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In 1891 Stéckel! showed how to determine the quantities H; in the Hamilton-
Jacobi equation

(A) > (Z—f—)z +R(E — Vg = 0,

so that the variables are separable, the solution being of the form ZX;, where
X is a function of x; alone. 1n 18932 he showed that when the quadratic differ-
ential form THZ2dxz% so determined is taken as the Riemannian metric of a
space V, the equations of the geodesics of ¥, admit n — 1 independent quadratic
first integrals other than the fundamental form. In §§1, 2 we show that when
this condition is satisfied, the fundamental quadratic form is of the Stickel

type.
In 1927 Robertson3 showed that for an equation of the form

o [ H d¢ o _ _ o
(B) 2H5;<m5;>+k(E V)e =0, H==H--H,
to admit by separation of the variables a solution of the form II1X;, where X is
a function of z; alone, the functions 2 must be of the Stickel form and V =

J(z:)
z H?’
equation (A) as shown by Stidckel. He found that in this case there is the addi-
tional condition

where f(x;) is an arbitrary function of z; alone, just as in the case of

H.
C = II —=

( ) (p Ebi (Ii),

where ¢ is the determinant of the Stickel functions ¢;; and ¢; is a function of z;

at most. 1n §2 we show that this condition is equivalent to the equations

Ri; =0 (@ =7

in the given coordinate system, R;; being the components of the Rieci tensor used
by Einstein.

1 Habilitationsschrift, Halle.

2 Comptes Rendus, vol. 116, pp. 485-487; cf. also, Ricci et Levi-Civita, Méthodes de
calcul différentiel absolu, Math. Annalen, vol. 54 (1901), pp. 183, 184.

3 Bemerkung iiber separierbare Systeme in der Wellenmechanik, Math. Annalen, vol. 98,
pp. 749-752.
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SEPARABLE SYSTEMS OF STACKEL 285

In §§3-7 we determine the various canonical forms for euclidean 3-space and
find that in each case the coordinate surfaces are confocal quadrics including the
cases when one or more families consists of planes, and that every type of con-
focal quadrics affords a solution; only the case of real surfaces has been con-
sidered. We have thus the only orthogonal systems of coordinates in which the
three dimensional Schrodinger equation can be solved by separation of the
variables.

In §8 we show that similar results hold for euclidean spaces of higher order
and in §9 determine the Stickel forms for a V; of constant Riemannian curvature
because of their bearing on the problem for euclidean 4-space.

1. Quadratic first integrals. A necessary and sufficient condition that

a;-d—xid—xf = const.
Tds ds

be a quadratic first integral of the equation of geodesics of a Riemannian V, is
that
1.1) @i,k + @, i + ari, ;= 0,

where a comma followed by an index indicates covariant differentiation; there is
no loss in assuming that a;;is symmetric in the indices.*
If p; are the roots of the determinant equation

(1.2) | ai; — pgii | =0,
the equations
(1.3) (ai; — prgiddiy = 0,

determine an orthogonal ennuple of contravariant vectors of components A Y
where % indicates the vector and ¢ the component.® Ordinarily the vector-fields
so defined are not normal in the sense that a vector field admits a family of
hypersurfaces orthogonal to the vectors.

We assume that a;; is such that these vector-fields are normal and that the
hypersurfaces are taken as parametric; and we write the fundamental form thus

(1.4) ds? = e H? (dzy)? + -+ - + e 5 (dza)?,
where the ¢’s are plus or minus one as the case may be. In this case A\ =0

fori = hand a;; = Ofor¢ # j. Then equations (1.1)forj = k = fandj # 1,
k = jrespectively reduce to

olog \/a; _ 9log H:
)

axi - ax,-
(1.5)
9 log H; 1 9H: _

i _ g4 a;;
517,' " axj ” H? 62:,-

’

4 Eisenhart, Riemannian Geometry, p. 129. Hereafter such a reference is of the form
R. G., p. 129.
s R. G., p. 108.
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and equations (1.1) for 7, j, k different are satisfied identically. From the first
set of (1.5) we have

(16) Ay = piH% 5
where p;, thus defined, is independent of z;. The second set of (1.5) reduce to
(1.7) 9 logPi= Pi_ g,

ax; H?

from which it follows that (p; — p;)/H? is independent of x;, Writing these
results in the form

9ps 8 log H? dp;
(1.8) Pi o (pi — py) L0B7 P

an ox; ’ %i =0

and expressing the condition of integrability of this system of equations, we
obtain

olog H? dlog H? 9 log H?
(o= (PRI dloe i 0og ) _

0x;0x; ax; ox;
and
o2log H2  dlog H: dlog H? olog H: o log H?
(b = p) ( oz0T. o o T ox oxr
+610g H? o log Hﬁ) _ 0.
oy ox;

In order that (1.8) may admit a solution with all the p’s different we must have

a2log HY  olog H% dlog H}

1. 0
(1.9) dr,07; ox; ox; !
(1.10) azlong._alogH";alogHi+6long.along.
al‘jal‘k al']' oxs ax,- oxy.
2 2
+alogHi dlog H; -0
0Ty ox;

Since these equations are consistent, it follows that, when they are satisfied,
equations (1.8) are completely integrable. One solution is p; = p; = @, a
constant. We denote by p% (for « = 2, -+, n) n — 1 other solutions such
that the determinant of the n solutions is not zero. This may be indicated in
the determinant form

(1.11) | 6% — 631 =0,

where 7 is fixed, and « = 2, --- ,n;7 =1, --- ,n; j # ¢. In this case the
equations of the geodesics admit » — 1 quadratic first integrals whose coeffi-
cients are

(1.12) a®; = p°HY,  a% = 0.
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2. The Stickel Form. It is our purpose to show that the conditions of the
preceding section determine the Stéickel form of the fundamental form of the V..
To this end we denote by ¢:; n? functions such that their determinant ¢ is not
zero, and we denote by ¢/ the cofactor of ¢;;ine. We put
2.1) H? = % 0% = :;L;‘

and understand that the ¢’s are such that p$ are independent of x..
Also we put

a

« _ P% = 05 _ ollgi — gilpi®
(2.2) b, = o i_ =,
and have from §1 that b%, are independent of z;, We have that

pllgte — oilpi® = oM jiiay

where M 1:« is the algebraic complement of ¢ j10:« — ¢ir@jain the determinant ¢.%
Consequently we have

(23) ﬂajlb‘:j:Mjlia (7'7.7= 17 7n;a=2’ "',’I’L).
From the definition of M ;1;, we have

ple = 2: oaM j1ia,

i (#1)
and consequently

Differentiating with respect to z;, we have

001 1 « g
0=i§)ax;bﬁ (a=2)"')n7.7=1""7n)-

a

For a given j the determinant of b ; is not zero, in consequence of (1.11) and
(2.2). Hence a function ¢ is a function of z; at most.
From (2.2) we have

(24) P = — b
In consequence of this result and (2.3) we have

M s bh. bh. (,3:3 n>
2.5 ! =Y = _"D=y9g;5=0j . L’ ’ .
25) M e b%; b2, oiip T 008 Ul

Since the second term is independent of x; and the third of z;, it follows that ;s
isindependent of z;and z;. From the identities

D eraMiia = 0 G, 4, k ),

¢ Cf. Kowalewski, Einfithrung in die Determinantentheorie, p. 80.
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we have with the aid of (2.5)
3, m

(2.6) ere + E erpoijp = 0.
8

Differentiating with respect to x;, we have

3.
Opra Ovrp
(@.7) o §B) 2L s

For a given ¢ and k, there are n — 2 equations (2.6) satisfied by the n — 1
quantities gre, - -+ , ¢ka; and these same equations are satisfied by the derivatives
of these quantities with respect to x,, hence we have

agoka — X :

axi MikPlay
or

3 (‘."L") =0,

0x; \Pry
fory # a. Suchequationsholdforz =1, --- ,n; 7 # k. Hence we have
(28) Pia = eyi lpiay

where ;. are functions of x; at most and »; are to be determined.
From (2.3) we have

b‘;lMllia = b‘:]_Mllia (7').7 =2 - ;n)-
Substituting from (2.8) we obtain
€5 N = €07 Nyj,

where N,; is independent of x; and z;. Differentiating with respect to z;, we
have

7] ..
E(Vi_vi)=0 (Zy]=2y""n)-
Again from (2.3) and (2.4) we have
a ayB=21"'7n;a7£B
bfaMalﬂﬂ + bgaMilaa = O ( j — 1’ cee n;j # a)-

Substituting from (2.8) we have
€% Nag + €05, Na; = 0.

Differentiating with respect to z,, we have

0
gx—a("i_ ve) = 0.
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Combining these results, we have

o(vi — vy) _

£ 0 (irj7k=];"'>n;7:yj;k7£)-

From the preceding equations we have
vi — v; = fij, vi — vk = fu, vi — vk = finy
where f;;is at most a function of z; and ;. From these equations we have
Jii = fae + fixr = 0.
Differentiating with respect to x;, we obtain

ofii _ ofu

al'i - ax{

Since the first term does not involve z; and the second z;, we have
Jii=0i— 05  fa=o0i— o

where o; is a function of z; alone. Hence the above set of equations may be
replaced by

vi = v + oy,
where v is undetermined, and (2.8) becomes
(2.9) Qia = €0ia =1 - ,na=2---,n),

where 0., are functions of z; alone. Since we have shown that ¢;; is a function of
z; alone, it follows that when the above expressions are substituted in (2.1) the
factor ¢’ disappears, and consequently the general solution of the problem is
obtained when each function ¢;; is a function of r; alone, which is the Stickel
form for the separation of the variables. Hence we have:

A mecessary and sufficient condition that the fundamental quadratic form of V,
can be given the Stickel form is that the equations of geodesics admit n — 1 inde-
pendent quadratic first integrals, that the roots of the characteristic equations (1.2)
for each of these integrals be simple, that (1.11) hold, and that the vector-fields
determined by (1.3) be normal and be the same vector-fields for all the first integrals.
Also we have:

A necessary and sufficient condition that (1.4) is in the Stdckel form is that equa-
tions (1.9) and (1.10) be satisfied.”

We have yet to consider the condition (C) of the Introduction for the case of
equation (B). To this end we observe that from the definition of ¢ and (2.1)
we have

dloge 1
ax; [?f

(it pieia+ oo+ ool

7 Cf. Dall’Acqua, Le equazioni di Hamilton-Jacobi che si integrano per separazione di
variabili, Rend. di Palermo, vol. 33 (1912), pp. 341-351.
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where the prime indicates differentiation. In consequence of (1.8) we have

%1 1 9log H?
(2.10) B¢ R ( + 2 pk«:,a>

a.r,-azk f]2 axk

If we differentiate with respect to x; the identity

e+ E pi¢ia = 0,
a

we have in consequence of (1.8)

, . alo H: 8log H?
€1 +2'pk¢,~a wa(p] g] (¢71+E¢mp,> ai

=£along =HgalogHﬁ

&pjl aI,' ! ax;
Consequently we have from (2.10)
P?loge _ dlog H% alog H;
ox;0xs oxy, or;

From this and (1.9) we have

2 2 2 3 2
2.11) ] log<p=6 log H _9 logH,c'
ax,-axk anal’k ax,«axk

In order that (C) be satisfied it is necessary and sufficient that

9*log NH; _
ArdTe ¢

(];k=17 7n;j7£k)7

which because of (2.11) may be written

a2 log

(2.12) Y

'H; = 0,

where II’ indicates the product of the H’s except H ; and H;.
In order to give an interpretation to (2.12) we consider the expression for the
Riemannian symbol R ;.. for <, j, k different, namely?®

R,“k=eiH2i 2a“’logH“E 8 log H? 8 log H?
(2.13) " 4 9x;0Tk or; dx
_dlogHjolog H} 9log HY dlog Hﬁ]
ox; oxy, oxy, ox; '
In consequence of (1.10) this may be written
3 92 log H?
.14 e = - eHY ———= %,
(2.14) RBji g ¢t 90Tk

¢ R. G, p. 119.
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Since
. e; .. . -
gt = 7 gi =0 (T #7),
we have
) 3 92 log I'H?
R‘ = g R'i = —2
i* g ik 4 ana.’E/‘.

and consequently (2.12) is equivalent to
(2.15) Rux=0 (7 #= k).

Consequently the condition (C) is satisfied by any Stickel form of a euclidean
space and of a space of constant Riemannian curvature. Incidentally we remark
that the Schwarzschild form® for an Einstein 4-space satisfies the conditions
(1.9) and (1.10) and in this case (C) is satisfied.

3. Stdckel systems in euclidean space. The components of the Riemannian
tensor formed with respect to the quadratic form (1.4) are given by (2.13) and!®

(3.1) Rijkl = O
dlog H;, ologH; a Hi) 2<¢3210g H;
2 Riiii = e;H? g —_ i Hi —= "7
(3.2) jiij e H ( a:l:?- + 3z, oz, og |, + ;i axgi
dlog H; H,-> H2H? o log H; 3 log H;
— log = € | .
+ o0x; ox; o8 H; + k(;i) €i€ik Hi oxs oxs
From (1.9) we have
2 2
9 log H, =0,
9x;0x; Hf.
from which it follows that
(3.3) HY = ¢%6i, H} = o704
where ¢;;is independent of z; and ¢;; of z;. Substituting in (1.9), we find that
(3.4) 0:; = 7ii + T

where 7;; is independent of z; and 7;; of x,.
Equating to zero the right-hand member of (2.14), we have in consequence of
(1.10)

82 log H?
(3.5) Sz
(3.6) dlog H; d log H, _dlog H;olog H; dlog H;dlog Hi _ 0
) ox; Az az; Y Ty ar;
@,k #).
I R.G., p. 93.

W R, G., p. 119.
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Substituting in (3.5) from (3.3) and (3.4), we find that
97 s
(3.7) a—T’- = (ri; + )¢5y ),
T
and similarly
07

(3.8) o

= (r4 + 7i)¥ii(xs, ).

Differentiating these equations with respect to z; and z; respectively, we have

i oy
Wi = 0, ivii = U,
G + Vit 5o, + Wik = 0
Accordingly we have
d log « d log «
‘/’Jt = axj ’ '/’u - _a-x_.'_’

and we find that @« = a; + «;, where a; and «; are functions of z; and x; respec-
tively. Then from (3.7) and (3.8) it follows that

i+ 1 = (e + aj)wi,

where w;; is independent of z; and z;. In consequence of this result and (3.3)
it follows that

(3.9) HY = X [ (oir + o2 G=1,-- n),
i(#1)

where ¢;; is a function of z; at most and ¢;; of z; at most. These expressions
satisfy (1.9). In order that (3.6) be satisfied we must have

(3.10) oii0ki(o i + ox;) — jioni(oni + o) — orioip(oi; + 05) = 0,
where a prime indicates the derivative, and permuting the indices cyeclically we
have

01055(oki + o) — opon(os; + 0i) — oyori(on + ox;) = 0,

(3.11)

’ ’

’ ’ ’ ’
oaoik(oi; + 0i0) — oxosi(oi + ox) — opoii(ors + oa) = 0
Equating to zero the determinant of these equations, we have
’ ’ ’ ’ ’ ’
(312) Uijvjkcrki + oj,-(rkjcrik = 0.

The same result follows, if we differentiate the above equations with respect
to z;, z; and x, respectively.

On the assumption that none of the terms in (3.12) is zero it follows that
o.;/o is a constant. Accordingly we put

gij = Qijo
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where a;; is a constant and o; involves x; at most. The constants must satisfy
the relations

(3.13) a:i@ 0k + azariaw = 0.

Equations (3.10) and (3.11) are satisfied in consequence of (3.13). Hence in
this case we have

Hf = X,’ H (aiim + a,'.;O'j).
5 (#14)

If we put

i = Q;xQki0i, g = Qkj0i0j,
in consequence of (3.13) we have aijo; 4+ ajioc; = aiap0:i(6; — ;) and the
constant factor may be absorbed in X;. Then we have in all generality a;; =
—a;; = 1, and (3.13) becomes

axaki — Q@i = 0.

If now we put arior = —aidr, we have

arior + aind: = aw(d; — &x),

so that in all generality we may take ax; = —1, aix = 4+1. Then ajs; +
arior = aj(d; — Gr), and thusa;z; = —ai; = 1, and we have
(3.14) = X: [] (o= o0

(=)

We consider now the cases which can arise when some of the ¢’s are constant.
Suppose that ¢;; = a;;, where a;; is a constant. From the first of (3.11) it
follows that either ¢;x = au, or ox; = axj;, the a’s being constant; we use this
notation for the present. If ¢;x = au, the second of (3.11) is satisfied and there
remains (3.10). This is satisfied in the following cases

(3.15) (e = aji, o5 = Qj; (i) 0;: = aji, ori = Qi3
(iii) oxs = Gki, Ok; = ;.

The last follows from (i) when j and k are interchanged. If ¢;; and ox; are not
constants, we write (3.10) in the form

0". . 0'I~ 3
(3.16) o + or; — —L (oxi + au) — £ (07i + ai) = 0.
[ Oji
From this we have
’ ’
g T -
o — 5 (o5 + ai)) = ¢, orj — ==+ (oki + au) = — ¢,
0']',: Ok i

where ¢ is a constant, and consequently

053 + ai; = b(djk - C), g + Qi = d(tfkj + C),
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where b and d are constants. Hence g;; = boj, ox; = doy;, so that we may
put o;; = Q;i0j, Ojk = Qjk0j; Oki = QkiOky Okj = QkjOk, and then from (316)
we have (3.13). Thus we have three distinct types:

B17) 0i; = aij, 0ji = @ji, ik = @ik, Tk = Aji;
(3-18) 0ij = Qijy O0ji = Qjiy Oik = Qiky Oki = Qi
(319) g = ai,-, Oik = Qiky 053 = Qji0j, Ok = QAjk0j, Oki = QpiOky O; = QAk;0k.

In the first two cases the a’s are arbitrary, in the last case they must satisfy
(3.13).

When o1; = ax; and a;; = a;j;, we have from (3.10) and (3.11) the case (3.15
iii), or

oioi + ai) — op(oji + ai;) = 0.
If 0j; = aji, 0jt = ajr, we have (3.18) on interchanging ¢ and j. Otherwise we
have the type
(3.20) Gij = Qij, Okj = Qrjy Oji = Qji0j, Ojx = G k0,
QAj0r; — QjpQi; = 0.

Forn =3and? = 3,5 = 2,k = 1, we have from (3.9) and (3.17) that the

coordinates can be chosen so that we have

(3.21) H, =1, Hy, = ¢, H; =y,

where ¢; and ¢, are functions of z; at most.
For the case (3.20) we may in all generality take a;; = ax; = 0 and then from
(3.9)for: = 2,5 = 1,k = 3 by a suitable choice of coordinates we have

(322) Hf = 1, § = X20'1(0'23 + 0'32), H;Z; = X30'1(0'23 + 0'32)7

where ¢, is a function of z; at most. When ¢, is a constant, we have the case
(3.18) fori = 1,j = 2, k = 3.

For the case (3.19) we may take a;; = ax = Oand for¢ =2, =1,k =3
we have in all generality
(3.23) H} = H = o1 + eas, H? = o103,

where ¢ = +1 or —1, it being understood that o, and a3 are positive.
Finally we have from (3.14) the case

(3.24) HY = Xi(zi — z)) (30 — m) G4k =1,2,3;4,5,k #).

For the further determination of the functions appearing in (3.21), (3.22),
(3.23), and (3.24) we have from (3.2) for all the e’s equal to 1 the conditions

2 2 2 2 2 2
(3.25) HL(26 logHi+alogH,j_long>+i<23 log H?

2 ox® or; ox; ~ H H? oz}
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2 2 2 2
al%**if{"—a—log&>+LalOgHialOgH" =0 Gk ).

+ 0x; H f H i oxx oxs

These determinations will be made in the following sections.

When n = 3, equations (2.12) are (3.5). Consequently we have:

A necessary and sufficient condition that equation (B) be solvable by separation
of the variables for n = 3 s that the H’s be of one of the forms (3.21), (3.22), (3.23),

(3.24).
4. TypesI. From (3.21) and (3.25) for7 = 1,j = 2and j = 3, we find that
o1 = axr; + b, Y1 = cx, + d,
where a, b, ¢, d are constants. Substituting in (3.25) for ¢ = 2,j = 3, we have

der 0 =0. Wetakea = 0,b = 1. If ¢ = 0, we have the cartesian case

dr1 071

) H? =1 @ =1273).
If ¢ # 0, we have by a suitable choice of coordinates

(Ip) H? =H) =1, HY = z}.

In this case the transformations of coordinates is
“.1) T = X1 COS X3, y = 1 sin z3, z = Iy

and the coordinate surfaces are the planes x/y = const., z = const. and the
circular cylinders z2 + y2 = z}.
The Stéickel matrices for these respective forms are

1 -1 -1 1 -1 —=

0 1 0 1

0 o ik 0 1 0
0 0 1

5. Types II. In discussing the types (3.22) we consider first the case where
o3 is a constant, which may be taken equal to zero in all generality and by suit-
able choice of coordinates we have

H} =1, Hj =¢*z), H; = o z)¢*(z2).
Fori = 1,7 = 2,3in (3.25) wehavey = ax; + b. Fori = 2,5 = 3 we have
2,
a—-‘é 4+ a¥ = 0.

0x,

If a = 0, we have Types I. If a # 0, we may take a = 1, b = 0 and obtain
the case of polar coordinates

(11 H? =1, H: = z2, H? = z? sin? z,.
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If neither o.3 nor o3, is constant, we may choose the coordinates so as to have
(5.1) H? = 1, H; = Xgo'l(xz —_ 173), H§ = X30'1(132 - xs).

Fori=1,7 = 2,3 in (3.25) we have o1 = (ax1 + b)2. Fori = 2,j = 3 we
obtain

Differentiating with respect to x,, we obtain

(5.3) (%2) n <)%3) T (s — ) (%) — 12a%zs — 23)* = O.

Differentiating again with respect to x,, we have

1\ _ .
(X;) = 24(1 y
1

(5.4) ¥, = —4a’zl + czy + dzy + e = flza).
2

and consequently

Substituting this expression in (5.3) we have

’

<)—;;) = 12a22} — 2cx; — d,

and then from (5.2) we have Xi = —f(x3). There are two cases to be considered
3

asa = 0 and a # 0. In the former case, as is seen on substituting the above

expressions in (1.4) for n = 3, there is no loss in taking b = 1 and in the second

casea = 1,b = 0. Hence we have the two forms

5.5 H:=1 H:=%""% g "D
( ) 1 1) 2 f(x2) 1 3 f(zs) ’
flx) = cx? + dz; + e,
2 2
5.6 H2 — 1 H2 — xl(x2 - x3) H2 — zl(x:f - x2)
( ) 1 ) 2 . f_(x—z_) ) 3 f ( Z3 ) )

f(x) = —42® + ca® + dx: + e.

If in (5.5) we assume that f(z) = 0 has two distinct roots, by a suitable
choice of the coordinates, the form may be written f(x) = 4(z? — azx), where
a > 0,and z, > a > 3 > 0; then the expressions for H: and H? are positive.
If we put

5.7 Ty — a/2 = %a cosh 2¢, T3 — a2 = %a cos 27,
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we have, on replacing a by a2
(IL,) ds* = da? + %az (cosh 2 — cos 2n) (dg* + dn?),

in which case the coordinate transformation is
(5.8) T = I, y = a cosh £ cos 7, z = a sinh £ sin 1.

Hence the coordinate surfaces are the planes z = const. and the confocal
cylinders

2 2 2 2
(5.9) Y : : Y £

— - = a - =
coszn  sinZqy ’ cosh? ¢ + sinh? £

a?.

No real case exists for which the two roots of f(z) = 0 in (5.5) are equal,
nor when f(z) is a constant. In case ¢ = 0, we may take f(zx) = 4z, and z, >
0 > x;3. If weputz, = £, 23 = —n? we have

(ITs) ds? = dx} + (8 + 7°) (d&® + dn?),
in which case the coordinate transformation is
rT=2I,Y = %(52 - 112),2 = E"’:

so that the coordinate surfaces are the planes z = const., and the confocal
parabolic cylinders

(5.10) 2= g2 - 2), 2=+ ).

If we write f(z) in (5.6) in the form4(a — z) (b — z) (¢ — z) witha > b > ¢
and put
a—>b b—c

a — ¢ a — C

= k", k* 4+ k" =1,
and

ze = a + (b — a) sn? (¢ k), 23 = ¢ + (b — ¢) sn%(y, k'),
where sn 6 is the elliptic function, the form (5.6) becomes
(I10) ds? = dz? + z2 [k2en? (¢ k) + k" en? (n, k)] (d£® + dn?).
The coordinate transformation is
(5.11) z = x;dn (§ k) sn (9, k'), y = zisn (& k) do (9, k'),

z =zycn (& k) en (g, k'),

so that the coordinate surfaces are the spheres and cones with the equations

(5.12) 2?4+ y® + 22 =z} Wa? ¥ + ca =0
: oo dnz(g k) snE(g k) | en2(§ k) ’
72 k""y"’ 22 0.

sn?(n, k') dnZ(n, k)  en(n, k)
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It is readily shown that if two of the roots of f(z) = 0 are equal, or all are
equal, there are no real solutions of the problem.
The Stickel matrices for the forms (I1,), (I1y), (II;) and (IL,) are respectively

1

1 = 0 1 -1 0
1 2 —
0 1 —csetay |’ g a* cosh 225 1] ’
0 0 1 a?cos 29
0o -1 0 z? -1 0
0 g =1, 0 krem2(5k)  —1].
0 n? 1 0 k2cn2(q k') 1

6. Types III. We consider next
6.1) H} = o1 + eos, H} = o103, H = o1 + eos,

where e is + 1 or —1, it being understood that ¢; and o3 are positive.
Substitutling in (3.25) for7z = 1, = 2, we have

,? " 22 ,?
(6.2) 2<al;—%>+e¢73<22—0—12->—|—e‘—73— =

Hence we have

" ,”? 7\
2% -2, (27) = et
where ¢ is a constant. From the second we have
(6.3) o3 = —coi + dos,
where d is a constant. Then from (6.2) we have
(6.4) o, = coi + deay.

These expressions satisfy (3.25) for 7 = 1, j = 3 and 7 = 2, j = 3, without
imposing any conditions on ¢ and d.

We consider first the case when ¢ = 0, which is possible only when e = 1 and
d positive, as we understand that the coordinates are real. Then we have

Vi = 3Vdzi + fi
By a suitable choice of coordinates we have

(II1,) H? = H} = 2} + 2}, =z 2l
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The transformation is

(6.5) T = 22308 Tz, Y = Txzsin T, 2z = 3 (2} — 23),
so that the coordinate surfaces are the planes z/y = const. and

(6.6) z? + y? = 2} (2 — 22), z? + y? = 3 (x3 + 22).

When ¢ 5 0, there is no loss of generality in assuming it to be positive, and
replacing it by 4¢2.  We consider first the case when ¢ = 1, and replace o1 and

O'ld

d . . . o
o3 by e and 2% noting from (6.3) that d is necessarily positive. Then the

2
solution of (6.4§cand (6.3) respectively is
o1 = sinh? (cx; + b), o3 = sin? (cxs +f ).
By suitable choice of the coordinates we have
(II,) H? = H} = a*(sinh? 7, + sin?z3),  Hj = a? sinh? 2, sin® z.
The transformation from cartesian coordinates is

z = a sinh z; sin x3 cos s, y = a sinh z, sin z; sin 1,
2z = a cosh z; cos zs.

The coordinate surfacesare the planes y = x tan z, and the quadrics of revolution

x2+y2_ 22 . 22 x2+y2=a2

sinh? z; ' cosh?x; ! costz;  sin? s
When e = —1, we obtain in like manner
(I1I;) H} = Hi = a? (sinh? z; 4 cos® 23), HY = a? cosh? r; sin? 3.
The coordinate transformation is
z = a cosh z, sin x5 cos s, y = a cosh z; sin x; sin zy,

z = a sinh z, cos 3,
and the coordinate surfaces are the planesy = z tan z, and
z2 + y2 22 a2 z2 + y2 22

—_ 2
- = - —_ = a°.
cosh?z; ' sinh?z ’ sin? x3 cos? T;
The Stickel matrices for the above forms are respectively
1
a3 - 1 .
zi a?sinh?z, csch?z; 1 a? cosh?z; sech?z; —1
0o -1 0], 0 -1 0|, 0 1 0
. 1 4 asin?r; esec?x; —1 —a?sin?r; — eselzs 1
2
T3

7. TypesIV. We consider finally the type (3.24), that is
(7.1) H} = Xz — z3) (z: — 20) @, J, k #),
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and we assume that z; > z, > 2;. When these expressions are substituted in
(3.25) for7 = 1,j = 2, we obtain

1 1 . B 1V 2(:83 - xl) 1
2t o ([ - e (5) - (B2 40) 1]

o2 -(azze )] o

Differentiating this equation with respect to s, we obtain a polynomial of the
third degree in ;. Each of its coefficients must vanish. Equating to zero the
coefficient of x}, we have

(73) (l‘l b Ig)2 <~Xl—2>”+ 4 (Il - 1‘2) (Xi2>’ + 6 Xiz + 2(1‘1 -_ 1‘2) <}—%-l>’ —6 )%1 =0.

Differentiating with respect to x; twice we have

1 Iv
(r> =0

(7.2)

and consequently

1
(7.4) X, = ® TS 4+ arxd + awxs + as = f(x2).
2
Substituting in (7.3) we find Xl— = f(x;), and from (7.2) we have Tl, = f(xs).
1 <\ 3

These expressions satisfy the three conditions (3.25).
When a; # 0in (7.4) and the roots of f(x) = 0 are distinct we write

(7.5) f@) =4(a—2)(B—2) (v — 2)

where « > 8 > v, and we have

v H% - (xi - xi) (xi - 'T'k)
() 7@
This is the case of elliptic coordinates for which the transformation is
polemme—m @ B =) B =)
(@ = B) (= 7) ’ B=a)(B—) ’
oy —m) (v —x) (v — 1)
(ry—a) (v —8) ’

where a > a1 > 8 > x2 > v > a3, the surfaces x; = const., being

(G 3, k #).

2 2 2
x n y z -1

a—x BT oYX

It is readily shown that there is no possibility of a double or triple root of
f(x) = 0giving a real set of orthogonal surfaces for (7.1).
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We consider next the case where a, = 0 in (7.4), and write f(z) =
4(a — 7) (b — ). In thiscase we have

avy wp=ECIIESH ) — s - G-, ik ),

and assume z; > b > 2, > a > 5. The transformation of coordinates is
Tttt arz—a—b . (a — z1) (@ — x2) (@ — x3)
r = ’ Yyt = )
2 b—a
2 — (b —z1) (b — ) (b — 73)
a—>b !

so that the coordinate surfaces are the confocal paraboloids

(7.6)

y2 Z2 _ o
(1.7) e Bk

There is no real solution if the roots a, b are equal. Also there are no real
solutions, when @y = a; = 0, and when a; = 0 also.
The Stickel functions ¢;; are in these cases

2 T

5 1 _
Yir = f(_xi—)’ Pz = m, Pz = f(xi).

The orthogonal systems of coordinate surfaces which afford separation of
variables constitute the set of all real systems of confocal quadrics including the
cases where one or more families of the systems consists of planes. Hence we
have:

A necessary and sufficient condition that a triply orthogonal system of surfaces in
euclidean 3-space be a coordinate system in terms of which the Sfundamental quad-
ratic form of the space is such that the variables are separated in the corresponding
Hamilton-Jacobi equation and the Laplace equation is that they be any system of
confocal quadrics, including the cases when one or more families of the system con-
sists of planes.

Also as a result of the preceding investigation we have:

Equations (1.9) and (1.10) constitule a necessary and suflicient condition that the
coordinate surfaces of a triply orthogonal system in euclidean 3-space be confocal
quadrics, including the cases when one or more famalies of the system consists of
planes.

8. Euclidean spaces of higher order. When n > 3, we may analyze the
various types as in the former discussion. We consider first the case when by a
choice of z; we have H; = 1. In this case as follows from (3.9) we have without
loss of generality, o;; = 0 for j > 1. From (3.9) and (3.20) forv = 2,5 =1,
k > 2it follows that

H% = Xion | | (on + ow) Gok=2 - ,n55 k),
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where ¢; is a function of z; at most. From (3.25) for< = 1,7 > 1 it follows that
o1 = (ajz1 + b;)?, where a; and b; are constants. For the case when all the a’s are
equal and all the b’s, by a suitable choice of x; we have either ¢;; = z} orey; = c2,
where ¢ is a constant. 1f we substitute the above expressions in (3.2) for
1,7 > 1, we find that the hypersurfaces are of constant curvature 1/z2 in the first
case and euclidean in the second. Furthermore, since H; = 1, the spaces
z1 = const. are geodesically parallel. Consequently in the first case we have
concentric hyperspheres and in the second case parallel hyperplanes. When
x, = const. are concentric hyperspheres, any other system of hypersurfaces
consists of a pencil of planes whose axis passes through the common center of
the hyperspheres or of quadric hypercones with vertices at the common center.
The character of these other hypersurfaces depends upon the possible forms
of Hj dzj + --- + H) dz}; in §9 we classify the Stickel types for a Vs of
constant positive curvature. When the hyperplanes z; = const. are parallel,
any other system of hypersurfaces consists of hyperplanes orthogonal to the
former or of coaxial quadric cylinders; the situation for n = 4 is readily ob-
tained by giving to Hj dxi + --- + H} dz} the various forms in §§4-7.
These types for which H; = 1 are generalizations of those discussed in §§4, 5.

Generalizations of type I1I arise when we take o1; = 0 (7 > 1) and none of
oj1is constant. In this case as follows from (3.19)

2 2
H1=02"'(T,,, H,-= ll(ajkoj—i-akjak)

k
(G k=2,--+,m;7 #k).

From the equation obtained by equating to zero the right-hand member of (3.2)
fori,j = 2, --- , n we obtain a result which shows by means of (5.2) that the
hypersurfaces x; = const. are hyperplanes. Since x; does not appear in the H’s,
the sections by all these hyperplanes of each hypersurface x; = const. are the
same. Analogously to types 1II these hyperplanes form a pencil and the
hypersurfaces z; = const. are generalized spaces of revolution.
When 7, jin (3.14) take the values 1, --- , n, 0; = z;, and

1 _ 4(ay — z3) -+ (@n — T5)

X : " i
we have the general elliptic coordinates in euclidean n-space discussed by
Jacobi.l! If &; are cartesian coordinates, the transformation is

H (a; — z;)
) H (a; — aj).

(1)

~2
T;

M Vorlesungen iiber Dynamik, Berlin 1866, pp. 198-205.
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9. Stickel systems in 3-space of constant curvature 1/c. If the curvature
of Vis 1/c?, we have in place of (3.25)

1 o?log H: oalog H% o H2~>
1 . 1 i Y i
©-1) H? (2 ox2 + or;  Ox; log H?,
2 2 2 2 2 2
_*_i(2alogH,_*_é)logH]_a_k)gIL>_|_ialogH1 alogH,z_é.
H? oz’ or;  0x; H? H ox 0Tk c?
If we write (3.21) in the form
H? = ¢, Hj=c%l, Hi=c¥i,

we have from (9.1) fori = 1,j = 2and ¢ = 1,5 = 3 that ¢, and 1, must satisfy
220
°Y 1L 9g=0
Py + )

and from (9.1) for7 = 2,7 = 3 we have

B¢1 0%
axl 6x1

= —a1
Accordingly by a suitable choice of x, we have
) ds? = ¢(dx? + sin? z, dzj + cos? 2,dx3).
We consider next the case
H = ¢, Hj = c%z), Hi = c(x)y*(z2).
From (9.1) fors = 1,5 = 2and 3 we have
i,:—i% +¢ =0,
and hence
¢ = asin (z; + b).
2,7 = 3 we have

M _
oxr:

From (9.1) for ¢

— a¥y
and consequently
Y = d sin (axy + e).
By a suitable choice of coordinates we have
(I1) dst = ¢? [dx? + sin? z, (dz} + sin?® 2, dx})].
For the case

2 2 2 2 2
Hl =02’ H2 =62X20'1(l‘2—l‘3), H3 =02X30'1(l‘2—-x3),
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we find that for7 = 1,j = 2, 3, we have
o1 = a sin (z; + b).
By a change of z; and replacing X, by X./a* we have
H? =¢2, H?=c*X,sin?2, (20 — 13), Hji = c?X;sin?z (z2 — 3).
Thenfor: = 2,7 = 3, weget (5.2) witha = 1. Hence we have
(1) ds? = c? {dx? 4 sin? 2, [k? en? (x,, k) + k" en? (x5, k)] (dzi + dzd)}.

For the case

H? = 62(0'1 + 603), H2 = ¢? 0103, H§ = (52(01 + 60’3),

where eis +1 or —1, we have from (9.1) for¢ = 1,j = 2

(9.2) 2<a’1’ - —> 4 ea3< 2L _ L;) +oe ';3 = —4 (01 + eoy)2
3

o1 [}

Differentiating with respect to x3, we obtain

991 _ i;_ +<”3> _1_,= —8 (o1 + ea3).
01 o] 03

o3

Hence we have

22t _ Il 4 8q = 4d, (”3 > 1 4 8es, = —4d,

01 [ o3 [
where d is a constant, from which and (9.2) we have
o = 4o(f + doy — 0}),  of = dos(ef — doz — eo?).

These expressions satisfy (9.1) for: = 1,j = 3and¢ = 2,57 = 3.
For ¢ = 1, we have, on putting
f=aby, d=0b—a PR N MO

Var+ 0¥ Va + b
= b2cn? (Wat + b2y, k), o3 = a? en? (\/a2 + b2 s, k).

A real solution does not exist when e = —1. Hence we have by a proper choice
of x; and x3
av) H? = H? = c2[k? en? (x, k) + k" en? (x5, k)],

H? = c2a?b? en? (x1, k) cn? (x5, k).
For the case
H? = 2 X (21 — x9) (11 — x3), Hi = c2 Xy (xy — 71) (22 — T3),
HY = 2 X; (x5 — 1) (23 — 22),
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equation (9.1) for¢ = 1,j = 2 becomes

1 1 2 1 / 2 (l‘a —_ 131) 1
X, + o=t {(xs — o) I:(xl — x3) <z> — <————x2 g + 1);71]

(9.3) + (x5 — 1:1)2[(132 — x3) <3}(‘2>, - (%ﬁjﬁ) + 1> )%]}

+ 4(1‘3 — x1)2 (133 - x2)2 = U.

Differentiating with respect to z», we obtain a polynomial of the third degree in
r;. Each of its coefficients must vanish. Equating to zero the coefficient of z3,
we have

1Y’ 1Y 1 1Y 1
©.4) (“‘“)2<E> + 4“““)(?2) +65:;+2(x““)<z> ~5%
+ 8(x1 — x2)* = 0.

Differentiating twice with respect to z2, we have
are consequently

<Z> + 96 = 0:
1

= —dzt + arxs + ax) + azme + as = f(z).
2

Thus from (9.4) we have 1/X; = f(z:) and from (9.3) 1/X; = f(x;). Hence
we have finally

e = c2(x; — xj) (i — ) G, i & ),
(V) 1 f(x’)
fx) = —4z? + a12% + ax? + a3z + a,
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