.
The variation principle will not be of much use in practical problems, where
this mean field is unknown, but it may be of value in suggesting how the
quantum generalization of our theory is to be made.

APPENDIX

We shall consider an electron whose world-line is given by equations (2)
and shall evaluate field quantities at the point z,. The retarded potentials
at this point are, in the scalar product notation (1),

ez

=k
#, ret _(z,X—Z), (47)

A
taken at the retarded proper-time, namely that value of s for which

(x—z2,x-2)=0 (48)

with @, —z, positive. We can get 4, ,o; in a form suitable for deriving the
field quantities (6) from it with the " >Ip of the §-function. Using the general
property of the d-function, that ith f(s) and ¢(s) any two continuous
functions of ¢ and g(s) > 0,

Jroouends - [19 stgwpdae =7, (49)

taken at the value of s in the range of integration that satisfies g(s)=0,
we can express (47) in the form

A/,,,ret = Qeféﬂa(x—z,x—z)ds, (50)

Vol. CLXVII. A. I1
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where the range of integration is from —co to some value of s intermediate
between the retarded and advanced times. We now have

04 ,
a’;ret—élef L —2} 0 (x—2z,x—2z)ds

d
=——2f(’;{g; zz)}d 0x—2,Xx—2)ds

{xv_zv _
_2fds % x—2) 0(x—2z,x—2z)ds,

so that  F, o = — Jd[ ) A z/‘}:lcS(x-z,x—z)ds. (51)

(z,Xx—12Z)

In the form of (47), this result becomes

- e difn-2)-4{z,-2)

et = T gy z)ds (2, x—12)

(52)

taken at the retarded proper-time.

Let us now suppose the field point z, to lie very close to the world-line
of the electron, so that we can put

x//, = zﬂ(so) +7/u (53)

where they s are very small. Weshall evaluate thefield quantities by means
of Taylor expansions in which the coefficients depend on z, and its successive
derivatives with respect to s, namely v, 9,, ..., taken at the proper-time s,.
Similar expansions have already been made by Page (1918, 1924), working
with the Lorentz model, but the coefficients in his expansions involve the
d/dt derivatives instead of the d/ds ones, which is not so convenient for
a relativistic theory. For brevity, the value s, of the proper-time will not
be mentioned explicitly in the coefficients, but will be understood.
Without loss of generality we may assume the point s, to be chosen so that

(yv)=0 (54)

for the value of v at the proper-time s,. This equation will be much used in
the future, together with the equations (15), (16) and (17).

Let the retarded proper-time, to be used in the right-hand side of (47)
or (52), be s,— o, o being a small positive quantity of the same order as the
¥, We shall obtain expansions for the retarded field quantltles given by
the right-hand side of (52), in powers of o. These field quantities are of the
order o2 and we shall need to have them correctly to the order of terms
independent of o, so we must retain terms of the first three orders in all
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our expansions. To make the calculations clearer, commas will be inserted
to separate terms of different orders of magnitude.
We have the Taylor expansions

T, —2,(80—0) =Y, tov,, —30%,, +§0°%,, (55)
28— 0) =v,, —00,, +30%,. (56)
These give, with the help of (15), (16), (17) and (54),
(z,x-2) = 0, —o(YV), +30%(YV)—{o3V?,
and hence (2,X—2z)!= o [1—(yV)]"1[1,, —Lo(YV)+ §o2v2].

It saves a little writing if we do not expand the factor [1 — (yV)]~1. We have
again from (55) and (56)
é/L{‘W"u - Z,,} - éu{x/t - z,u}
=Yy =00, —§0%0,0,, +40%,y,+§0%,0,—,
where the minus sign at the end indicates that we must subtract the terms

obtained by interchanging x and », so as to make the whole expression
antisymmetrical in x and v. We now get

éﬂ{xv - zu} - 'év {x,u - z,u}
(2, x—1z)

= [1 - (Y‘.r)]ml [O'_l’l)ﬂ')/v > 75//)/,, - %Uﬁﬂvv s %(YV) v/ﬂ’v
+ %0-‘.,2”/1,7/11 + %0-?'}//,7/1; + %0.2?.}//,”11 - ]‘
We have to differentiate this expression with respect to s. This is equivalent

to differentiating with respect to o and changing the sign, as we have not
yet used the condition that fixes o, Thus

i‘ép{xv - ZV} - éV{w",u - z,u}
ds (Z, x—2)

=—-[=()I* -0y, —§,9,, +§V,y,+ 30,7, +809,0,—1,
and hence
F/w, ret = 6[1 - (Y"’)]—z [— a_gvﬂ7v s %a'_l?},uvv y + %U‘z(YV) vﬂYV
+—%G-_Li}//,7v + %lb.,uvv_]' (57)
We must now determine the value of o. From (48) and (55)

Y2+ 0% —oXyV), +403(yV)—&0ot2 = 0. (58)

I1-2
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Since vy is a space-like vector, y? is negative. We put it equal to — €2, € being
a positive number. To solve equation (58) for o, we note that o=e¢ to the
first order, so that, without spoiling the accuracy of the equation, we may
rewrite it
—e?+ 0%, — i (yV), +33(YV) etV = 0.

Hence o2 =[1— (YV)] 12, — 3e3(yV)+ 7564V,
so that o = ¢e[1—(yV)]*[1,, —Le(yV)+ 5pe2V3]. (59)
Substituting this expression for o in (57), we get

F/w, ret — 6[1 - (YV)]_% { - 6—3vﬂ7u > %e_lll},avv[la + (Y‘.’)]

+367V,y, + 3678,y +§0,0,—} (60)

This gives us the retarded field close to the world-line of the electron. To

obtain the advanced field at the same field point, it is easily seen that we

must change the sign of ¢ in the right-hand side of (60) and also change the

sign of the whole expression. Thus the mean of F,, ,oand F, .qv Will be

given by the terms of odd powers of ¢ in (60), and half their difference,

Y(F,, ret—F, av)s Will be given by the terms of even powers of ¢. The only

terms of even powers are the last term written down explicitly and the term
obtained from it by interchanging x and v. These remain finite on the
world-line of the electron and give the result (12) for the value of

F, vet—F,, aqy on the world-line.

With f,, defined by (13), we now have for the actual field close to the
world-line

F/tv = 6[1 - (‘Y‘.r)]‘% {[6—3 - %6—1‘72} [’)/,u U= v/g]}
+ %6-1[1 + (Y‘.r)] [v//, 7}1} - 7}/;]> + %e—l[i}#'yy - ijv ’}/p]} +f,uv .
We shall evaluate F,, F, to the accuracy of €2, We note first that
[Yp Uy =Yy v,u] [')’V’Up - ’),p UV] = ’)/p’)/p + ezv,uvp
[’y‘u U= U/L] [vpép - vp ,UV] = ’y,u/l}p + (Y‘.’) ,U,u vp
[')’/ﬂ),, et U,u] [’[j"'yp - ﬁp')"’] = ‘.rz'y/t')/p - (YV) Vu¥p— ezv,uﬁp
[v,9,—v,9,] [V, —v,%"] =—V,0,—9,0,
With the help of these results we obtain
B,y =1 = (P [0 — e [—7,7, +¢20,0,]
R (1D, 57,8, 2009) 1,0, — 2429%,7,
+(YV) (0,7, +v,7,) +€¥(v,8,+v,8,)] - te 2 [V,0, + 13”1}/,]‘}
+ee™? { [7/4 v, = I)/Vv,u,]fpp + ['yVUp —Yp vv]f/w}'
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Contracting, we find
B, Fre = 1 — (y9)]7 { [0 — Je~¥%] 263+ B[ 1 + (y¥)] 4(¥)
— 3674 — 2622 + 26%(VV)] — $e2V2} + 2ee~3[y, v, —v,v,]f"
= e[1— (yV)] {2671 + (yV) + (YV)*] + 67292} +dec Py, 0, /",

We can now get the stress tensor 7, , defined by (14). However, we shall not
require the complete tensor, but only its component in the direction of v,
namely —e 17}, y7. We have

4ﬂTﬂp7P = F/WFI;J'YP - %FaﬁFﬂ“’Yﬂ
== (] (e - ey, e L (VL) ¥, — €]
6720y, — e (y9) 8, — [he~t+ Jemd(y¥) + de V) + 1o v, )
+ Y, 0,07, VP + 0= 7,0, 7,) |

= [1—(yV)I7* {[3e™* + 3672V?] v, — 32 [1 + 3(¥V)] 4} +ee7'0f),.
(61)

We must now determine the flow of energy and momentum out from the
tube introduced on page 153. The surface of this tube is described by that
equation which is the result of eliminating s from the two equations

(X—2z,x—2) = —¢€? (62)
- (x=12,Vv) =0, (63)
in which z and v are considered as functions of s. Let us make a variation
of the point z, on the surface to the point #,+dz,, also on the surface, and
let us suppose this corresponds to s varying by an amount ds. We then have,
varying (62) and (63),
(x—2z,dx—vds) =0,
(dx—vds, V) + (X —2z,Vds) = 0,
which reduce, with the help of (63) and (15), to
(x—z,dx)=0
(dx,v) = [1—(x—2z,V)]ds.
Putting the X —z here equal to vy, in agreement with equation (53), we have
(y,dx) =0 (64)
(dx, V) = [1— (y¥)]ds. (65)
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Equation (64) shows that the normal to the surface is in the direction of the
vector y, and equation (65) shows that if we split up dx into a part d,x
orthogonal to v and a part d,x parallel to v, then the magnitude of d,x is

|dox | = [1—(yV)]ds. (66)

Now the three-dimensional “area’’ of an element of the surface is equal
to the two-dimensional area, dS say, of an element of a section of the surface
by a three-dimensional plane orthogonal to v, multiplied by the element
| dox | parallel to v. Hence the flow of energy and momentum out through
the surface is

Jj—e‘lﬂpdeSidle

= — (4 [ [+ 3290 7, = do- 0+ V016, + e, 14 s,
(o7)

from (61) and (66), with neglect of terms that vanish with e. The integration
with respect to d§ here is just integration over the surface of the sphere in
three-dimensional space given by (62) and (63) for a particular s. The terms
linear in y in the integrand will contribute nothing to the integral, while
the remaining terms will get multiplied by the area of the sphere, namely
47r¢2. Thus (67) becomes

f{%eze"l?} w—evf .} ds, (68)

which is the result used on page 153.

SUMMARY

The object of the paper is to set up in the classical theory a self-consistent
scheme of equations which may be used to calculate all the results that can
be obtained from experiment about the interaction of electrons and radia-
tion. The electron is treated as a point charge and the difficulties of the
infinite Coulomb energy are avoided by a procedure of direct omission or
subtraction of unwanted terms, somewhat similar to what has been used
in the theory of the positron. The equations obtained are of the same form
as those already in current use, but in their physical interpretation the
finite size of the electron reappears in a new sense, the interior of the electron
being a region of space through which signals can be transmitted faster
than light.
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The crystal structure of certain bridged
palladium compounds

By A. F. WzrrLs
Crystallographic Laboratory, Cambridge

(Communicated by J. D. Bernal, F.R.S.— Received 26 March 1938)

INnTRODUCTION

Many compounds have been formulated with metal atoms “bridged”
by non-metallic atoms or groups such as halogen or hydroxyl. The poly-
nuclear cobaltammines provide many examples, e.g.

CH,NH, OH NH,CH
[(é ’ 3) 4 c°< 1 ”)] ol,,
H,NH,/, OH: NH,CH,/,
and many years ago the phosphite ester derivatives of palladous and
platinous chlorides, (RO);P.Pd(Pt)Cl,, were shown to have molecular

weights twice those of the empirical formulae. This led to their formulation
(Werner and Pfeiffer 1923) as bridged derivatives with possible isomerism:

ROLP. L. 0 ROLP. Ol 0
(RO)s “,‘:Pt < .:',:Pt < (RO), Pt / Pt/
(RO,P- NoI N1 o’ “P(OR)

Such molecules have a definite existence in the dissolved state and undergo
substitution in much the same way as mononuclear cobaltammines. There
also exist salts of the type of caesium thallic enneachloride Cs,T1,Cl, and the
corresponding K,;W,Cl,, and here it is found that a complex ion (T1,CI3~





