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The Classical Theories of Radiation Reaction*)

Taomas ERBER
Illinois Institute of Technology, Chicago

This article presents a critical review of the classical theories of radiation reaction. The

.renormalized Dirac theory is discussed in particular detail. It is shown that all regularization
. prescriptions for this theory may be derived from a general dynamical correspondence prin-

- ciple. It is also shown that the physical content of the theory is severely limited by a general
- radiation condition. Various non-local and extended electron theories are classified with the

- help of the Herglotz-Wildermuth ’runaway‘ theorem. We discuss the existence of electro-

dynamic collective modes; in particular the radiationless and self-excited states of extended
charge structures. A possible connection with the existence of the w-meson is pointed out.

- In the concluding section various problems raised by the phenomenological radiation reaction

theory of Ginzburg and Eidman are considered.
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accelerating ﬁe/o’.y—l dynamics
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e links (7) and @ here represent the ordinary Lorentz force and the Liénard

X;Zih;r: Potentials. The eﬁ'ect§ of radiation reaction may in principle then be
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s . € coupling t
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zations. However there always remains an essential gap in this type of argument

* (Section 6-B) since the conservation laws of course do not uniquely specify any

*
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particular equation of motion.
A completely different line of approach, which avoids all these ambiguities, is

explored in the various non-local and extended electron theories studied in Sec-
tion 6. The basic point of departure in these cases is the observation that Newton’s
third law of action and reaction does not strictly apply to retarded action-at-a-
distance theories. If for example the electron is visualized as being a sort of
extended electromagnetic sponge, and if the validity of the Maxwell-Lorentz
theory is extrapolated down to infinitesimal elements in its interior, then it is
indeed possible to show that the net uncompensated intra-particle forces can give
rise to "'self-dragging* or radiation reaction effects.

Various modifications of these two major types of radiation reaction theories are
discussed in several other sections of the paper. The principal conclusions of the
present review are summarized in the paragraphs (i) — (iv) listed below.

(i) The Dirac Theory — Pro and Con: The basic equation of this theory is
‘ 2

Feys + Freqet = mut; Freact = ? E? {i — udz}- (11)

As is immediately evident from a consideration of the homogeneous case (Fey; — 0)
this equation may contain physically unacceptable solutions. These are the so
called ,,runaways“ in which the electron self-accelerates to infinite energies. The
occurrence of these non-physical solutions has given rise to a long history of
controversy both about the domain of validity of (1.1), see for example [86], and
also regarding the possibility of seeking subsidiary ,regularizing” conditions
that would automatically sort out the physical solutions. At the present time these
controversies seem to have come to a stand-off: Every fresh objection or excep-
tion to the application of (1.1) has been met with a severer regularization method
or some other stricture on the solutions. The question is therefore not so much
one of isolating a mathematically well defined or physically acceptable sub-set of
(1.1) but rather one of evaluating how rich the structure of this remaining theory
actually is. In Section 4-B we: introduce a general dynamical correspondence
principle which permits a quantitative answer to this question. Given a particular
Feyy it is immediately possible to evaluate the deviation of the *'radiation reaction®
trajectory [i. e. (1.1) including Fie.] from the trajectory with Freey = 0. The
extent of the permissible deviation is then directly related to the richness of the
structure of the theory. Various specialized criteria yield all previously known
regularizing prescriptions.

This dynamic comparison method is augmented by a general radiation
condition in Section 5. This condition enforces the requirement that the radiation
reaction work must (on the average) represent a transfer of energy from the
particle fo the radiation field. Analytically this condition can be stated in terms -
of a Fowler-Emden equation. A study of the characteristics of the solutions
substantially verifies an old conjecture of Abraham that a proper energy transfer
occurs only when the particle trajectories have a quasi-oscillatory component.

(ii) Runaway Solutions in Non-Local Electrodynamics: A number of covariant
linear generalizations of the Maxwell-Lorentz theory have been proposed in
which invariant form factors are introduced to eliminate the’ self-energy diver-

ST



346 ) Taomas ERBER

gences. (These methods are the precursors of the renormalization program in
quantum electrodynamics [BoPP, STUCKELBERG, McMANUS, FEYNMAN].) It was
first pointed out by LermaNy that all of these form factor theories are essentially
equivalent to a regularization (in the sense of PAULI and VILLARS) of ordinary
electrodynamics with a continuum of negative energy meson fields. As a conse-
quence the electrons in these theories all acquire a negative non-electromagnetic
mass. A general result of HEraLoTZ and WILDERMUTH then shows that these
form factor theories necessarily must contain runaway solutions. Similar pro.
perties have also been verified for a truncated version of quantum electrody-
namics by Vax KampeN and NorToN and WATSON.

The original extended electron theories of ABRAHAM, LORENTZ, and SOMMERFELD
on the other hand do not contain any runaway solutions. The mathematical
reasons underlying this distinetion are discussed in some detail in Section 6-F.
It is emphasized that the occurrence of runaway difficulties in the form factor
theories reopens the entire question of a proper relativistic generalization of the
extended electron concept.

(i) Collective Modes and Excited Charge States: Electrodynamics in principle
.contains a “‘strong coupling” limit corresponding to the possibility of processes

dominated by the closed loop cycle @f:/@) (see the block diagram above). These

cycles represent transient collective modes in which radiative losses are greatly
damped relative to their usual rates. Point particle theories of the kind represented
by (1.1) do not contain a description of these strong coupling phenomena: The
physical solutions in these theories are confined to two types of high frequency
behavior — (1) either nothing at all happens gs the frequencies are increased past
the critical frequency ~mc3/e?; or else (2) the solutions cease to exist altogether
beyond this threshold. In order to obtain a non-trivial description of these col-
lective modes it is necessary to introduce some kind of non-local electrodynamics.
“(This situation has some similarities to the “superconductor solution” problem
in quantized field theories [NAMBU, GOLDSTONE].)

The basic equations of the non-local theories [e. g. (6.3) or (6.12b) of Section 6]
show that these quasi-radiationless states can exist only at certain characteristic
frequencies and with definite times of decay. This electromagnetic ‘“‘isobar”
spectrum is completely determined by the details of the particle form factors.
Both classical and quantum mechanical estimates indicate that the ratio of the
-electromagnetic isobar energy to the ground state energy may be surprisingly
large — of the order of 102 or greater.

Following a suggestion of Borm and WEINSTEIN we discuss the implications of
this theory for the elementary particle problem. In particular we present an electron
isobar formula which predicts a mass value close to that of the p-meson.

(iv) The Phenomenological Theory of Radiation Reaction (GinzBure and Eibp-
‘MaN): The dynamical effects of radiation reaction may become significant in
connection with certain coherent radiative. loss mechanisms in bulk matter:
Cases of practical interest include the Cerenkov effect — in cavities as well as in
matter; transition radiation, Cerenkov self- excitation, and the complex Doppler
effect. The object of the Ginzburg-Eidman theory is to provide a unified des-
cription of the dynamical aspects in all these cases. In a sense this theory may be
comnsidered to be a macroscopic ‘“boundary condition” on all the microscopic
theories discussed previously. No real link between any of these theories has
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; however as yet been established. A point which may be of interest for future
. work is that the mathematical structure of the Ginzburg-Eidman theory most
b closely resembles that of the original Sommerfeld extended electron theory.

2. Radiation Reaction Theories Based on Conservation Laws

A. STEWART and LARMOR

| The beginnings of radiation reaction go back at least as far as 1871 when BaLrour

STEWART [I], on the basis of qualitative thermodynamic arguments, came to

. the conclusion that a moving body must be subject to a retardation owing to
| its own radiation. Sir JosEPH LARMOR took up the subject in, an extended series
. of memoirs running from 1895 to 1927. Originally basing himself on a detailed
i aether theory and later relying on more general conservation arguments, he
t concluded that there should be a dissipative force accompanying radiation given by

£, 2.1)

Freact = — 2
4

~ where R is the rate of radiation and v is velocity.') In its final form the reasoning

was that since in general total force is given by

d dv dm
Figtar = ar (m”)=mm +DW’

and since in the case of a radiating body it is plausible that dm|dt = — R/c?, this
“extra’ force component ought to be identified with a radiation reaction. LARMOR’S

formula will provide an interesting contrast in a subsequent discussion (Section
3-C).

B. The Radi-ating Oscillator

The modern work was initiated by Praxck [3], ABrauam [4], and LoRENTZ [§]
with an analysis of the energy balance for a radiating oscillator. From the Lién-
ard-Wiechert potentials it follows quite generally that the energy radiated in

time T is
2 2 .
?%fﬂ dt. 2.2)

The oscillator energy E is given by
E=1ma®+ 1 Ka?.

The radiated energy loss is then presumed to be compensated by a decrease in E.
Balancing the energy flow yields the requirement
L+ T
dE 2 e
e B -2 ) —
f{dt+3 c3x}dt 0. (2.3)
/ :

1) See his Collected Works [2]; especially vol. T, pp. 414—597, and vol. II, pp. 420—449.
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One cannot, of course, from this alone draw any unique conclusions about the
details of the oscillator dynamics. Nevertheless it is possible to get an equation of
motion simply by setting the integrand of (2.3) equal to zero. This yields

9 o2 2

v X

which is a non-linear equation. At the cost of some approximation it is also pos-
sible to obtain a linear equation. Suppose that (2.3) were rewritten in the form

t+Td 9 o s

et . .. 2 e ...
f{zz(EﬂL?F“)—?F”}d’—o'
t

Then imposing the restriction

3
(K[m)'l & 7%:— ~ 10% sec1,
it follows that
2
> > 2 e ..

Finally, neglecting this last term in the integrand, we obtain
mr = —Kx—l— Ei:'; (2.5)

and this is a linear equation. (The consequences of the ]..ipl.it interchange are
discussed in Section 3-B.)

We should like to take some care in exhlbltmg still another approach to this
simple situation: Supposing one insisted from the outset that there were some
force Freaey which when added to F = mo would reproduce the radiation losses.
Instead of (2.3) we should then write

t+ T t4- 7T

g—%fxzdtz —fF,eacta': dt. 2.6)
11 t

Integrating by parts on the left and choosing 7' such that % vanishes at each end
of the interval, there results

t+T2 . .

es ... .
f{—3“ po xr — Freact} zdt = 0.
i

Finally, in analogy with the preceding, we may set

2 2

T FE | 2.7)

0|<b
w

Fropet =
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5 to-obtain a solution. Note that this is consistent with the previous result (2.4)

but with the important difference that the frequency restriction (K/m)'s < 10%
has fallen away.

L. Since the details of the nature of the oscillator do not seem to be involved in this

argument, it is now inviting to assert that (2.7) is in fact a generally valid formula.
This assertion may be formally stated in terms of two axioms:

(I) The dynamical effects of radiation reaction may be taken into account through
an augmented form of Newton's second law.

(II) One universal form of Fyenet is sufficient for all cases.

The entire radiation reaction theory may then be summarized in terms of the single
equation

2 e . ..
Fexs + — - X = ma. (2.8)

C. Relativistic Generalizations

Still another reason for selecting (2.8) as the basic equation of a radiation reaction
theory is its natural place in a relativistic setting. It is well known, for example,
that when v/c is no longer a negligible quantity (2.2) must be replaced by

2 2 s 2
—3—%;/4[{&32 +[% x:c] } dt. 2.9)
¢

where y = (1 — v?/c?)~"/>. If one now retraces the steps leading from (2.6) to
(2.7), it may be shown that the complete (vector) form of the result is (ABRAHAM[4])

Fua=5 5 i+ (L) @ 0o+3(L w06+ 3 (2w i o]
(2.10)

and this is exactly what would have been obtained by a stralghtforward Lorentz
transformation of (2.7) (voN LAUE [6]). With the help of (2.10) it is then a simple
matter to transcribe (2.8) into its fully covariant form. We obtain

2 e [(dPu, du?| du;

where F, and u; are the Minkowski force and four velocity respectively. It should
be noted that this involves more than the simple replacement z — d*u/ds?; a
point which in more formal treatments (e. g. [7]) requires special discussion.

In the case of one dimensional motion, relativistic modifications do not bring in
any essentially new features. On very general grounds [8] it is to be expected that
the change of variable

v = ¢ sinh (w/c) (2.12)
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formally reduces these equati ivisti
‘ quations to the non-relativistic case. I ituti
(2.12) into (2.11) we find that se- Indeed Slfbstltutlng

2 e
Fext—l—?*c?@'(}:mib,

i.e. formal coincidence with the non-relativistic versi
. - sion except that n
proper time (s) has assumed the role of the independent variabl(f.z) ow the

D. Dirac’s Subtraction Formalism

The preceding considerations have be
r en largely phenomenological. No di
;};ir;}e)ﬂ }ias be:n ma;le to link the resulting radiation reaction §quations to r:l(:;
-Lorentz system; and it is in fact not even clear whether
- . . . the
;onltgéned within this system or whether they involve additional assumpt}:;oize
: I111 St, Drrac [11, 12], s:tlmulated by the then prevailing divergence difﬁcultieé
n ;101;?;; u;i electrfodynafl_mcs, attempted the construction of a relativistic radiation
_ eory trom first principles. [The efforts to formulate a satisf

cla,sswal' mod.el th.eory have continued since that time (e. g. [13] [Z4D).] 'Il‘?n::: (;IIZ
two main points involved in Dirac’s approach: , .

(i) A mixing of retarded and advanced potenti imi
tials to eli i
gences of the point electron theory. P ? o clminate the diver-

(i) A more careful derivation of the e i i
1 quations of motion f -
vation laws by means of Gauss’ theorem. rom the conser

We shall discuss these separately. [

(i) Supposing one wanted the most direct approach to a radiation reaction

equation. Withi i i
n?ust o ithin the Maxwell-Lorentz system the starting point then

eF,,,- U; = M —— (2.14)

since it is the only equation of motion available. The : ic fi
i . electrom t
may be thought of as being split into two components nenetic field tensor

Fuj = Fist + Fyl, (2.15)

i. e., an external field created by distant sources and a
i ¢ self-field d
in question. For F5*f we may in turn make the ansatz ne to the Chal‘ge

\

Ft = P + Fpa, (2.15a)

where F§¢ represents the “convected” Coulomb fi
: , “‘co eld and Fj29 denotes that part
:{ t1};1e ﬁeltsle Kwhlch asymptotically appears as radiation. Atkjthe position ofp:he
e e&: ré)n Fi' of course diverges and it would be meaningless to substitute (2.15)
I;P (2.15a) !)a,ck into (2.14). However we certainly know that the Coulomb part
,ﬁ: has a (:hver.g('ence; in this case there is the hope that this is the only pIIJace
where the infinities of Fi¢f appear and that Fi3d at the position of the charge

%) This reducti i icati
) o eductions goes back to WEsseL [9]. Extensive applications may be found in Pr.ass
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JE remains finite. Since it is presumably only this additional radiation component
I which affects the motion, we may simply omit Fg3, and tentatively assume

eF’%);t uy + eF]l‘;&;.duj —m d_dll_;f (215b)

' as the final equation. In this way the radiation reaction effects emerge as a direct

and plausible consequence of the Lorentz equation (2.14).

A number of heuristic arguments are now available for evaluating Fiad, For
instance, if Fif is assumed to be a real valued function of time with an appro-
priate range of definition than it is always possible to decompose it into even and

odd parts, viz.
Pyt = 4 (Fi(+) + B} + 4 (B (H) — () (@159)

Fs (4-) corresponds to a retarded solution of Maxwell’s equations and
Fgélf (—) corresponds to an advanced solution. The even part of F§! is then
symmetric under time reversal and does not contribute to the radiation field
(PacE [15], NorpsTROM [16]). The odd part however does change its sign and this
is a sufficient condition for describing energy dissipation.?) Identifying this term
with Fj2d and evaluating it at the position of the electron indeed gives a finite
result; in fact the very same result which already stands in the previous relativistic
formula (2.11).

So far, so consistent. It should however be cautioned that the omission of F§$ and
the various field decompositions are heuristic devices which require careful justifica-
tion (Haag [18]) and are by no means the unique possibilities. [See for example
Errezer [19], BERGMANN [20], and SCHONBERG [21] for variant theories.] A more
systematic method of obtaining the equations of motion, without the Coulomb
divergences, can be based on the conservation laws:

(ii) Consider a cylindrical region 2 of space time pierced by a thin tube of (in-
variant) radius r containing the world line of an electron. Assuming £ to be
source free, the divergence of the energy-momentum tensor vanishes in this
region, and by Gauss’ theorem

f@Tik 40 — ¢ Tjkdo'k —0 (2.16)

3:17]‘

where o, denotes the surface of Q. Neglecting the contributions from remote
space-like regions, (2.16) simply equates the energy-momentum flux across the
tube surface with the net flow at the time-like ends of Q. The tube contribution
may be expessed in terms of a single line integral extended along its length
1 eu

f {eu,- [Pyt + Fiy — e_;‘—" + O(r)} ds, (2.16a)
where the second (divergent) term represents the flux due to the Coulomb field
Fgs. If we impose the condition that the integrand be a perfect differential, i. e.,

1 e?u .

eu; [Fi§t + FRl — 5 — + 0() = By (2.16D)

3) On this point see SCHWINGER [17]. The dissipative nature of the radiation reaction does not
however introduce any intrinsic irreversibility into electrodynamics; see PLaNCK [3).
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for some four vector By, then (2.16a) depends only on the flux at the ends of Q.
However just as in the previous discussions (Section 2 —DB) this is not sufficient to
determine an equation of motion since the conservation laws do not determine

a unique choice of B, (BuaBHA [22]). A plausible selection which has the virtue of
simplicity is

B = (m - T) Up (2.16¢)

This makes possible the transition to a point electron (lim r —> 0) on both sides
of (2.16b) and yields an equation of motion which once again coincides with (2.11).
It is apparent that this procedure makes the Fg; subtraction less arbitrary and
also shows clearly that it has the character of a mass renomalization. An important
feature of this approach is that since no characteristic thresholds appear in the
derivation, there is hope that (2.11) can in a sense be considered an exact equation.?)

3. Discussion of the Solutions

A. Physical and Non-Physical Solutions

In the preceding section we have listed a number of arguments which converge
on the expression
2

2 e? . .
Fex[;—,— ??x = mx (3.1)

and its relativistic analogue as being the ewact classical equations of . motion
including radiation reaction. In the present section we shall not present any further
justifications of (3.1), but rather accept it as the final statement of a theory and
turn to the consideration of various predictions and consequences which follow
from it.

We first remark that due to the general feebleness of the effects of radiation
reaction (cf. the remarks in the Introduction) it is to be expected that solutions of
(3.1) should be very close to those of

Foxt = m¥, (3.1a)

1. e. the usual equation of motion omitting Frese. However, the addition of
an z term to (3.1a) not only perturbs its solutions, it also adds entirely new
solutions which may or may not have a physical significance. In order to see this
more clearly, let us assume for the moment that the Laplace transforms of (3.1)
and (3.1a) exist. Introducing the notation

(=]
v’ =fve—7"dt, ete.,
0

for the transforms; and setting 2e%/(3mc®) = r we have for the Laplace trans-
form of (3.1)

1 .
poes Foxy + p21% = po'. (3.2)

4) This was in fact Dirac’s original hope. For his second thoughts on the matter see [23].
Generalizations of the ansatz (2.16c) have been discussed by ELIEZER [24]. See also Section 5.
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. ., T o I
('v :l:{(v)z—él—’r;'vFext} )
p= 27 9) ’

E Solving for p, we find

(3.2a)

}and this clearly shows the existence of the extra solytion. In the limit 7 — 0, the
I solution with the minus sign goes over into the equlvaler.lt of §3.1 a) and tl'lerefore
1 may be considered as the “physical” solution; the plus sign 5,71elds a soluthn that
b diverges as 7 —0 and represents a parasitic or ‘runaway’ solution. T!ns con-
E venient identification fails to extend to the general case however. If for instance
' Foy is specified as a function of « and not of ¢, thel} 3.2) musi? l.)e understood as
b an integral equation for x(f). Faxy may then acquire an explicit 7 dependence.
: In this event

lim {— 4 "y ngt} (3.2b)
m

70

* s no longer necessarily zero and neither solution of (3.2a) is cons‘trained to .reduce
E 40 a solution of (3.1a). These and related features may best be discussed with the
i help of a number of specific examples.®)

B. The Damped Harmonic Oscillator

b This problem has been considered in some detail by LorRENTZ [5],. PLAN'CK [31,
¥ Prass [10], and LoiNGEr [26]. If we set Fexy = —mojx and continue with the
B abbreviation 1 = 2€2/3mc® then (3.1) becomes

% — I — iz =0. (3.3)

 The general solution may be written as

C; elit - (3.3a)

X =

M.,

7

! where the I;’s are the roots of the characteristic equation

7B — 12— =0, (3.3b)

l This cubic always has one positive real root and two conjugate complex Iroots
B with negative real parts. For the real root, we have

I, = (4 + B)1 (3.3¢)

] " where it has been convenient to introduce the abbreviations

I'fs
AL _|.* =¥ o 3.3d
B} o5+ /(o) + ov| 33d)

It is easily seen that in both of the limiting cases wo.< (= .ll r:/r-l), an:i’
@S> 11(=> l; ~ [wy2/t]s); I, represents a catastrophically rapid “runaway

%) From the mathematical point of view, these difficulties stem from .the non-uI_liformity of
the 7 — 0 limit. A rigorous discussion of this aspect of the Dirac equa,folon may b.e
found in [87]. Formally the situation is closely analogous to the small viscosity limit
of the Navier-Stokes equation [25].
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solution. [This illustrates the remarks followin

conditions z(0) =0 and #(0) = v,, it is possible to suppress the runaway b

choosing €, = 0. The complete “physically reasonable’’ solution of (3.3) then g

may be written in the form

with

M’oes

4+ B2 o= V‘Z:’g (42 — pBe)

where 4 and B are as given in (3.3d) above. Tt should be noted that all the con-
stants of integration have now been exhausted ; the value of z(0) is automatically

fixed at —2aw, by the choice of the other initial conditions including also the eli. '}

mination of the eh! solution.
We shall return to this point later.

The extremes of large and small @y produce some simplifications in (3.3d) and
(3.3e); we find:

w0y < 71 0y > 71
1 1 w2 1/3
_ 2 [ had ')
o3 3 Tw, 5 (r)
(3.3%)
® 1/5 w2 \'s
@0 27

A remarkable feature of these solutions, which can easily be read off the structure
in the extreme cases, is that despite the presence of a natural threshold in this
problem, i. e., L, the nature of the solutions does not chang

¢ even for the highest
(w9 > 71) values of w,. This is in marked contrast to the behavior in other cases,

e. g. the potential step (Section 3-D), where a characteristic threshold does make
itself felt and plays the role of an upper limiting cut-off for the validity of the
classical theory. However the structure of the cubic (3.3 b) is sufficiently trivial so
that neither “critical’ frequencies, nor fields, or distances can affect the behavior

of the oscillator. Moreover one can check directly that the details of the energy
balance :

(=]
om [Eidt = — | mop (3.3g)
0

are completely insensitive to the values assumed by «,.6

It is interesting to contrast this with the behavior of the
equation (2.4) which also admits of solutions of this t
istic equation corresponding to (3.3b) becomes

B 22—,

%) This elegant treatment of the oscillator is due to A. Costixas,

I ||lS cublc :ha;s a Ilega.blve Iear]. IOOt’ arn.d. t'WO COIllu acbe com lex IOOtS
g p

g(3-2a).] Imposing now the initial o real parts. In the wp < 7 1\imit

v . 1
x = -2.e-%tgin gt (3.3¢)
o {
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with positive

~1. l = — iwo
= —7T 2
l1 ? 3

ed decay or a
hat the solutions represent either a tremendously overdamp
so tha

. . TMation.
slowy increasing oscillatio

C. Time-Dependent External Forces

of time, then the motion may be

Tf Fy is specified explicitly as a function The goneral result is

obtained from (3.1) formally by quadratures.

' t
x = Xy -+ Vot + a’OT2 {etlf - (1 + _T_)}
Fn 3.4
- f e~ hl7 Feyi(ts) dts dtg dty (34)
T mr
0900 _ . 1—0
st i d acceleration a =
the position, velocity, an hvsical
where S lvo, 'I?lld ‘ggn::vz(;ft’efactolg efl* signalize the presence of the unphy
respectively. e

tment of the
. In analogy to the trea :
i i viously [see (3.2a)]. t the dynamically
SOII.].'GIOIIS dlsclﬁssﬁdegl;iat it i§s7 possible in general to sepqr?,tle g;lndjtiong.nCOHSi der
Omuat(glwi \ cht(Smies by proper adjustment of the initia

table tra -
gi:zl‘)ohaé simple case of a step function force

0 for t<O (3.5)
Fext={1wo for t>0. ‘

mm lutions

ul i diately read off the so

a (3.4) one can imme .

From the general form y

e _—O), 4+ = {2+ + + — 20 gz —£) (3.5a)
9 2% + w2ef7 Ja, 0

t>0; x =, 3 {2+ 2t }

t (3.5b)
t < 0; =0+ ar* {etlr - (1 + 7)}

f . . .
].earlly 3-531 hars Ly ullaway OOmponentS. Fl‘om bhe Struchure (o) t}he S()] llbl.()]l |t 1S
C ( ) hab hhese ma be Callce]led 0111} through a pI‘OpeI' OhOlGe Of (',Zo
hOWeVer ewdellb b y ]

o thon (> 00) = 0,
i F,/m. With this choice and the auxiliary condition Z(— oc)
that is ag = Fo/m.

itten as
i rtion of (3.5) may be rewri
mically reasonable po

e t>0 (3.5¢)

‘P
vl + '2—,’% 2

xr =

3.5d
Fo ot —13; t<o0. (3:59)
m

f view this implies that we have managed to get rid of the
o

From a physical point he cost of introducing a slight acausality in the eleqtron ®

divergent solutions at t.
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motion. Since this electron ‘pre-acceleration’ involves only distances comparah]e
to the electron radius (or times of the order 7) it is actually more of a conceptua]
departure than an experimental difficulty. In fact this ties in very nicely with the
elimination of the “‘extra’ boundary condition (i. e., a,) introduced by the # term
in (3.1). The proper ‘phasing out’ of the diverging solutions provides a natura]
employment for this otherwise superfluous element.

Although this procedure is dynamically acceptable, it still does not yield a com.
pletely reasonable solution. The root of the trouble lies in (3.5¢): Not only has the
adjustment of a, removed the runaways, it has in fact removed all the traces of
the radiation damping. The trajectory (3.5¢) is completely identical to that given
by the usual form of Newton’s laws (3.1a). We have # =0 for ¢>> 0, ang
consequently the work of radiation reaction vanishes identically. If we simul.
taneously accept the fact that the accelerated charge radiates then it seems ag
if the energy balance (2.6) no longer describes the situation.

This is a non-trivial problem, having some bearing on the equivalence principle 7,
which has been discussed extensively in the literature (FuLroN and ROHRLICH 28],
Ronmriricr [88] and further references cited therein). There are a number of
authors (e. g. DRUCKEY [29]) who have attempted to rectify this situation by an
artifice resting on an integration by parts: i. e.,

iy
o — [ @ ade. (3.6)

A

ls
[ Frenct o dt = io i
t

The interpretation attached to this equation is the following: The first term on
the right hand side is supposed to represent an influzx of energy from the field in
the vicinity of the particle —the so called “‘acceleration’ or ScrHoTT [30] energy —
which then reappears in the second term as radiation to the far field zone of the
particle. Since the two terms balance, Fieaor may be zero although there is still
radiation. This interpretation is however clearly contrary to the essential spirit
of the radiation reaction development to this point. We have consistently sought
to identify the origin of radiated energy in the work done by the particle on the
field: In the ‘acceleration energy’ argument the accelerated particle becomes me-
rely some kind of transducer which transforms near field energy into far field
energy. It should be noted further more that even the most detailed studies of
the structure of the electromagnetic field in the case of uniform acceleration
{SoMMERFELD [31], LINDEMANN [32]) have failed to turn up any trace of this
kind of behavior.8)

This interpretation becomes even less tenable if we consider a slight modification

of (3.5), viz.,
7 0 for t<O0 ‘
Xt T \Fot for t>0. ‘ (3.7)
In this case the solutions still show signs of radiation reaction, even after the

excision of the runaways, but the modifications are in the wrong direction. One
may easily verify that f Freaet dt has now become a positive quantity so that

") B.S. pE Wrrr and R. W. BREmME [27]; F. ROHRLICH (unpublished); S. CoLEMAN, private
communication.
8) This point has also been emphasized by RoBRLICH, [88] and private communication.
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Ein effect there is work done on the particle by the field; the kinetic energy is
[ increased at the expense of the field in excess of the work supplied by (3.7).

f: There is of course another way of meeting this problem, and that is to simply
I agree that Fiep; = 0 implies no radiation at all. (See for example [10], p. 27.)
E In the context of the uniform acceleration problem this may appear to be an
f absurd conclusion but it certainly is a consistent consequence of the radiation
k- reaction axioms listed in Section 2-B. It is in fact precisely the conclusion that has
3 pi'evailed for years with respect to the hyperbolic motion of special relativity.
j (voN Laux [33], Borx [34], Pavw1 [35]) If one calculates the relativistic form of
f the radiation reaction (2.10) for the hyperbolic motion one eventually finds that
Freact = 0. From this it has often been concluded that the hyperbolic motion
b does not give rise to radiation. From our point of view it is evident that these two

roblems, the relativistic and the non-relativistic constant force, are simply

E related by the hyperbolic transformation (2.12). It then becomes clear that such
p- ““proofs” of the radiationless character of the hyperbolic motion are about as sound
B as the corresponding claims for the non-relativistic case. FuLron and RorrLicr [28]
;. have recently given an extensive summary of this situation and by a direct recal-

culation of the fields, using a covariant generalization of the Poynting vector, have

¥ finally confirmed the existence of radiation. The “no radiation” hypothesis is
[, therefore untenable and the physical acceptability of (3.5¢ and d) is in doubt.

k- By contrast, the Larmor formulation (2.1) seems to do very well in providing
® reasonable trajectories for (3.5): If for example the radiation rate R is assumed

- constant then the particle will simply follow a velocity damped trajectory. In the

' more realistic case that R is identified with #2, i. e. (2.2), then (2.1) and (1.2) lead
f ' to the non-linear equation

& The variables may be separated with the result

dv c?

<P, T
iz “2102{1:’:[1+4%¢?:”] }

Integrating, using the initial condition x = 0=> v = v,; and introducing
o« =4 Fyr/mc?, one finds

w= % 2 2 340 9)(1 4 av)h 4 (terms in v )}. (3.8a)
T2F, 12 T 1540 o

In order to identify the physical solutions we consider again the limit 7 —0.
In this case (3.8a) reduces to

_m [
T = oF, |t — o2,

and evidently the lower () sign is the appropriate choice. In the ‘strong’ radia-
tion limit xv> 1 (3.8a) becomes

v~z
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which clearly exhibits the radiation damping in contrast to the usual v ~ z'
behavior. From (3.8) it also follows that ultimately R ~ x—"s, i. e., the radiation
losses slowly decrease.

D. The Potential Step

Our examples so far have illustrated various dynamical difficulties associated
with the appearance of divergent runaway solutions as well as energy difficulties
associated with the behavior of the radiation reaction work. There are still other
difficulties latent in the Z feature of (3.1) as elegantly exhibited in an example
originally due to Borp [13].
Consider a potential step of height V, situated at z = 0. If we integrate the
equation of motion

5,5_15;'2_id_1f (3.9

m dx '

across the potential step from left to right and assume the continuity of # and ,
then we find the condition that

Vo

mTY,

9 (0%) — @y (07) =

where a,(0%) represents the accelerations immediately before and after z = 0,
and v, = %(0). Let x(0) = 0 and designate the initial velocity of the particle
by v;[= @(— oo)]. With these conditions (3.4) may be rewritten as

x=v;t +7(vg —v) (etT —1); t<<0 (3.9a)

xz(v,-—— —V—o)t—|—r(vo~v,-—l—7%) (" —1); t>0. (3.9Db)

mUv, o

If the particle is to penetrate the potential step and continue towards the right,
the runaway component of (3.9b) must be eliminated. From (3.9b) it becomes
clear however that this requirement will not specify a unique trajectory. Setting

Yo

muy

=0

Yo — Vi

in order to suppress the exponential, we have

, Yy
v = % {1 + [1 — ;Zg] } (3.10)

(]

and therefore two values of v, are compatible with all the restrictions so far.
In particular, if 4V, /mv; <1, it follows from (3.10) and (3.9b) that

vy — WI;‘: | (8.11a)
R i/ 3.11b
m; (3.11b)
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¥ are both possible final velocities of the particle. In terms of the dynamical criteria
¢ advanced so farit is impossible to distinguish one of these as being more reason-
* able than the other.

: If we now draw on energy considerations (3.11a) appears to be a somewhat more
plausible choice : One can easily verify that the kinetic energy behind the potential
£ step is diminished essentially by V, with a small additional amount (~ Vy/mov})
being expended in radiation. (3.11b) on the other hand represents a motion in
¢ which practically all the energy is radiated away at the potential step.’) We
. note further that (3.10) imposes 1 mv;? > 2V, as a minimum energy requirement.

& In order to eliminate any artificialities that might be due to the abrupt rise of
the potential, Haae [18] has extended this investigation to the case of a uniformly
k' increasing potential. He finds the interesting circumstance, reminiscent of the
. Klein paradox, that as long as the potential rise is a gradual one over a distance
. -of the order of cr, the duplicity of solutions may be avoided. Here again one en-
[ counters the elusive feature of a critical distance, or “electron radius”, in a for-
* mally point electron theory. WEsSEL [9], STGCKELBERG [37] and FEYNMAN [38]

have in fact used this multiple solution property of (3.9) to discuss the possibility

of a classical description of pair production.
. Another curious feature displayed by this example is that in the case of solutions

of the type (3.11b) there is an invariant upper limit to the amount of kinetic
energy that may be transmitted across a potential barrier. This follows readily
from (3.10) and (3.11b) since together they imply the inequality z(f > 0)
< [mf4 V] PomErRANCHUK {39] has elaborated this argument into one of the
few non-trivial applications of the radiation reaction theory. He showed that if
the potential barrier is identified with the earth’s magnetic field, then in the ultra-
relativistic case any electronic ‘“primary’” cosmic ray component would be limited
to energies of less than 107 ev at the eath’s surface —independent of the magnitude
of the initial energy. This point is also connected with the interesting possibility
of a vacuum Cerenkov effect.

E. Singular Cases

The particulary interesting possibility that no solution of the radiation reaction
equation resembles the solutions of the corresponding equation omitting Freet
was first discussed by ErLirzEr [24]. From our previous remarks (see 3.2b ef seq)
it follows that this is equivalent to constructing an Fey () which when re-expressed
as a function of time acquires a singular r-dependence. Eriezer showed that the
one dimensional Coulomb force satisfies this condition and in particular that
radiation reaction will cause two unlike changes to repel sufficiently so that no
collision is ever possible. This highly paradoxical result has occasionally been
dismissed on the grounds that the Coulomb potential is too singular to admit
solutions near its origin. It has also been argued that quantum mechanical effects
can be trusted to intervene at sufficiently small distances to perturb the classical
idealization in the right direction. It is difficult to agree with these points o
view for at least two reasons: :
(1) Despite the singular character of the Coulomb potential it is only necessary
to change it from an attractive to a repulsive potential in order to introduce
solutions representing collisions (Z1N [40]). Solutions approaching the origin are

9) A detailed treatment of the relativistic §-function force has been given by AsHAUER [36].
26 Zeitschrift ,,Fortschritte der Physik‘
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possible but just under those circumstances directly contrary to what one would
dinarily expect. ) ) '
(();) The u};e of a quantum mechanical argument at this stage would be an inversion
of the logic of the development. The difficulties underlying the classical theopes
are to a large measure shared by the quantized vers.ions. On a later occasion
(Section 6-F) we shall in fact use some of the insight gained ’f,rom our examination
of the classical theories to comment on various “runa\,way’c ;ela;ures which also
i i i tnote 21.
ear in quantum electrodynamics. (See especially foo

Zpgumber((l)f other singular cases involving both bounded and unbounded poten-
tials have been discussed by WILDERMUTH [41].

4. Physical Solutions: The General Case

A. Regularization and Perturbation Methods

receding it has become clear that we cannot accept all solutions of the
f:gilgtglrf feactiongequations as physically meaningful; some fu.rther procedure
must be adjoined to the integrations in order to generate the physically reasonable
solutions. In this connection, a number of schemes have been proposed by Haaa,
WmoermuTH, Cint, ELigzER and others. We may group t.hese efforts roughly
as follows: (1) Regularization Procedures; and (2) Perturbation Methods. ber of
(1) Regularization Procedures: We have alre.ady seen by means of a n1(11m zeli 1o
examples that parasitic runaways are persistent f‘ez?t.ures of (2.8) and ( h ).
We have also seen that a proper adjustment of the initial acceleration can p gse
out the divergent components. Haac [18] alzc.i hﬁter Prass [10] have described a

ich produces this phasing automatically. .
i}n:rt;%irv?zl.& ilr)ltegrated oncg with respect to the time in the following way

i
L s 1
x=ell ao—m—_[fet/ Fextdiy . (4-1)
0

If in the limit ¢ — oo, % (£) is to remain finite it clearly is sufficient to choose

o0

o= —- f et Py . (4.12)
mT
0

Entering this back into (4.1) we may rewrite it in the compact form

oo

¥ = 1 f e~ =t Feyy () diy, (4.2)
mT
¢ :
which displays the fact that the radiation reaction makes the particle ac.eeleratlog
proportional to the (incomplete) Laplace transform of the force — probing ahea
an interval ~ v in time. This felicitous interpretation has encoura;ged some
authors to advance (4.2) as the fundamental equation of the theory.®) As yet,

%) The relativistic generalization of (4.2)_ is extensively' discl'lssed in [88]; some related ques-
tions regarding the existence of solutions are examined in [87].

L4
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bowever, no physical argument has been given which would lead to such a result
directly. It may be noted that the transition to (4.2) has an equivalent interpretation
as a standard transformation in the theory of integral equations, i. e., the incor-
poration of boundary conditions by means of quadrature. It should not be over-
looked that such a regularization procedure copes with only a part of the diffi-
culties encountered in constructing physically meaningful solutions. Similar

| remarks also apply to the Fourier transform method suggested by WiLpERMUTH [4]]

and to the asymptotic regularization of ELIEzER and MAILVAGANAM [42]. See
also Gora [43].

(2) Perturbation Methods: This is in principle a less satisfactory approach than
the regularization procedure since from the outset all other considerations are
subordinated to the aim of manufacturing reasonable solutions for (3.1) through
perturbations of (3.1a). In particular this carries the penalty that occasionally
one will construct perturbation solutions which actually have no counterparts
among the solutions of the exact problem. [See also the remarks following (3.2a).]
The approximation schemes in such cases may in fact conceal important features
of the underlying theory.

In the construction of these solutions one has the option of carrying out the
7-perturbations either in the differential equation itself [e. g. (2.8)] or in its
solutions. STEINWEDEL [44] and BuaBHA [45] have noted that the unwanted
components are usually characterized by terms in e which are non-analytic in

" 7. They have therefore suggested following the second method : The solutions are

to be obtained exactly from (2.8) and then examined for analyticity about v = 0;
all singular terms are then to be discarded. A slight variant of this has also been
proposed by Cint [46]. ARLEY [85] has however criticized these recipes as being
excessively stringent since too many otherwise well behaved functions would be
excluded. Our previously acceptable ““physical” solutions (3.5¢ and d) provide an
example of this since they clearly could not survive the analyticity test:

The perturbation solution here would actually converge to a discontinuous
trajectory!

The other alternative, i. e. modifying directly the differential equation, is actually
the simplest and most foolproof perturbation technique. The radiation reaction
term m 7 & is simply evaluated from the unperturbed equation Fey, — mi and
the exact equation (2.8) replaced by

Foxt + 7 Foxy = ma (4.3)

(or its relativistic analogue). This automatically yields the perturbed trajectories
and voids all infinities ab initio. Indeed, judging by some of the current literature,
for example [47], it is in fact (4.3) and not the prickly (2.8) which is the basic
equation of the theory. '

Field theoretical perturbation schemes have also been discussed by STEINWEDEL
[14] and Pr1coGINE and LEAF [53].

B. A Dynamical Correspondence Principle

We shall now show how most of the points of the preceding discussion can be

summarized in terms of a precise mathematical argument. Consider again

MEy = Fext, (4.4a)
26+ ‘
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and the radiation reaction equation
— TMEy 4 mEy = Fexs, (4.41)

which from this point on we shall regard as its ‘‘degenerescent” partner 10y
What we should really like to study is the extent of the correspondence between
the solution-sets of these two equations.

Let us introduce a deviation function % (£) defined by

h(t) = zy(t) — 2, (t). (4.5)

It is also convenient to suppose that the initial conditions of (4.4a and b) have
been matched at ¢ = 0 by requiring

2,(0) = 2,(0) and ,(0) = &,(0). (4.52)

Introducing now the formal solutions of (4.4a and b) into the right hand side of
(4.5), we find

¢

1 1
ht)y = — %Fé‘;}’t + a, rz{e‘/’ — (1 + ?t)} — E/e(t—tl)/ng;t (t) dt,, (4.6)
' 0

where F; denotes the (indefinite) repeated integral of Fey, and a, stands for
%4(0). The information contained in this equation is actually better displayed
by inverting it to give F{}; in terms of k. From this point of view (4.6) is really an
integral equation. Its solution may be written as

F(2)

m
ext T

¢ .
/h(t) dt — mh + ma, 122— , (4.7)
h

and this we shall regard as the basic expression of the dynamic correspondence be-
tween (4.4a and b). ,

The principle advantage of reformulating the problem in this way is that it
preserves the freedom as to what may be considered a reasonable deviation
between the solutions of (4.4a) and (4.4b). In particular, with a given bound on
h(¢), it is possible to make a value judgment as to just how rick the structure of
the theory actually is. To illustrate this point consider the extreme case

[R(t)] < K forallt. (4.8)
From (4.7) it follows immediately that
[P )] < Ké2. (4.8a)

At most therefore F(, ~2. If we now assume in addition that ¢ - Fey is contin-
uous, increasing, and positive for £ >> 0, then by a standard TAUBERIAN theorem

1) The terminology is adapted from the degeneration theory of differential equationsv
(MiNorsKY [48]).

The Classical Theories of Radiation Reaction 363

] (e. g- [49]) we have the strong conclusion that

Foxt(t) ~ 1. ' (4.8b)

k' The uniform boundedness of  is obviously a very severe restriction.!!)
g Equation (4.7) also includes most of the preceding regularization schemes. If
P for instance Fext = Fy, then (4.7) may be put into the form

B — L h= (may — Fy) t (4.9)
7

E' which integrates to give

h =1 (ma, — Fy) {e‘/’— 1— %} (4.9a)

; and clearly unless a; = Fo/m, that is, h =0, there will be a runaway deviation.
¥ The same result could also have been obtained directly from (4.6).
¥ A more general situation is

Foxt(£)=E 0 for 0 <& <Cifmax, and Feyu(t) =0 otherwise;

i. e. an external force acting during a finite time interval. In this case we have

¢
1 1 '
h’——r—h:aot—;b-fFext(t)dt. (4:.9b)
0

The complete integration yields

tmax tmax

1
k() = —;;fﬁ’ext(t)dt — ay7? 4 72ef day — %fe“/’ Feos () dtl. (4.9¢)
0 0

In order to keep the deviation within reasonable bounds, clearly a, must be
adjusted to
fmax
4= f ot Foo (8) dt, (4.94)
mt
0

and in the limit g, ~> co this coincides exactly with the previous recipe, i.e.
Haag’s regularization.

This can be contrasted with the corresponding comparison for the perturbation
equation (4.3): In this case it is'easy to see that the deviation function is given by

Ty — X = %‘/‘Fext(t) dt.

Clearly, for reasonable Fey, runaway deviations such as those occurring in (4.7)
are avoided. In particular, as 7 — 0, the deviation disappears, as is consistent
with the perturbation approach.

11) Analogous arguments can be carried through for weaker versions of (4.8).
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C. Instability of Solutions

The solutions of the radiati i
‘ lation reaction equation (2.8) have a f i
iir}lfrzimlcal pr(f)plfiarty and that is that none of them are )stable ! # further undesirable
© case of linear forcing functions this is equi ,
_ _ quivalent to a well kn
}V;V;Slclil3 (i(:;slyb?fk ’o(()1 the clgsileal Routh-Hurwitz criteria. The genera(l)‘Ziré1.111::13‘:;(1)11‘1D
L 1y been discussed by Kzerro [50]. This result can be
: ‘ / . und
:1(;?58127 in iermil oé t<;)ur }]lprewous discussion: The key point is the deﬁl;iog;ifv:lzy
ment needec Yo phase out the runaway solutions. If f ider
a particular regularized solution correspondi ven B e e onsider
_ to a given F,
effect of a small additional ing. o g et Y the
. perturbing force F® which
By a simple extension of the i readily be showis tharth
a si previous arguments it can readi that the
deviation from the regularized solution is of the order ofeadlly be shown that the

t
oll* [e=tlx F») dy,

4L

for ¢ > ¢,. In other words i i
o > 2 » small perturbations are impossible — all solutions are

3. The Radiation Condition

A. Introduction

é‘znzfgfz‘;agirradﬁmon reaction theory must give a reasonable account of the
coopser of enc i%y gtw_egn the ‘par‘tlcle and the radiation field. We have alread

Mthossh 4o rad.a,t.eclslve point in the case of uniformly accelerated mo’cion}T
the dyoamme fil lon reaction equation (2.8) gives a reasonable description of
worlk of pics In 1sf1nstancg (once the regularization has been included), the
way. Tn ihe Te: tﬁn pr}fes fails to account for the radiation losses in a na:tural
Pt dg " f et'rlc ness of the theory it is therefore essential to take both
o erge llC criteria 1nt9 account. In the present section we shall give
o antitati reagz‘mu ation of a radiation condition which will assure that the work
tho radpnreas JO?trepfesents, on the average, a loss of energy by the particle to
admisibl extcrnal Torees ok well 5 on e shars sy of e ion both on the

‘ e char i j i
In particular we shall substantially confirm a cony'ZCGtS:eoofr;ghi;;th;i: ttoriiii:};)g:;

[4] that a consistent theory — . 1
oscillatony e ry — based on (2.8) — is only possible in the case of quasi-

B. Analytical Preliminaries

It will facilitate the sub i ion i i
nomang it sequent discussion if we introduce some standardized
(@) Bssentially increasing functions: A function f will be said to be an essentially

increasing function on the inter 1Qi : . . .
g > 0and a 6 > 0 such that val Qif there exists a strictly increasing funection

for all £¢ 0. ) —g@)) <6 (5.1)

E such sequence #, . .
- maximally repetitive sequence. Let 7; = l;y; — t; be the repetition intervals
¢ corresponding to this maximal sequence. A quasi-periodic function is then defined

E by the following properties:

@ (1) The partition {¢;} is a fine mesh of Q.
£ (2) ll{ax (17;) ~ Min (7).

 (3) f is uniformly bounded in 2.

[
{
H
!
¥
¥
i
|3
¥
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k (b) Quasi-periodic functions: Consider a function f~, also defined on £, which has
i the property that there exists an ascending sequence of points &y, #;, - -
t such that f~ (to) = ]‘~(t1) = ... = f(ta+;)- Assume further that there exists no other

o t,,+1 e

., t}. for which k > n + 1. The sequence {{;} is then said to be a

(5.2)

Conditions (1) and (2) essentially guarantee that the function repeats itself suf-
ficiently often and with enough regularity to deserve being called quasi-periodie.
. (3) eliminates oscillatory function with arbitrarily large amplitudes of fluctuation.
E (c) Essentially increasing quasi-periodic functions: Combining (5.1) and (5.2) we
' now define an essentially increasing quasi-periodie function f in terms of the
L representation

f=F+g. (5.3)

I Such a function is therefore the sum of a strictly increasing function and a quasi-

periodic function.

4 (It should be noted that the definitions'(a) — (c) are not sufficiently precise to

exclude a certain number of pathological cases [89]. Supplementary hypotheses will

therefore have to be introduced several times in the subsequent discussion. In

addition it will be convenient to assume that all functions which appear will be

' at least twice differentiable.)

C. The Radiation Equation

; The total work of radiation reaction, in terms of the variables of (4.4b), is

t
W(t) = —mz [, de. (5.4)
ta

On the Average W should be an increasing function of the time: In general, of
course, we cannot expect this to be a strict increase since the decomposition (3.6)
suggests that there may be a fluctuating “‘acceleration energy”’ component
representing a short term energy influx from the field.

We therefore make the basic assumption that in any case W must be an essentially
increasing function of the time. It is then an easy corollary of (5.1) that there must
be some last point of time beyond which W (¢) is certainly positive. It will turn
out to be convenient to choose this point as the zero of time and to discuss (5.4)
in terms of h(t) — the deviation function between the radiation reaction equation
(4.4b) and the comparison problem (4.4a) matched at this zero point of time.
We begin by transposing (4.5) to give

2y =h + x,. (56.5)
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Scaling z, (0) to 0, it follows that

1 |
x2=7h—f~aot, and a:2=—1—h. (5.6)
. Introducing now the auxiliary variable

1
y=7h+%t, (5.7)
(6.4) may be rewritten in the form

t
W)= —mz [ gydt (5.8)
0

where the fluctuating portions (if any) of W for ¢ < 0 have been implicitly disre.
garded.!'?) In this form W is finally related directly to 4 (f) and it is possible to study
the additional restrictions which arise as a consequence of W being an essentially
increasing function. :
It is convenient to work with the differentiated form of (5.8).

¥+ g = 0. 6.9)

This makes it clear that the radiation condition is actually equivalent to a modi-
fied Fowler-Emden equation [51], [562]. The associated boundary conditions
follow from (4.7) and (5.7):

i 1
y(0) =0; y(0) = ay;

§0) = ag — — Fext(0). (5.10)

In general, it is known that if W ~ O (), m rational, then y ~ O (t*) for some k.
More specific information will of course follow from our present restrictions on
W and a number of other provisory assumptions.

It will not be an essential restriction of generality to suppose that a, > 0. By the
mean value theorem it then follows that there exists an interval £, consisting of all
t,0 <t < ¢, for some #; > 0, where both y and y are positive. We first show that
the simplest possibility, i. e. both & and W strictly increasing functions in O,
cannot occur: It is convenient to introduce the equivalent conditions A(t) > 0,

W(t)>0,tc £2,. Multiplying both sides of (5.9) by 7 and integrating, we have

to
w

1 . ;
< [P (0) — a0} = —Of y?’ dt. (5.11)

But by (5.7) and the present hypotheses, the left hand side of (5.11) is positive
while the right hand side is negative — hence there is a contradiction and this
simplest case is eliminated.

1%) Tt will be convenient from here on to absorb the factor mt into W(t).
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:"‘Suppose now one drops the condition on  but still maintains W > 0. According
bto (5.9) y isthen a concave function. This is a very severerestriction. It 1I‘nmed1a1:,ely
- implies for instance that no solutions of the form y = k" exist; concavity restricts
i to the interval 0 << n < 1; and this range in turn is eliminated by the finiteness
 of ij(0) (see 5.10). . '

-If y is concave then there is the possibility that y eventually becomes negative:
¥ From this it follows that there may be a ¢, such that y itself becomes negative fqr
Lall ¢ > f,. If however y(t,) is permitted to be equal to zero, this brings with it
i‘the consequence that W(tz) = 0 because (4.7) and the presumed finiteness of
k- Foxt imply that § cannot diverge. In this event a repetition of the argument leads
. to the conclusion that W itself acquires an oscillatory component — i. e. the very
 point we are trying to establish. _ _

Let us now go back for a moment and assume W > 0 and y > 0 in order to
 exhaust the alternative possibilities. It is shown in detail in Appendix 1 that under
 these circumstances

-/ . . .

[ 7]
{ y(0) < at (2 —exp L_O"agt— ; (5.12)
b and also -
1 -

S

t
— ILEEE—" A | 5.13
» W(t)gagti2 exp i 2 1 (5.13a)
¢ Furthermore
¢
f[?] dt < (@2In 2) . (5.13b)

0

B These inequalities constitute severe restrictions on the nature of W (¢) and y(¢).
B There is in fact a less explicit although still stronger result which may be stated
& in terms of the following

- Theorem: If 4 >0, then all (sufficiently differentiable) W functions compatible
= with (5.9) must satisfy W<t in the range t > 0.12)

3 Proof: Integrate (5.9) by parts,

t
. w Wy
do-—y(t):—?/——i—f yZy dt.
0

(5.14)

The existence of the integral follows from (5.10). Since both ¥ > 0 and W > 0,
P we have the inequality
ay —y(t) = (5.15)

{ 12) W<t =>1lim Wjt = 0. See [49] for notation.

t—o0
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. :
Integrating once again, and introducing W@ = f W dt, (5.15) becomes
0

0>y — agdy -+ WO, (5.16)

In the second integration we require

¢
W (0) f Wy
—— 2 =0; and dt < oo
y(0) U

which may be justified from the general assumptions about y and W.
For a given W, (5.16) is an integral inequality for the permissible values of y. It
may be rewritten in the form

1 4:W(1) s 1 j 4W(1) e

= |z el kA . 5.17

g {1 [(aotﬁ] P<o< U [1 (aotﬂ] } &-17)
From this it follows in turn that

W < 1 (ayt)?. (5.18)

The key point now is that one can also prove that W® ~ O(#2) is impossible!
From this statement the conclusions of the theorem will follow.
Let

W=u«t+p for t>(>0 (5.19)

and assume « > 0. Going over to the inverse functions, (5.9) is separable and
integration yields

—aln{ y("”)} 5 P = o [0 > 0. (5.20)
Therefore
) 2
y(t) < y(ts) exp { [yg;)]—}, (5.20a)

which clearly shows that y is bounded from above. On the other hand (5.17) and
(6.19) imply that there is a lower limit on the growth of y which ultimately exceeds
this value as ¢ — co. We are forced to the conclusion that there exists a £; beyond
which no solution to the problem exists;!3) (5.19) must therefore be amended to
read ¢, < t < t;, which finally implies that W cannot be ~ O(t). [If « and § are
replaced by smooth bounded functions of #, the argument is essentially unchanged.]
Since a priort all pathologies have been excluded by (5.1) and (5.2) there are only
the three possibilities remaining for W: Either (1) W >>¢; (2) W ~; or (3)
W <(t. But (1) and (2) have been eliminated by the preceding; so this leaves
only (3), and therefore completes the proof of the theorem!

Summarizing all the work so far, one finally has the conclusion that if y is a
non-decreasing function of ¢, then the radiation must proceed at a rate which is

13) The equation may be completely integrated in terms of inverse error functlons ty then
emerges from the bound of the domain of definition. :
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less than proportional to the time. In view of (2.2) this is clearly much too restric-
tive a condition. If y is permitted to become negative, then either this reduces to
the case previously discussed — through y eventually crossing the ¢ axis — or

else fluctuations of g, reflected in §, again force W to oscillate since § and W are
directly tied together by (5.9). The only other alternative is that both the deviation
function as well asthe radiation acquire oscilatory components. In this sense, with
the exception of a number of highly circumscribed cases, we finally arrive back at
ABRAHAM’s conjecture — which now may be regarded as confirmed — that from
an energy transfer standpoint the theory yields satisfactory results only in the case
of quasi-periodic motions.

6. Non-Local and Extended Electron Theories

A. Introduction

A considerable portion of the theory of radiation reaction has been developed
within the context of various non-local extensions of classical electrodynamics.
Before proceeding with the detailed discussion of these features it will be useful to
review some of the (contemporary) reasons for taking an interest in these develop-
ments.

(i) Non-Singular Form Factors and Runaways — A number of experimental
programs are currently under way which are producing detailed information on
the form factors of nucleons. If classical field theories, patterned after electro-
dynamics, are to continue to be of any qualitative s1gn1ﬁcance in discussing such
particles then clearly these new structural degrees of freedom must somehow be
accommodated. Inevitably this leads to some type of non-local generalization
of electrodynamics. The associated radiation reaction theories then of course
must also be superposed on some type of non-local structure. In the later deve-
lopment it will appear that such additional constraints can actually be of help
in making a proper choice among the many possible extensions of the classical
theory. There are, for example, numerous “covariant form factor” generalizations
of electrodynamics which can be shown to have non-physical radiation runaways
despite the fact that the self-energy divergences have been successfully remo-
ved.

(i) Phenomenological Theories of Radiation Reaction — Current progress in
plasma physies and millimeter microwave generation has stimulated the
development of an extensive phenomenological theory of radiation reaction.
(GinzBURG and E1pmax [54]) Although this theory has not as yet been put on a

" completely consistent foundation, it is already clear that its mathematical

apparatus has only the vaguest resemblance to a point particle description. The
spirit of the formulation is in fact very close to that of the classical extended
electron self-force picture.

(iii) Electrodynamic Collective Modes -- Non-local generalizations of elec-
trodynamics are also interesting in that they offer certain formal possibilities
which are completely lacking in the point charge theories. The most interesting
of these features is the appearance — at certain critical frequencies — of self-
sustaining charge oscillations. The charge oscillations have a natural interpre-
tation as collective resonances of the field-matter system. In common with collec-
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tive modes familiar from other areas of physics, these charge resonances are non.
analytic in the coupling constant (e2) and cannot be reached in truncated versiong
of the theory. The existence of these collective modes offers the formal possibility
of extending electrodynamics into an “isobar” theory of excited charge states.

B. Higher Derivative Theories

The minimal intervention in the structure of the point charge theory which offers
a way out of the contretemps of runaways and the non-existence of physical
solutions, ete. is the introduction of higher derivatives. This avenue has been
explored in detail by ELigzER. In his first attempt [79] ELiEzER widened Dirac’s
ansatz (2.16 ¢) by including a new constant », and some higher derivative terms as

follows
1 2 2 d2u du;\?
B, = = i ] i
k (m 2 r)uk+x{3 ds? ~|_uk(.ds)}'

If the original derivation is now repeated with this new form of By, it is found that.
the resulting equations of motion contain fourth derivatives. The analysis of these
equations becomes proportionately more difficult; however ELigzER himself, and
later Zin [40] and Haac [18] showed that the runaway solutions and related
difficulties still persist in this extended formulation.

In a second attempt, Eriezer [24] [55] introduced more drastic measures: The
ansatz (2.16¢) was generalized to include an infinite number of derivatives, viz.

60y

1 e2 00 o
Bk: m—?— uk+2B2n u};”’——

r n=1
1
— [ui u%zm — ..+ (_ l)n u;n-—l )u?”l) + _é_(__ l)” u(in)u(in):l uk} (6.2)

where the B,, are arbitrary constants and w, is the four-velocity.In this form the
_theory is actually equivalent to an extended electron model.14) To see this, we
introduce (6.2) into (2.16b): In the non-relativistic limit the result may be written

m {Zm' ¢ SDj} T = Foyy (6.2a)

=0

u}rlhere D represents the derivative operator and the ¢;’s are constants related to
the B,,.

In the special case ¢; = (7)/[j! (6.2a) simplifies still further to

mE(t 4+ T) = Foxt (6.2b)

by virtue of Taylor’s theorem. In this form the content of the theory is summa-
rized in terms of a differential-difference equation; this in turn can be shown to
coincide exactly with the corresponding expressions obtained from the extended
electron theories. (See below.) '

14) Note however that this approach still requires a mass renormalization.
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C. Extended Electron Theories

L The original versions of electrodynamics were all of course based on the concept
 of an extended electron. As mentioned in the Introduction, the ultimate goal of
 these theories was the calculation of all of the inertial and dissipative properties
E of the electron from a model which pictured it as a sort of electromagnetic sponge:
F The various parts of this sponge were supposed to be capable of interacting with
f each other as well as with the external fields — the whole object responding to
 the net sum of the “outside’ and “‘self”” forces. For the fields, the basic equations
- were taken to be those of Maxwell. The dynamical properties were then assumed
 to follow from the equation

Feyy 4 Poor = ’mmech‘a-E (6.3)

' which, because of the implicit a(f) dependence of Fyyr, rather than being a
- differential equation is actually a functional equation.'®) It is this functional
E equation property of (6.3) which endows the classical theory with its astonishing
 wealth of solutions! We shall see first of all that in the limit of small accelera-
| tions (6.3) reduces to (2.8), i. e. the ordinary theory of radiation damping. Se-
-condly we shall see that at “super-light” velocities (6.3) goes over naturally into
 the constant velocity radiation reaction of the Cerenkov effect. Finally it will
appear that this equation also contains the radiationless charge self-oscillations
E discussed previously in Section 6-A (iii).

L Clearly this program requires a rigorous and generally valid expression for Fye.
E We begin by writing down the usual representation for the retarded potentials

b A(x, 1) = f e’ f da’ |@' — 2" |1 j (@, t”)é(t" — [t ol = IJ)

E‘The Lorentz force is given by

Q(x', ) = —grad {dﬁ — % x -A} + ~(1;—{(w X [® —x]) X curl A — %‘;} (6.5)

(6.4)

'\ where @ locates the center of the electron and w is the angular velocity. The total
i self force is then

Foar(t; ®) = [ da’ 8(@',1) o (®',0) (6.6)
- where the & has been inserted on the left to serve as a reminder that Fgyge is a

B functional of the trajectory.
g The sevenfold integration implied by (6.6) can be simplified in a number of ways.
g For example Fgq can be written as a Fourier transform

Feo = ~4nfdrf%'§leklzexp{ik-[w(t) —x(t— 7)) X
0,

X [k X (#(t — 7) X k) cos(ckt) + ik®(f) X (@(t — 1) X k) sin(ckv)] (6.6a)

9 15) The non-electromagnetic inertial component m is inserted as a purely phenomenolo-
4 g p mech purely
gical term. In a strict (classical) nucleon field theory the corresponding ansatz would be
Myeen & — Fly;, where Fiy; represents the influence of the Yukawa field.
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where
ok = (27)" [ o (@', ) e~i*- da’

which reduces (6.6) to a fourfold integration. (See e. g. Bonm and WEINSTEIN [56]
or GINzeURG and Erpman [54].) We shall return to this point later in connection
with the phenomenological theory of radiation reaction.

The complete calculation of all the explicit integrals contained in this expression
was carried out by SoMMERFELD [31] [57] for two special cases: The uniformly
charged sphere and the infinitely thin spherical shell. For the uniformly charged.
sphere, in pure translation, the result may be written

Ty

3¢ [letat—n) o
Fself——s—ré f[**‘q-;a—q.f(CT+q)—ac-§f(CT+q)] dv —
b

Fle—alt—1) o
_(f[xTﬁ (|c-c~—(T])—q%f(]cr —G"I)Jdr . (6.7)

The auxiliary function f is defined by

F

1 p 1 2
() =f{4roﬂ =38+ %} df = 55 zT — 23 4 27422 — —; re. (6.7a)

27,

T denotes the path length traversed by the center of the electron in time 7, i. .
T =) —x(t — 7). (6.7b)

7, and 7, are the (possibly non-unique) roots of
ct+ T =2r, and |et — 7| =27, (6.7¢c)

respectively; r, is the charge radius.

The functional nature of Fy is now explicitly displayed on the right hand side
of (6.7): This type of expression is actually an “integral-delay’ representation
because the retardations of the functions occuring in the integrand are themselves
dependent on the unknown function. (See [68].) If this representation is carried
back into (6.3), the resulting expression is evidently a functional equation in
x (f). It should be emphasized that as far as the rigid spherical electron is concerned,
this .equation is an exact consequence of electrodynamics — presupposing no
restrictions on either the velocity or the acceleration.

It was of course one of the great triumphs of this classieal theory that one could
set Mmecn = 0, 1. e. replace (6.3) by :

Fext = _Fself (68)

and 80 ach’ieve a purely electromagnetic explanation of mass. (Pace the stresses
of Poincaré.) These remarks depend on the use of the so-called “quasi-stationary’
approximation

dv v
roﬁ<?[c—v|; (6.9)
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which for ¢ &= » reduces to the usual assumption that the accelerations are always
small in time intervals of the order of the electron transit time (7). By systematic
use of this inequality, i. e. expansions of the type

Bt — )~ &) — ()T + ¥ () %2 ete. (6.9a)

the integral-delay representation (6.7) can be developed in terms of successive
derivatives of x(t). Carrying this expansion to the third order to include the effects
of radiation reaction one finds the remarkable result

. . 2 e .
Foere(t) = —mem (x, 7¢) © - T e x (6.9b)

which agress exactly with the previous equation (2.8), derived on the basis of
conservation laws.18)

The significant new information contained in (6.9b) is the explicit evaluation of
the electromagnetic mass in terms of the velocity and structural characteristics-
of the electron. Scuorr [30] has carried out extensive investigations of the form
of (6.9b) for a number of electron models and in particular has verified that in
the case of the deformable Lorentz electron all the results of the relativistic
theory are completely reproduced. Repeating this reduction from the appropriate
modification of (6.7) he showed that

Mem (&, 7o) = (T"z
=

in complete agreement with special relativity. Furthermore it can also be shown
that the coefficient of the & term is precisely equal to (2.10) i. e. the proper relati-
vistic generalization of mt. A very important point established by ScrorT in
this connection is that in the v/c <€ 1 limit the form of the radiation reaction term
is independent of the electron model. This is basically the reason that it can be
recovered at all even in the point electron limit.

Within the framework of the previous theories it was permissible — in a sense —
to interpret (6.9b) as being the exact expression for the self-force. Within the
present development however this appears to be merely the first approximation
to the structure of a far more complicated theory. It is therefore of particular
interest to study those features of (6.7) and (6.8) which are not reflected in the
truncated versions. There are essentially two ways of approaching this problem —
One is to remain entirely within the domain of the quasi-stationary approximation
and to extend the expansion (6.9b) to include the higher terms. The other is to
go beyond the quasi-stationary approximation altogether and to study the exact
consequences of (6.7), for example its behavior in the vicinity of the velocity of
light and in the “super-light’’ Cerenkov regime.1?)

16) More precisely, the quasi-stationary approximation is a necessary but not a sufficient
condition for deriving (6.9b). The approximation retains its meaning and utility even if
. ¥ > ¢, but then (6.9b) no longer applies.
17) Tt is easily seen that (6.9) does not necessarily hold for electrons of energies = 101 ev.
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We consider first the inclusion of the higher derivative terms: Strictly speaking
this involves not only the quasi-stationary approximation but also the additional
assumption that v ¢, and the neglect of all the higher derivative cross terms
which occur when the expressions (6.9a) are substituted into (6.7). We shall speak
of these simplifications collectively as the “extended quasi-stationary’ approxi-
mation. Since we have already learned from Eliezer’s work (Subsection 6-B above)
that the inclusion of only a limited number of higher derivatives in (6.9b) is not
likely to bring about any substantial improvement, we shall immediately ext.end
these expansions to include an infinite number of terms: Following the previous
calculation, the infinite analogues of (6.9a) may be substituted back into (6.7);
neglecting the products of the higher derivatives, the resulting expre-ss.ions
simplify sufficiently so that the remaining integrations can be performed exphm'tly.
Formally the result is a differential equation of infinitely high order. The tedious
details of this computation were actually first carried through by HeErgLOTZ [59]
(see also WpERMUTH [41]) with the final result

2 [o5]
Py — _ 18 {Z' 4, @m} & (6.10)

7'002 n=0

o)

where

A, = S 6.10a)
"T [ A8+ n) ‘
and 9 is the differentiation operator.
By means of the identity
A =exp{hD}—1 (6.11)
)

%f(x)zf(w-{—h) —f(@)

infinite order differential equations of this kind can always be transformed intp
difference equations. The particular equation (6.10) has however a rather compli-
cated finite difference form (see subsection F below). It was first shown by
Pace [15] that this-approach leads to much simpler “natural” equations if the
electron model is taken to be that of a uniformly charged spherical shell. Begin-
ning with the appropriate modification of (6.7) and again applying the extended
quasi-stationary approximation one obtains in this case instead of (6.10) the
expression

— 2 s (o) gl 6.12
=+ 5|8, (-2 2 e o

Using (6.11), this can now be transformed to
et [. 27, .
Foorr = 370 [x (t — —E-Q) — x(t)] ; (6.12a)
a result which was also later derived by Borm and WEINSTEIN [66]. Comparing

with our original radiation reaction equation (2.8) we see that now

Fexy = . [:i(t) —x (t — —2—5—“)] (6.121)

2
3ryc
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in contrast to the previous
' 7 .2 e
ext = M X — *3— ?3- x;
clearly the splitting into inertial and reaction terms has completely fallen away.
Treating 2ry/c as a small quantity, i. ., going back to the partial expansion (6.9a),
the right hand side of (6.12Db) is seen once more to agree with (2.8) in lowest
order if one chooses
2 e

m=— ——,
3 ryc?

(6.13a)

The distinction between (6.8) and (2.8) becomes even more marked if one goes
beyond the quasi-stationary approximation altogether. It was for instance first
discovered by SoMMERFELD that at “super-light” velocities there is a radiation
reaction even at constant velocity. By a straightforward modification of the discus-
sion of Appendix 2 it can be shown that if z(f) = v > ¢, (6.7) reduces to

9 2 2
Foop = — =~ (1 - C—). (6.13)

4ry v?

Fgerr in this case has the interpretation of being purely a radiation reaction force.
In fact with the replacement ¢ — c/n, (6.13) correctly describes the Cerenkov
losses of a particle traversing a medium of index of refraction 7.18)

D. Fini’ce Difference Theories

From a logical point of view it is possible to dispense entirely with the scaffolding
leading from (6.7) to (6.12b) and to adopt the finite difference formulation as the
fundamental statement of the theory. This point of view and its antecedents has
been extensively reviewed by CaLpirora [60]. One can show quite easily for
instance that it is possible to arrive directly at (6.12b) by merely assuming an
intrinsic quantization of space and time. In such a lattice manifold, clearly all
the customary differential expressions have to be replaced by their finite difference
analogues. In fact, carrying this approach to its logical conclusions, all non-
constant physical variables must be represented by discontinuous functions.
CaLpirora himself does not go to quite such extremes but he does present an
axiom system showing that if one assumes (a) the existence of a fundamental
interval of time, e. g. 2ro/c; (b) the validity of the usual electrodynamics in the
limit 7y — 0; and finally (¢) covariance under Lorentz transformations, then
(6.12b) emerges naturally as a non-local generalization of the point charge theory.
A particulary interesting feature of this approach is that it motivates directly the
covariant generalization of (6.12b), viz.

2

. 1. ,
— % {x,, (s = s0) + —5 e s) iy (s — 50) 2 (s)} = F,. (6.14)

* 1%) Sommerfeld’s formula (6.13) dropped into obscurity because of its apparently anti-relati-

vistic content. It was not until 1937 that Jorrk (quoted in [67]) pointed out that it had
correctly anticipated the Cerenkov Effect. The elaboration of this correspondence is
essentially the basis of the phenomenological theory of radiation reaction. [Section 7]

27 Zeitschrift ,,Fortschritte der Physik*



376 TroMmas ERBER

The symbols here have their usual meaning as four-vectors; s, denotes the invay;_
ant interval of proper time corresponding to 2ry/c. This theory is therefore gy
example of a covariant electrodynamics which automatically includes a “fund,_
mental length”.

CarpirorA shows that the runaway features of the point electron model do ngt,
oceur in this finite difference theory (see also subsection F below) and presentg
other arguments showing that the solutions of these equations can always pe
expected to have a dynamically reasonable aspect. Nevertheless there are twq
broad objections which may be brought against too strong a commitment to thijs
point of view. The first is that this formulation still does not give a satisfact()ry
account of the energy transfer from particle to radiation field. In particular, a¢
CarpIiroLA shows, the hyperbolic motion is still a radiationless trajectory in thig
theory; in view of the preceding discussions on this point (see especially the
remarks following (3.7)) it is difficult to accept this without reservation. Ty
should also be emphasized that the mathematical structure of (6.12b) is not
nearly as rich as that of its “parent” (6.7): The Cerenkov features and near]
all of the non-stationary cases have been completely lost. Nevertheless (6.12b)
makes it particularly clear that the vanishing of the external force does not
necessarily require the vanishing of #. The new solutions which enter here — the
so-called radiationless internal modes of the electron — will be discussed further
in the following sections.

E.[Covariant Form Factor Theories

With the advent of special relativity, the elaborate electron models of ABRAHAM,
LoreNTz, and SOMMERFELD were of course completely buried. In fact this inter-
ment was so complete that when in later years the divergence difficulties of the
point electron theory were again felt to be particularly acute, the remedies were
not sought among the old extended electron models but rather among far more
formal devices — the covariant form factors and smearing functions. The essential
idea of this new approach was to hold on to the linearity and Lorentz covariance
of the classical theory but to blur the field-particle interaction sufficiently so as to
smear out all singularities.’®) Theories of this type have been studied by Borp
{13], Feynman [38], McMaxus [61], and especially LEEMANN [62]; comprehensive
summaries have been given by HOXNL [63] and Rzewuskr [64]. We shall consider
here only those aspects which have a particular relevance to the radiation reaction
question.
In the Hamiltonian form of electrodynamics, the usual interaction between field
and particle is given by

 Sm=e [[6(x —2(5) we () 4 (2) Pw ds (6.15)
where z(s) represents a space-time point on the world line of the electron, para-
metrized by the proper time s, and u, is the four-velocity. In the linear non-local
theories this is replaced by the ansatz

Sy = e [ [ S([z — 2()1%) wels) 4i (@) dx ds

19) Several non-local and non-linear theories have also been discussed by BLocHINZEV [65].
See further Pats and UHLENBECK [66]. The significance of radiation reaction in these
theories is not yet clear.

(6.15a)
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 where J is a sharply peaked function which “smears” out the divergences that
g would otherwise be caused by the §-function. The equations of motion implied by
 (6.15a) are complicated non-linear integro-differential equations. In the non-
 relativistic limit they may however be reduced to the simple form

x({) —x(t)

2 e = =
Fould) = — 5 560+ [arF e —ep) o)~ 2=

} (6.16)

= where  is related to ¥ essentially via a Fourier transform. (See [61].) One point
- that is immediately evident is that the structure of (6.16) is much simpler than
| that of either (6.6a) or (6.7). Note in particular that the charge volume is inte-
k. grated over only once (compare the |gg |2 in (6.6a)) so that the functional depen-
p dence of Fyqc can be expected to be more rudimentary in this theory. We shall see
. in a moment that this implies serious drawbacks for (6.16).

F. Runaway Solutions

i If the non-local or extended electron theories are to represent any improvement
I over the point-charge theory, then clearly they must not contain any runaway
¢ solutions. The classical investigation of this point dates back to HERGLOTZ [569].
k (See also WiLpErMUTH [41].) Consider first the case of a uniformly charged
E spherical electron of radius r,. If there are no external forces then (6.3) becomes
Fsert = Mmecn .

(6.17)

' Assuming the extended quasi-stationary approximation, it is permissible to insert
{ (6.10) for Fye, so that

( 2 ro )n
.  18e¢t = e
Mmech £ + — go ([n+ 2] [n + 3] [n + 5] n!)

7o €2

Pri2g = 0. (16.7a)

¢ Clearly & = const. is a solution but it is by no means obvious nor even true that

& it is the only solution. To investigate this point further it is useful to make the
B ansatz

Z = kexp {— o4 t}. (6.17Db)

4§ 210
1 ‘ ~ From (6.17a) it then follows that '

; Y (A) exp {— ;—j t} =0 (6.17¢c)
B where » ’

c? 2

\ V(1) = Digeen 273 22+9 ra D(2) (7.16d)
® and

] D(A) =[21 4442+ 443t 4 L - 11 4- 443, (6.17e)

Clearly the existence of any solutions of this kind hinges on whether ¥ (1) has any
zeros. We state this important result as the

27%
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HEreLOTZ-WiLDERMUTH Theorem: The function ¥ (1) defined by (6.17 d and e)
above possesses ¢nfinifely many zeros; 4;, j =1, .... These zeros have the
property that

Re (%) i 0 for mmen i 0.

¢

The physical significance of this result is that as long as the “mechanical” mass
of the electron is not negative, there will be no runaway solutions. The extended
electron theory therefore not only can cure the runaway difficulties but also
explains in a very illuminating way why they arise in the first place as r, — 0.
Basically these ‘unexpected’” motions of the electron are controlled by two -+
options: One occurs in the sign of the time — if we reverse the sign of ¢ this
corresponds to selecting an ingoing solution of Maxwell’s equations (see [3]),
i. e., energy is fed info the particle and it accelerates. The other option has just
been revealed by the Herglotz-Wildermuth analysis: If the mechanical mass
is negative, then the signs are reversed in Newton’s second law and instead of

the particle experiencing a damping in the face of an opposing force, it accele-

rates.?0) The limit r, — O enters since we have the upper bound

Mmech = Mexp — Mem -

As 1y — 0, meym — o0, then clearly mpeqn << 0; and this finally is seen to be the
root of the runaway difficulties!

It is interesting to note that this feature has a close parallel in quantum electro-
dynamics. Since the quantized theory is almost always discussed in terms of a
perturbation formalism the correspondence is however not usually evident.
Vax KampEN [68] and NorToN and WaTtsoN [69] have carried out some exact
calculations with a “model” quantum-electrodynamics based on a non-relati-
vistic harmonically bound electron coupled to the radiation field in the electric-
dipole approximation. By working with an initially smeared electron, it is pos-
sible to show that as the charge distribution is permitted to shrink to a point, i. e.,
o(x) = d(x), runaway continuum eigenstates of the Hamiltonian appear preci-
sely at the point where the “mechanical’’ mass of the electron becomes negative. The
analogy extends even further than this: If one attempts to “regularize’ the
Hamiltonian by altering the commutation relations to suppress this unphysical
continuum, acausal effects analogous to the classical-pre-accelerations arise.?!)
We have already indicated several times our preference for drawing’a distinction
between the covariant form factor theories and the extended electron theories.
The réason for this is that if one carries through an analysis for (6.16) analogous

20) As 8. CoLeMAN (unpublished) has pointed out this also implies that the particle kinetic
energy becomes a negative definite quantity — even in the non-point limit. The runaways
conserve energy simply because they build up the positive field energy (radiation)at the
expense of negative kinetic energy. See also [90].

This point has also been discussed by STEINWEDEL [14]. In a certain sense in quantum
theory the situation is even more acute: Since the interactions between the particles
and the vacuum fluctuations can never be “switched off”’, the runaways will always
persist. The classical adiabatic prescriptions, e. g. [88], then become nugatory. See [90].
Another interesting point of the quantum development is that the characteristic classical
damping constant mc3/e? does not get itself multiplied by factors of e?/k ¢ and therefore
still remains the natural scale factor.

21
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to that of (6.17a) one finds the surprising fact that the form factor expression
(6.16) will in general contain runaway components. This has been verified in
detail by Bopp [70] and STEINWEDEL [14] [70] for a wide class of otherwise com-
pletely successful form factor theories. Similar results have also been obtained
by Irvineg [7I]. This unpleasant circumstance can best be understood in terms of
the Herglotz-Wildermuth theorem: The essential point is that most of these
covariant form factor theories are actually equivalent to a regularization of
ordinary electrodynamics by a continuum of negative energy meson fields (LEH-
MANN [62]). The self energy divergences are therefore automatically compensated
but the electron also acquires a component of negative non-electromagnetic mass.
According to the Herglotz-Wildermuth theorem one can therefore expect
runaways — and this is indeed what the computations show.2?)

G. Electrodynamic Collective Modes:
The Excited States of the Electron

One of the most interesting features of the extended electron theory is its pre-
diction of the existence of both self-oscillatory and radiationless states of motion.
This is essentially due to the fact that the basic integral-delay equation
Fear[x(t)] = 0 of the extended electron theory has associated with it a non-
trivial eigenvalue problem in the case z(t) ~ e'*!. A very simple way of seeing
this is to go back to the finite difference expression (6.12a)

e |, | 2r
mire |20 —#(e =2

which can be derived from the shell electron equivalent of (6.7) in the extended
quasi-stationary approximation. Clearly any series of the type

Fext =

z= {Ak sin (klc t) -+ By, cos (@ t)} (6.18)
k=0 To o

will satisfy the homogeneous problem Fgy = 0. The physical meaning of this
result is that an extended charge structure ought to be capable of carrying out
sustained self-oscillations even in the complete absence of any external forces. Within
the framework of the finite difference theories this is of course an exact result;
in fact all the trajectories encompassed by the trigonometric representation
(6.18) can be shown to be strictly non-radiating modes in this formulation [60].
In the Herglotz-Sommerfeld theory circumstances are somewhat more compli-
cated but the structure is proportionately richer and more interesting. The
appearance of the electrodynamic collective modes in this theory can be under-
stood in terms of two distinct eigenvalue problems; one corresponding to the
existence of radiationless modes and the other to the existence of force-free modes.
We consider these in turn:

(i) A radiationless mode is a sustained charge oscillation which does not emit any
electromagnetic radiation. The possibility of the existence of these modes was
first explicitly recognized by EHrRENFEST [72] and later by Scuort [73] although

22) See also [41]. It is interesting to note that in this respect the <“local”” requirements imposed
by (6.16) are far more stringent than the asymptotic conditions on the Poynting vector.
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the beginnings of the idea can actually be traced back to SoMMERFELD [74]. A
concise modern formulation has been given by S. CoLEMAN' (unpublished). The
essential point is easily exhibited by transcribing the retarded potential expression
(6.4) into Fourier transform space. Ignoring singular factors, the result is

Ak ~ ﬁk Qk' (619)
The radiationless condition is then simply
A4, =0 (6.19a)

which requires that the system oscillate at one of the zeros of g;, the Fourier
transform of the charge distribution. (Note that (6.19a) applies only to the space
“outside” the charge distribution.)

(ii) A force-free mode is a self-sustained charge oscillation which exists even in the
absence of any external forces. It follows from the previous work that the fre.

quencies characterizing the force-free modes are the eigenvalues of the functional -

equation
Faee(e®t) = 0. (6.20)

Roughly speaking for a charge structure of effective radius ~ 10-13 ¢cm these
frequencies can all be expected to be of the order of 102 sec-! and higher.

It is important to realize that these force-free modes are not necessarily radi-
ationless and conversely that radiationless modes are not necessarily force-free.
Only if the eigenvalue problems (6.19) and (6.20) share a solution does a rigo-
rously self-sustaining radiationless mode exist. This for example is the case for
the rotational oscillations of a spherical shell electron [37] [74]. The general situ-
ation however may be still more complicated — this for instance will happen if
either or both of the equations (6.19) and (6.20) have complex roots. In this event
there may be damped oscillations which nevertheless formally correspond to
radiationless modes and/or force-free modes which are associated with a definite
time of decay.?3)

A further degree of freedom is available in the adjustment of the mechanical
mass. As WILDERMUTH [41] has pointed out, if one insists on the auxiliary condi-
tion Re {4;} = 0, i. e. no damping of the force free modes, then (6.17d) or its
equivalent introduces still another eigenvalue problem which fixes the value of
Mmech- This feature is of course especially interesting in connection with the
possibility of a many-particle classical field theory. Finally it should be noted
that in the entire discussion to this point we have been considering only rigid
charge motions, i. e. the Poincaré stresses have played an entirely passive role.
Surprisingly high energies may be stored in these collective modes. On a classical
basis this may be simply estimated by assigning plausible values to the oscillation
amplitude. For example in the case of the shell electron it can be shown that the
energy stored in the circulating field components is of the order of one hundred
times the electrostatic ground state energy. From the quantum mechanical point
of view it is of course inviting to remove the amplitude ambiguity by assigning the
energy via Eey, = hveyo; the only remaining imprecision would then lie in the

23) These complications require close attention to mathematical details; linearized treatments,
e. g. [66], [41] can often go astray. A rigorous analysis for one case is carried through in
Appendix 2.
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. details of the charge structure. If for the sake definiteness one assumes a charac-
F teristic dimension of the order of 1 f, (6.20) again leads to the classical estimate
t Eoxe ~ 102 E,. Finally one may use a model independent scale factor, i. e.
2¢2/3mc?, the radiation reaction coefficient in the quasi-stationary limit, to
E establish a length. In this case the total energy of the first excited state turns out

to be

me? {1 + 23} — 105.54 Mev. (6.21)
2.4

' It has been noted previously [66] [75] [60] [76] [77] that this has a suggestive
 resemblance to the muon rest mass

M, = 105.65 4 .01 Mev.

7. Absorber Theories of Radiation: The Phenomenological Theory
- of Radiation Reaction

b In the present section we shall discuss two developments which stand somewhat
¥ apart from the other theories considered thus far — the absorber theory of
. radiation of WHEELER and FEvNMAN [78] and the phenomenological radiation
E reaction theory of GinzBura and Erpman [54]. The fundamental point in both of
i these theories is that somehow the presence of absorbers should be crucial to the
§ elementary act of the emission of radiation. The Wheeler-Feynman approach

is “fundamental” in its orientation whereas GiNzBURG and EipMan are frankly

i “applied”” — nevertheless these theories have a good deal of conceptual common
f ground albeit there is a lively contrast in some of the ideas involved. We
consider first the Wheeler-Feynman approach.

A. Wheeler-Feynman Electrodynamics

. The basic observation of the absorber theory of radiation is the fact that the mere
£ presence of an absorber may produce a radiation reaction on the emitting particle.
2 This can be most clearly demonstrated in terms of the two body problem of electro-
dynamics. Consider for example two objects — one far heavier than the other —
.. bound to each other through a purely electromagnetic interaction. It was first

shown by SyneE?) that such a system would lose energy — the particles spiraling

" inwards towards a collision — even without the factoring of the Lorentz force law
< into an external and a damping term (see (2.15)). The system redistributes its energy

into the radiation field simply through the action and reaction of its two bound

2 charges. It is intuitively obvious however that such a process is slow and ineffi-

cient; indeed Sy~aE finds that this system collapses at a rate of one thousands

f slower than one which includes explicitly the radiation reaction forces in its

equations of motion.
The essential point of the Wheeler-Feynman approach now is that it is possible

B o amplify these reactive losses sufficiently so that they become formally identical

to the ordinary radiation reaction: one simply assumes that the physical solutions
of the field equation
A =j

%) See [79]. A rigorous discussion of this problem has recently been given by DRIVER [48].
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are half the sum of the retarded and the advanced potentials. Formally this obviates
the sequence of decompositions (2.15) — (2.15¢) and automatically inserts the
correct radiation reaction expression into the equations of motion. Physically
therefore one has the picture that e. g. a charged oscillator is damped because it
radiates both forward and backward in time: The radiation travelling forward in
time causes electrons in the absorber to move — these in turn emit radiation both
forward and backward in time. The radiation travelling backward in time reaches
the oscillator at the same time that the original radiation was emitted and exerts
a retarding force on the oscillator — this is the radiation reaction. The total
field of oscillator and absorber combine to give the fully retarded field which corres.
ponds to “‘experience”.

Naturally the appearance of the acausal advanced potentials is the most startling
feature of this theory, and WHEELER and FEYNMAN have gone to great lengths
to show that in the case of complete absorption the results are formally identical to
those of the conventional radiation reaction theory. (See also {91]). In particular all
of the details of the absorber structure are shown to disappear from the final
formulas; a result which in view of the discussion of the next section is perhaps not
entirely fortunate. Moreover it is no easier in this formulation than in any other
to see in detail how the radiation reaction of certain many body problems e. g,
a ring charge drops to zero as one makes the transition to the continuum limit.

B. The Theory of GiNzBURG and Eipman

The phenomenological radiation reaction theory of GinzBUrc and Erpmaw [54]
[80] is an attempt to give a unified description of the dynamical consequences of
certain interactions of charged particles with matter. It will be helpful in fixing
the ideas involved if we first give a brief qualitative summary of some represen-
tative experimental situations. It should be noted that Bremsstrahlung and other
microscopic phenomena are ignored in the subsequent discussion.

(i) The ordinary Cerenkov effect is one of the most elementary examples of a
departure from the

2 e?

Froaet = 3 ?:;m (70)

law of the point-charge vacuum theory. The correct expression for the radiation
reaction in this case is

e? ¢ \?
Freact = - ? i’f[l — (vn(w)) ] wdo. (7.1)
v>celn

If the index of refraction = is a sufficiently slowly varying function of w, and if the
integral is cut off at w = ¢/r,, it can be shown that (7.1) reduces to the expression
previously given by SOMMERFELD [see (6.13)]. It is interesting to note that such
a formula may continue to apply even if the particle itself is moving in a vacuum:
This for instance will be the case if the motion occurs in a narrow channel embedded
in a medium with index of refraction » > 1. A futher extension of this description
is useful for motions which occur in a waveguide or near some other periodic
structure ; for example, in a traveling wave tube used for the generation of milli-
meter microwaves.
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¢ ' (i) The complex Doppler effect (Cerenkov self-excitation): Consider a system
| possessing a natural radiating frequency w, (measured in the rest system) moving
t with a velocity » through a medium characterized by an index of refraction »(w).
i The Doppler shifted frequency w; observed at an angle @ with respect to the
E  direction of motion is then in general determined by the equation

[t — p o
@ = II—Oﬂn(w)cos@l’ b= (72)

T‘ Suppose now that the auxiliary inequality

v cos O > w(w) (7.3)

L where w denotes the group velocity, is satisfied for a value of wy; it then follows
. automatically that for a fixed @ there will actually be at least two Doppler

1)

components, i. e., wg — 0§ and o which are solutions of (7.2). This con-

dition is the Complex Doppler Effect.?5)
: Suppose furthermore that the system velocity v is sufficiently great se that

pn(w) > 1. (7.4)

g In this case, in addition to the “doubled’ range of Doppler frequencies the system
E- will also be able to emit Cerenkov radiation. Let the opening angle of the Ceren-

kov cone corresponding to wq be @y, i. e.

@3 = sec™! [fn(wq)]- (7.5)

~ Then for all Doppler frequencies emitted into the cone @ < @; we will have the
- remarkable circumstance that the emission of radiation will be accompanied by
L a simultaneous excitation of the system. (Cerenkov Self-Excitation!) Although
L. such a result is at first sight surprising it is in fact a simple consequence of the con-
£ servation of energy and momentum for the emission of radiation from a quasi-
t bound (i. e. n > 1) system. Quantitatively this is described by

AU = —E(w) [1 — Bn(w) cos O] (7.6)

. where E(w) is the Cerenkov energy at frequence w and AU is the corresponding
¢ increment of internal energy. Clearly if fn{w) cos ® > 1, then AU > 0; and this
¢ is the condition for Cerenkov self-excitation.

. This self-excitation has the following dynamic consequences: Suppose that a
i harmonic oscillator of frequency w, vibrates along the z-axis and simultaneously
- is in translation such that v,y = v, > c¢/[n(w) cos @]. In this event the emission
E- of radiation to the regions outside the Cerenkov cone will be associated with a
L damping of the oscillator vibrations; on the other hand the radiation into the Ce-
i renkov cone will be associated with an increase of the amplitude of oscillation.
. There is of course no question of a violation of the conservation of energy here
g since both the oscillation and the radiation occur at the expense of the kinetic
i energy of translation. Nevertheless this presents the novel feature of a radiation

%) T M. FrANK [81]. Necessary conditions for the occurrence of the Complex Doppler Effect

have been derived by Barsukov [82].
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reaction force formally decreasing the damping of a radiating oscillator. As empha-
sized by GINzBURG this circumstance is of practical importance in considering the
beam stability of “‘super-light” bunches in a plasma accelerator.28)

(iii) The Inverse Complex Doppler and Cerenkov Effects [84]: Radiation
reaction becomes an even more complicated affair if one admits the possibility
of negative group velocities. This is a matter of some practical importance in
media having anisotropic and gyrotropic properties as well as in regions of
high anomalous dispersion. A simple illustration is provided by an idealized me-
dium with ¢ <0 and u < 0. Since n = (eu)'» remains a positive quantity in
such a medium undamped electromagnetic waves may still be propagated. How-
ever phase and group velocities will now have opposite directions since the plane
wave condition requires that

S=C|E*k (7.7)

and for this case { = —|[e/uls. (S, k, and E have their usual significance as
Poynting vector, wave vector, and electric field respectively.)
An interesting peculiarity that makes its appearance here is the necessity for
using advanced potentials in the construction of solutions of Maxwell’s equations.
To preserve the correct sense of the energy flow the sign of # must be reversed in
- tandem with the extra minus sign acquired by k because of (7.7). Physically this
means that the conventional picture of the Cerenkov cone is reflected into its
mirror image, i. e. the Cerenkov cone makes an obfuse angle with the particle
motion. A particular consequence of this is that the transition radiation emitted
in the passage of fast particles from vacuum to medium will in this case go back-
wards into the vacuum. If now in addition there are Doppler frequencies present
due to internal degress of freedom, then the low frequency components will be
radiated forwards while the high frequency components will go backwards. (In-
verse Doppler Effect!) Finally if we have all three conditions present simulta-
neously, i. e. Cerenkov effect, Doppler emission, and negative group velocities;
then it may happen that the anomalous Doppler components will outweigh the
normal components, so that the total emission will in fact be associated with a net
excitation of the oscillation. The radiation reaction work in this event is a purely
positive quantity. It should be noted that this is in sharp contrast to the assump-
tions of Section 5.
(iv) An idealized isotropic plasma has a refractive index

[ 4z 62.2\7]1/l
n=|1—

mw?

fortransverse electromagnetic waves. An oscillator of natural frequency w® < 4me2N/m
embedded in this plasma will therefore be unable to lose energy by radiation.
This brief summary should make it clear that the construction of a phenomenolo-
gical radiation reaction theory endowed with sufficient mathematical flexibility
poses a formidable technical problem. The most natural idea would be of course
to start from some fundamental “vacuum” theory —the Frese; = (2€2/3¢3) & version
for example — and then to work forwards towards a macroscopic description via
suitable averaging processes. It should be realized however that this cannot

simply be a matter of imitating the procedures of ordinary electrodynamics: The

) If wy = 0, (7.3) still is relevant as a criterion for the onset of the Complex Cerenkov Effect,
AGRANOVICH et al [83].
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B usual transition (Microscopic Maxwell Equations) = (Phenomenological Max-
¥ well Equations) merely involves the replacements 1= |el|, 1= ju| in the
. constitutive relations; the essential structure of the differential equations remains

intact. In the radiation reaction case it should however be obvious, e. g. from the
contrast between (7.0) and (7.1), that more drastic alterations will be required.??)

GivzBURG and EIpMAN [54] meet this problem by going back to the Sommer-
feld extended electron picture. The radiation reaction is once again visualized
as originating in a net force resulting from the action of one part of the electron
on another. 1t has already been shown (Section 6-C) that this approach gives rise
to a mathematical structure of considerable complexity. The crucial departure in
the Ginzburg-Eidman development is that the information on the macroscopic
structure of the medium is inserted into the formalism by assuming the validity

. of the constitutive equations

D=|el B, B=|ulH

in the interior of the electron. This leads precisely to the previous Fourier self-force
representation (6.6a) except that now the index of refraction appears explicitly
in the integrand. In a detailed discussion GiNzrURG and Eipman show that this
recipe is indeed capable of reproducing some of the behavior expected in the
situations enumerated above, The spirit of the treatment is however completely
pre-relativistic — an especially unpleasant feature considering the high velocities
encountered in the Cerenkov effect. GiNzBURG and EIDMAN attempt to minimize
this embarrassment by making the transition g(r) — 6(r) as soon as feasible; the
subsequent divergence is then absorbed as a mass renormalization. But this pro-
cedure is itself of course neither covariant nor model-independent. A counter
example was provided long ago by SoMMERFELD [31] in his proof that the spherical
shell electron would suffer infinite radiation reaction under Cerenkov conditions.
It may be concluded that the formulation of a completely satisfactory macroscopic
radiation reaction theory still remains as an unsolved problem.
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Appendix 1
Inequalities Connected With the Radiation Equation

We consider the modified Fowler-Emden equation

§=— — (A1.1)

y
27) Another important point that arises here is the “Synge dissipation” [79]. If indeed two
charges can emit radiation even in the absence of any explicit damping terms, then one
must anticipate the possibility of cooperative dissipation mechanisms in a macroscopic
theory. (I am indebted to Prof. Prigogine for an enlightening discussion on this point).
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" on the closed interval £.: 0 <t < ¢, under the assumptions

(1) #(¢) continuous on £,
(ii) W (t) increasing and non-negative on 2.,
(iii) y(f) and g (¢) non-negative on £2..

and with the initial conditions
(iv) y(0) = 0; y(0) = ay > 0.

From (i) — (iii) it follows that y (¢) is a concave function. In particular from (iv) we
conclude that

y(f) < agt. (A1.2)
Inserting this into (A1.1) we obtain the inequality
W
— > Al
iz o (A13)
Integrating from 0 to ¢, there results
t
: 1 ((w
— () + ap > —f(—) dt (A 1.4)
a, ¢
0
where the existence of the integral is guaranteed by (A 1.3) and (i).
But now
t t
(o= f (T e
¢ 2 14
0 0
which again is guaranteed by (i) and the mean value theorem.
Therefore
y(t) > L (A1.6)
a —y(t) > agt .
Since ay > a, — y(¢), this yields the important result
W) < alt. (A1.7)
|
We may now perform another quadrature: From (A1.8) it follows that
W
y(t) < agt — —, (A1.8)
@y
where ‘
: ¢
sz(%i) dt (A1.9)
0

and (A1.7) assures the existence of the integral.
The crucial point of the argument now becomes apparent: If the original inequality
(A1.2) is taken through this cycle, then the end result (A1.8) is an inequality

S e X

/
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:.Which is an improvement over the input. The expectation therefore is that the
&  entire process can be iterated with successive improvements. Let us consider the
# next cycle:

& Putting y, (t) = ayt — W/a,; then from (A1.1) it follows that

. —§> —y— (A1.10)
Integrating, '
— ) + aozf(g—) dt (A1.11)
1 .
g 0
4 where now
; ¢
W
dat > — Al1.12
St [fna=t o

¥ and we note that the boundedness of the derivatives and the mean value theorem

guarantee stepwise the existence of each subsequent parts integration.

§ Therefore
" W (1) < ag gy (0); (A1.13)
and integrating again
¢
ayt — y(t) Zf(-vz-) dt. (A1.14)
i g Y1
!'b; But now
w_W W
e Za 1) (4119
and
t B ¢ .
Ww 1 w2 1 w2 1 w2
P ?T+?f72?t— (AL16)
0
" Therefore the final result of the second iteration is
174 W2

which, as expected, is a further improvement over (A1.2). It is now clear that
this pattern may be repeated n-fold. On the nth iteration one obtains

n Wk
y(#) < ayt {1 -3 W}

k=1
or, proceeding to the limit,

Y () < a4t {2 — exp [%]} .

This is the result stated in the text as (5.12). Since >y >0 for ¢ >0, (A1.18) may
also be considered a transcendental inequality for W ; the solution is elementary and

(A1.18)
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yields (5.13b) of the text. The ntt analogues of (A1.7) and (A1.13) are the W (¢)
restrictions (5.13a). It is interesting to note that this process yields simultaneous
restrictions on y and W. :

Appendix 2
Sommerfeld’s Self-Force Representation

Theorem: The trajectory defined by 'z (¢ + 2ry/c) = z(f), || < ¢, for a uniformly
charged electron of radius r,, is neither radiationless nor force-free.

Proof: Let

e(t,7) =ct+ T where T =zx(t) —z( —1). (A2.1)

Then
27,
e(t,tg) —2ry=10; 7,= = " (A2.1a)
This solution is unique since de/ét > 0 and e(f, 0) = 0.
Similarly if
g, 7)=cr —q,

then

g, 1) >0 and £(, 1y — 27r,=0. (A2.1Db)

This establishes that the equations ¢t + T = 2ry; |c7 — T | = 27, both have
the unique root v = 1.
The self-force representation (6.7) may therefore be rewritten in the form

Fogr = — z—fj (I, + I, + I,) (A2.2)
where °
I, — —fdt % et +T) —fler —T)} (A2.22)
0

I, :fdr %%{f(cz + T) — fler — D)} (A2.2b)

0

[at—v o B
I,= | d= —F aq.{]‘(C'r~l—‘T) + fler — T)}. (A2.2¢)
V] .

Inserting the explicit form of f [see (6.7a)] we have

I, = ——cfdr {(T-ll:—(ﬂ); — 6(cT)® + 87‘061] +
2r2
0

cr\?2 . 1
+T [(T) - 2] + [(wr:*;) J} (A232)
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To

I, = cfdr {q’—l [%2—4 — 6(ct)? 4 8r, (cr)] +

0

cr\2 1
T [3 (T) - 6J T Lzrz)]} (423h)
I, = fdr @t — 1) {[2 (07?3 —12¢7 + 870] +qe [2762’]} (A2.3¢)
b [} [}

The 71 foerms giye rise to a divergence which cancels out when the integrals
are combined. It is now convenient to transform I, by a parts integration; this

results in .
¥ 2
I, = -—c/dr {q[es O o]+ [ 2] (A2.3d)
; 75 (373)
Collecting all the terms we finally obtain .
N L a2
1 2 3 . 2 s | (A2.4)

0

(Since 7 ~ O (vry/c), a linear approximation would now be tantamount to drop-
ping the 78 term.) .

Fl.'om (A'2.4) we re'ad off that Fye s (t + 7,) = Fexr (£); @ is of course also periodie
with period 7,. It is therefore sufficient to consider the work done over a period:

W (7y) = steLf(t) x(t) dt. (A2.5)
In carrying out this computation one encounters three different types of integrals:
J, = 6[ dt Of AT (A2.6a)
Jy = f at fT:h &2 T | (A2.6b)
0 0
Jy =jodt0fndrd:(]'3. (A2.6¢)

With the help of the auxiliary integrals

To

0
Wfdrx t—72)=0

0

[atan@ye) =0, n>0 (A2.7)
0
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it is easy to show that

Jy=0=J,. (A2.8)

However J, has a non-vanishing component. Let

Jy=JP + J® = fdtfdr[zzx(t)ac(t)] —fodtfodr [22x(t —7)&(5)]. (A2.9)
0 0 0 0

Then J® = 0 because of (A2.7). J@ may be transformed by successive integ.
rations by parts; first with respect to ¢, then with respect to z:

JP = —73 [dta () + IP;
0

JP = Zfdtfdt [zx()z(t—1)]. (A2.9a)
0 0

Now we note that W (7,) is invariant under the transformation x(t)‘——> z() +
const. There will therefore be no loss of generality in assuming that y = « also
defines a periodic function. J® may then again be integrated by parts just as
in the transition from (A2.9) to (A2.9a).

J® = tof%dt y(t) ¥ (t) —bfndtofodr[y(t)x(t —17)]=0. (A2.9D)
0

Finally therefore we obtain

To

3e?c
W (z) = — 272 fdt x2(t) < 0. (A2.10)
0
A fortiors this proves that
Fse1f$ 0. (A211)
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