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Electrodynamics of Hyperbolically Accelerated Charges

IV. Energy-Momentum Conservation of Radiating Charged Particles
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The relativistic equation of motion of a radiating charge is discussed with special emphasis upon
a clarification of the significance of the Schott energy for the energy-momentum conservation of
the charge and the field it produces. In particular hyperbolic motion is studied. The case that a charge
with constant velocity enters and leaves a region with hyperbolic motion is analysed. We find that
the Schott energy is increased as the particle enters the region and that the energy it radiates while the
charge moves hyperbolically comes from the Schott energy. A result of our analysis is that this energy
is localized in the field close to the charge. C© 2002 Elsevier Science (USA)

1. INTRODUCTION

The analysis of the energy-momentum balance of a radiating charge is usually based upon the
equation of motion of a point charge. The non-relativistic version of the equation was discussed
already about hundred years ago by H. A. Lorentz [1]. The relativistic generalization of the equation
was originally found by M. Abraham [2] in 1904 from an analysis of conservation of energy and
momentum, and rederived in 1909 by M. von Laue [3] who Lorentz transformed the non-relativistic
equation from the instantaneous rest frame of the charge to an arbitrary frame. A covariant deduction
of the equation was given by P. A. M. Dirac in 1938 [4]. The relativistic equation of motion of a
radiating point charge shall henceforth be called the Lorentz–Abraham–Dirac equation, or for short,
the LAD-equation. The uniqueness of this equation has been discussed by H. J. Bhabha [5] and
E. P. G. Rowe [6].

F. Rohrlich [7, 8] has recently argued that the equation is asymmetric under time reversal. Hence,
there seems to exist an arrow of time in the fundamental equations of classical electrodynamics.

There are three well known problems with the equation, both in its relativistic and non-relativistic
form [4, 5]: the electromagnetic self-energy problem, the existence of “runaway solutions,” and the
acausal phenomenon of pre-acceleration. The first problem can be “solved” by mass renormalization
with the result that only the observable physical mass appear in the Eq. (9). This problem will not
be treated here. Runaway and pre-acceleration have been considered by several authors [10–18]. A
thorough analysis of the LAD-equation, its problems and ways of resolving them, has recently been
given by A. D. Yaghjian [19].
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A term in the equation of the energy-momentum balance of an accelerated charge and its elec-
tromagnetic field following from the equation of motion of a radiating point charge and Maxwell’s
field equations was noted by Schott [20] in 1915 and has been much discussed later, in particular by
F. Rohrlich [21]. These matters will be considered in Sections 5, 6. About 20 years ago an advance
in the understanding of the so-called Schott acceleration energy term was obtained by C. Teitelboim
[22] who studied separately the near field and far field of an accelerating charge. This will be taken
up in Sections 2–4. We shall make a systematic study of the energy-momentum relationships of a
hyperbolically accelerated charge and its electromagnetic field, based upon this separation, and a
further separation by E. G. P. Rowe [23], in Sections 5–7. In Sections 8–10 we give a detailed analysis
of the evolution of different forms of energy when a charge enters and leaves a region of hyperbolic
motion.

In Appendix A the electron is considered as an extended particle in an approximation [19] which
is linear in the velocity and its derivatives. In Appendix B we evaluate the self force on a spherically
symmetric particle in the limit of vanishing extension by summing up the internal forces in the rest
frame of the charge and in the laboratory frame.

2. THE NON-RELATIVISTIC EQUATION OF MOTION OF A RADIATING CHARGE

The equation of motion of a radiating charge, Q, with physical mass m, acted upon by an external
force fext, takes the form

mR̈ = fext + mτ0R
...

, τ0 = 2Q2/3m. (2.1)

The general solution of the equation is

R̈(T ) = eT/τ0

[
R̈(0) − 1

mτ0

T∫
0

e−T ′/τ0 fext(T
′) dT ′

]
. (2.2)

By choosing the initial condition

mτ0R̈(0) =
∞∫

0

e−T ′/τ0 fext(T
′) dT ′ (2.3)

runaway behaviour is suppressed. Combining Eqs. (2.2) and (2.3) one obtains [24]

mR̈(T ) =
∞∫

0

e−sfext(T + τ0s) ds. (2.4)

This equation shows that the acceleration of the charge at a point of time T is determined by the future
force, weighted by a decreasing exponential factor with value 1 at the time T , and a time constant
τ0; i.e., there is pre-acceleration. In the case of an electron the future time interval of significance
for the present value of the acceleration has a length τ0, which is roughly equal to the time taken by
light to move a distance equal to the classical electron radius, i.e., τ0 = 10−23 seconds. It has been
pointed out [25] that this time interval is so short that one can hardly expect classical physics to be
applicable within such time intervals.

In his discussion of Eq. (2.1) Lorentz [1] writes:
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In many cases the new force represented by the second term in Eq. (2.1) may be termed a resistance to the motion.
This is seen, if we calculate the work of the force during an interval of time extending from T = T1 to T = T2. The
result is

2Q2

3

T2∫
T1

ȧ · v dT = 2Q2

3
[ȧ · v]T2

T1
− 2Q2

3

T2∫
T1

a2 dT (2.5a)

Here the first term disappears if, in the case of a periodic motion, the integration is extended to a full period; also,
if at the instants T1 and T2 either the velocity or the acceleration is 0. Whenever the above formula reduces to the
last term, the work of the force is seen to be negative, so that the name of resistance is then justly applied.

Exchanging the left hand term and the last term on the right hand side, Drukey [25] has commented
on the equation in the following way:

The second term is the work done against the radiation reaction and vanishes for uniform acceleration, but the
first term, the change in a quantity characteristic of the instantaneous state of the motion and called by Schott
the acceleration energy, just accounts for the radiation previously predicted. This term, usually neglected because
attention is generally confined to periodic motions or to those bounded in time, accounts for the entire energy in
this problem.

P. Yi [26] gives the following interpretation:

The total energy of the system may be split into three pieces: the kinetic energy of the charged particle, the radiation
energy, and the electromagnetic energy of the Coulomb field. In effect, the last acts as a sort of energy reservoar that
mediates the energy transfer from the first to the second and in the special case of uniform acceleration provides
all the radiation energy without extracting any from the charged particle.

Thomas Erber [27] does not accept this interpretation, writing:

The interpretation attached to this equation [Eq. (2.5)] is the following: The first term on the right hand side is
supposed to represent an influx of energy from the field in the vicinity of the particle—the so called “acceleration”
or Schott energy—which then reappears in the second term as radiation to the far field zone of the particle. This
interpretation is however clearly contrary to the essential spirit of the radiation reaction development to this point.
We have consistently sought to identify the origin of radiated energy in the work done by the particle on the field:
In the “acceleration energy” argument the accelerated particle becomes merely some kind of transducer which
transforms near field energy into far field energy.

We shall now go on and discuss the relativistic generalization of Eq. (2.1).

3. THE RELATIVISTIC EQUATION OF MOTION OF A RADIATING CHARGE

The relativistic generalization of the equation of motion (2.1) is [4]

Fµ
ext + �µ = m0U̇µ, (3.1)

where

�µ ≡ 2

3
Q2( Ȧµ − Av AvUµ) (3.2)

and the dot denotes differentiation with respect to the proper time of the charge. The vector �µ is
called the Abraham four-vector. Being orthogonal to the four-velocity of the charge, �µ may be
written [21],

�µ = γ (v · Γ,Γ), (3.3)
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where Γ is a three-dimensional force. In order to express Γ in terms of the acceleration, and the
hyperacceleration, b = da/dT , we need the relations

Aµ = (A0, A) = (v · A, A) = (γ 4v · a, γ 2a + γ 4(v · a)v) (3.4)

and

Av Av = γ 4[a2 + γ 2(v · a)2] = g2, (3.5)

where g is the magnitude of the proper acceleration of the charge. Furthermore

Ȧµ = γ
d Aµ

dT
= γ 3[γ 2(v · b + a2) + 4γ 4(v · a)2, b + 3γ 2(v · a)a + γ 2(v · b + a2)v + 4γ 4(v · a)2v].

(3.6)

This leads to

Γ = (2/3)Q2γ 2[b + γ 2(v · b)v + 3γ 2(v · a)a + 3γ 4(v · a)2v] (3.7a)

v · Γ = (2/3)Q2γ 4[v · b + 3γ 2(v · a)2]. (3.7b)

The expressions (3.7) may be written in a simple and enlightening way by utilizing the trans-
formation properties of the components �µ. The components in the laboratory frame are found by
Lorentz transformations from the rest frame.

We write the Abraham vector (3.2) as the sum of a Schott term �
µ

S and a radiation reaction term
�

µ

R ,

�
µ

S = (2/3)Q2 Ȧµ (3.8a)

�
µ

R = −(2/3)Q2 Av AvUµ (3.8b)

�µ = �
µ

S + �
µ

R . (3.8c)

By means of Eqs. (3.5) and (3.6) we get the following component in the rest frame

�
′µ
S = (2/3)Q2(g2, b′) (3.9a)

�
′µ
R = (2/3)Q2(−g2, 0) (3.9b)

�′µ = (2/3)Q2(0, b′), (3.9c)

where the hyperacceleration in the rest frame is b′ = (da/dT )′. By a boost transformation to the
laboratory frame we get

�
µ

S = (2/3)Q2γ (g2 + v · b′, g2v + b′
‖ + γ −1b′

⊥) (3.10a)

�
µ

R = (2/3)Q2γ (−g2, −g2v) (3.10b)

�µ = (2/3)Q2γ (v · b′, b′
‖ + γ −1b′

⊥), (3.10c)

where the hyperacceleration b′ in the rest frame of the charge is decomposed relative to the direction
of v.

Equations (3.10) give the following three-dimensional forces.
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The acceleration reaction force

ΓA = (2/3)Q2(dA/dT ) = (2/3)Q2(g2v + b′
‖ + γ −1b′

⊥). (3.11a)

The radiation reaction force

ΓR = −(2/3)Q2g2v. (3.11b)

The field reaction force (also called the self force [28])

Γ = ΓA + ΓR = (2/3)Q2(b′
‖ + γ −1b′

⊥), (3.11c)

where we have used the designations suggested by Rohrlich [21].
The expressions are frequently written in terms of ġ ≡ dg/dτ , where τ is the proper time of the

charge. It is tempting to think of b′ and ġ as identical quantities since g is the acceleration and τ the
time both referring to the rest frame. However, there is a difference with respect to the differentiation.
The hyperacceleration b′ represents the change of the acceleration in a fixed rest frame of the charge
at the point where the quantities are evaluated, while dg/dτ represents the rate of change of proper
acceleration along the path of the charge.

Expressed in terms of laboratory quantities the proper acceleration is given by

g = g‖ + g⊥ = γ 3a‖ + γ 2a⊥ = (γ 3 − γ 2)a‖ + γ 2a. (3.12)

In order to find the relationship between ġ and b′ we shall need the Lorentz transformation formula
of the hyperacceleration. A straightforward calculation gives

b′ = γ 3(γ b‖ + b⊥) + 3γ 5va‖(γ a‖ + a⊥). (3.13)

Differentiating Eq. (3.12) and utilizing Eq. (3.13) we obtain

ġ = b′ + γ 5

γ + 1
[a2

⊥v − γ (v · a)a⊥]. (3.14)

In the case of rectilinear motion this equation reduces to

b′ = ġ. (3.15)

From Eqs. (3.10) it follows that for rectilinear motion

�µ = (2/3)Q2γ (v · ġ, ġ). (3.16)

Comparing with Eq. (3.3) we see that in this case

Γ = (2/3)Q2ġ (3.17)

showing that for rectilinear motion the field reaction force Γ is independent of the velocity.
From Eqs. (3.11) the field reaction force can generally be written as

Γ = ΓA + ΓR = 2

3
Q2 dA

dT
− 2

3
Q2g2v. (3.18)
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According to the relativistic Larmor formula the energy radiated by the charge per unit time is

R = (2/3)Q2 Av Av = (2/3)Q2γ 6[a2 − (v × a)2] = (2/3)Q2g2. (3.19)

The radiated four-momentum per unit proper time is

Pµ

R = RUµ. (3.20)

The radiated momentum per unit time is Rv, the opposite vector being just the radiation reaction
force

ΓR = −Rv (3.21)

which always acts against the motion. It may be noted that the power of this force, −Rv2, is not
equal to minus the radiated energy per unit time. Hence, the energy loss due to the force ΓR does
not account for the energy of the radiated field.

The power due to the field reaction force Γ may, by means of Eqs. (3.2)–(3.4), be written

Γ · v = 1

γ
�0 = 2

3
Q2 d(A · v)

dT
− 2

3
Q2g2 = d

dT

(
2

3
Q2γ 4v · a

)
− R. (3.22)

The first term is neither the rate of change of kinetic energy of the charge nor radiated power.
Schott [20] called the energy

E A = (2/3)Q2γ 4v · a (3.23)

acceleration energy because it “must be regarded as work stored in the electron in virtue of its
acceleration.”

Following Rohrlich [21] (except for a change of sign) the energy

ES = −E A = −2

3
Q2 A0 = −2

3
Q2γ 4v · a = −2

3
Q2γ v · g (3.24)

shall here be called the Schott energy.
The power due to the field reaction force may now be written

Γ · v = −d E S

dT
− R. (3.25)

From the LAD-equation (3.1) we get the energy equation

γ v · Fext = m0U̇ 0 − �0 = m0U̇ 0 − 2

3
Q2 Ȧ0 + 2

3
Q2γ g2. (3.26)

With our choice of sign of the Schott energy (which will later be seen to be in accordance with letting
a Schott momentum and the Schott energy be components of a Schott four-momentum) the energy
equation takes the form

dWext

dT
= v · Fext = d

dT
(EK + ES + ER), (3.27)
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where EK = (γ − 1)m0 is the kinetic energy of the particle, Wext is the work on the particle due to
the external force, ER is the energy of the radiation field, and

d E R

dT
= R = 2

3
Q2g2. (3.28)

The Schott energy ES is a state function of the particle being positive when the velocity decreases
and negative when it increases.

The work Wext performed by the external force is equal to the sum of the changes in kinetic energy,
Schott energy, and radiation energy,

Wext = 
EK + 
ES + 
ER . (3.29)

4. PHYSICAL CONSEQUENCES OF THE LAD-EQUATION

In 1921 Pauli [29] made the following statement: “For hyperbolic motion the radiation reaction
vanishes, as it should, since no radiation takes place.”

The first part of this statement follows immediately from Eq. (3.16) for the force of “radiation
reaction,” i.e., field reaction, since the criterion for hyperbolic motion is that ġ = 0. The covariant
form of this criterion (that the rate of change of rest acceleration of the particle vanishes) is

Ȧµ − Av AvUµ = 0 (4.1)

showing that the Abraham force (3.2) vanishes for hyperbolic motion of a charge. The equation of
motion, Eq. (3.1), takes the same form as for a neutral particle. A constant external force makes a
neutral particle and a charged particle move in just the same way, just as if the accelerated charged
particle did not radiate.

Rohrlich [21] has given an interesting discussion of the Abraham vector (note the opposite sign
of ES in the citations compared to in the main text):

The Abraham four-vector �µ defined in (3.2) is orthogonal to the velocity, i.e., �µUµ = 0. This implies that a
three-vector Γ can be defined such that

�µ = (γΓ · v, γΓ) (4.2)

This form implies that if Γ is interpreted as a force, �0 is the work done by that force per unit proper time. From
(4.2) follows

τ2∫
τ1

�µdτ = 2

3
Q2

τ2∫
τ1

( Ȧµ − Av AvUµ) dτ = 2

3
Q2[Aµ(τ2) − Aµ(τ1)] −

τ2∫
τ1

RUµ dτ (4.3)

where R is given in Eq. (3.19). Thus, the work done by Γ between any two points 1 and 2 on the world line is

τ2∫
τ1

γΓ · v dτ = [ES(τ2) − ES(τ1)] −
τ2∫

τ1

R dT (4.4)

where the Schott energy (also called the “acceleration energy”) is defined by

ES = 2

3
Q2 A0 = 2

3
Q2γ 4v · a = 2

3
Q2γ v · g (4.5)

The meaning of Eq. (4.4) is this: The work done by Γ is in general not equal to the energy lost in the form of
radiation, but differs from it by the increase in the Schott energy. However, in the special case where the two points
1 and 2 have the same four-acceleration, the Schott energies at these two points are equal, and the energy radiated
is just equal to the work done by −Γ during that time.
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It is this special case which alone is usually considered and from which Γ received the name of “radiation
reaction force.” This is obviously a misnomer, since it implies that only the field radiated away is responsible
for this force. In order to show that this is not the case consider two examples: In the first example we take an
instant where Aµ = 0, but Ȧµ = 0. Then R = 0 but �µ = (2/3)Q2 Ȧµ = 0 so that we have “radiation reaction”
without having radiation. In the second example we take uniformly accelerated motion, i.e., motion for which in
the rest system uµ = (1, 0, 0, 0), Aµ = (0, a), Ȧµ = (a2, 0) and a is a constant. Then �µ = 0, since it is zero in the
rest system, but R = 0, i.e., we have radiation but no “radiation reaction.”

The rate at which energy and momentum are lost by a charge due to radiation is Ṗµ = RUµ. This four-vector
is parallel to Uµ whereas �µ is orthogonal to Uµ. These vectors therefore cannot be proportional. A reasonable
definition of radiation reaction is, therefore,

�
µ
R = −RUµ (4.6)

This vector vanishes if and only if there is no radiation. It is related to the four-vector of Abraham by

�µ = �
µ
S + �

µ
R (4.7)

where

�
µ
S = (2/3)Q2 Ȧµ (4.8)

will be called the Schott vector. This vector vanishes only for uniform motion and is, therefore, of great importance
whenever accelerated motion is considered. Its time component is the rate of change of Schott energy (4.5).

An important difference between the radiation rate R and the rate of change of the Schott energy must be
emphasized at this point. The radiation rate is always positive (or zero) and describes an irreversible loss of energy;
the Schott energy changes in a reversible fashion, returning to the same value whenever the state of motion repeats
itself.

The radiation reaction four-vector �
µ
R has the components

�
µ
R = (γΓR · v − γ −1

R, γΓR) (4.9)

The work done on the charge by the radiation reaction force ΓR is related to R as follows

τ2∫
τ1

γΓR · v dτ =
T2∫

T1

Rv2 dT (4.10)

But the integral over the time component of �
µ
R gives

τ2∫
τ1

�0
R dτ =

τ2∫
τ1

γΓR · v dτ −
T2∫

T1

γ −2
R dT = −

T2∫
T1

R dT (4.11)

which is exactly the total energy lost by radiation. A reasonable name for the Abraham four-vector �µ would be
“field reaction.”

We suggest that the four-vector �
µ

R given in Eq. (4.6) be called the Rohrlich-vector, due to the
penetrating analysis of the LAD-equation given by Rohrlich [21], and that the term “radiation
reaction” be reserved for the three-vector ΓR given in Eq. (3.11b).

The time-component of the Abraham four-vector, �0, represents the rate of work done by the field
reaction. From Eq. (3.2) follows

�0 = 2

3
Q2 Ȧ0 − γ R. (4.12)

This energy equation, and the related equation (3.27), is commented on by Grandy [30] in the
following way:

It appears necessary to interpret the (indefinite) rate of change of the Schott energy as a change in the internal
energy of the charge. Since A0 = 0 in the rest frame, this change does not affect its rest mass. Rather, such energy
must come from the velocity fields surrounding the particle and not escaping as radiation, and not contributing to
its electromagnetic mass.
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In Section 5 we shall discuss this interpretation by utilizing Teitelboim’s separation [22] of the
electromagnetic field into a velocity-field and a radiation-field.

Considering hyperbolic motion Rohrlich [21] writes:

We have here an example of the importance of the Schott energy: The radiation rate is constant, but the field
reaction vanishes. This is only possible if the Schott energy changes at a constant rate equal to the radiation rate
(cf. (3.27)):

d ES

dT
= R (4.13)

The Schott contribution cannot be eliminated here, because throughout the hyperbolic motion there are no two
points 1 and 2 such that Aµ(1) = Aµ(2). Also, there is no reason for surprise that we have radiation while �µ = 0,
since �µ was earlier seen not to be the radiation reaction, but the field reaction.

The equation of motion (3.1) then shows that a neutral and a charged particle will fall equally fast in a uniform
gravitational field. This is at first a very surprising result, since only the charged particle will emit radiation and,
consequently, will lose energy. It is therefore essential to investigate the energy balance in this case.

Upon multiplication by v, Eq. (3.1) shows that the work done by the imposed force Fµ
ext is exactly equal to the

change of the kinetic energy of the particle. If that is the case, what supplies the energy which is being radiated at
the constant rate (3.19)?

The answer to this question is to be found in the formalism we adopted; we assumed the validity of the equation
of motion (3.1). This equation implies that �µ = 0 because of the balance of the Schott vector with the vector of
radiation reaction. In particular, �0 = 0 because the radiation energy rate equals the Schott energy rate. We are
simply dealing with a special case of the Eq. (3.27) which represents the law of conservation of energy.

The immediate physical interpretation which suggests itself here is that Schott’s acceleration energy is part of
the energy content of the moving particle, much in the same way as kinetic energy. The latter is concomitant with
velocity, the former with acceleration. At any one instant the total energy content of a moving particle is given by

E = m0 + EK − ES (4.14)

where m0 is the rest energy and ES the Schott energy given in Eq. (4.5). Just like kinetic energy, the acceleration
energy in no way affects the rest mass of the particle, its rate of change can be positive, zero or negative, and it
vanishes in the instantaneous rest system, as is seen from Eq. (4.5).

The main objection which might be raised against the physical picture which thus presents itself, emerges from
the sign of the Schott energy. In the case of hyperbolic motion this sign causes a decrease of E at a constant rate
R > 0.

In raising such an objection one must realize that this physical picture seems to be a necessary consequence of
the equation of motion which was assumed. A modification of this equation would be necessary to avoid the Schott
energy. As it stands, the equation of motion (3.1), in the spirit of the above remarks should be written in the form

d

dτ

(
m0Uµ − 2

3
Q2 Aµ

)
= Fµ

ext − RUµ (4.15)

I would like to propose that Schott’s acceleration energy should be taken seriously and put on the same level as
the kinetic energy of a particle. It is to be emphasized, however, that this energy is non-vanishing only for charged
particles which are accelerated and therefore occurs only at instances when fields are produced and radiation is
emitted.

Note that with our definition (3.24) of the Schott energy, Eq. (4.14) is replaced by

E = m0 + EK + ES. (4.16)

In [31] Rohrlich writes:

The physical interpretation of (4.14) is necessarily unconventional. Since according to Eqs. (4.13) and (4.14) the
work done by the applied force and the increase in kinetic energy balance each other exactly, the source of radiation
energy is mysterious by conventional ideas.

The physical meaning of the term d E S/dT in (4.13), representing the Schott energy rate, can be understood in
several different ways.

(a) If the Schott energy is expressed by the electromagnetic field, it would describe an energy content of the near
field of the charged particle which can be changed reversibly. In periodic motion energy is borrowed, returned,
and stored in the near field during each period. Since the time of energy measurement is usually large compared to
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such a period only the average energy is of interest and that average of the Schott energy rate vanishes. Uniformly
accelerated motion permits one to borrow energy from the near-field for large macroscopic time-intervals, and no
averaging can be done because at no two points during the motion is the acceleration four-vector the same. Nobody
has so far shown in detail just how the Schott energy occurs in the near field, how it is stored, borrowed, etc.

(b) One can take a dynamical approach and regard the term in question as an inertial term, writing the Dirac
equation in the form (4.15). Thus, in addition to the inertia of the mass, expressed by the rate of change of momentum
and kinetic energy, one has an inertia of the charge, expressed by the rate of change of the term (2/3)Q2a and of
the Schott energy. This interpretation puts heavy emphasis on the Dirac equation, which is known to be incomplete
without an asymptotic condition.

An analysis of the Schott energy of the type that Rohrlich has noted is lacking will be given in the
following sections.

Rohrlich [31] goes on and proposes a modified equation of motion. In the present text we shall,
however, mainly discuss the Maxwell–Lorentz–Dirac theory.

Fulton and Rohrlich [32] offer the following interpretation of Eq. (3.28):

The rate of work done by the external force equals the rate of increase of kinetic energy minus the rate of work
done by the radiation reaction. The latter consists of two parts, a reversible rate, d ES/dT , which can be positive or
negative, and an irreversible rate, −R, which is never positive. The sum d ES/dT − R in general does not vanish.
Since R is exactly the radiation rate, one sees that the energy lost in the form of radiation is entirely accounted for
by part of the work done by the radiation reaction. On the other hand, the remaining part of this work also supplies
an additional energy ES which may be positive or negative. Apparently, ES is to be interpreted as part of the internal
energy of the charged particle. Like its kinetic energy it can be decreased or increased.

Schott has considered hyperbolic motion and comments [20]:

We see that the energy radiated by the electron is derived entirely from its acceleration energy; there is as it were
an internal compensation amongst the different parts of the radiation pressure, which causes its resultant effect [on
the motion of the electron] to vanish.

The interpretation of Fulton and Rohrlich is:

In the case of uniform acceleration, �0 is zero, i.e., the total work done by the radiation reaction vanishes.
Therefore R in Eq. (4.12) is positive. The internal energy of the electron, m − ES , therefore decreases while energy
is being radiated.

This result seems to lead to a very unphysical picture: The accelerated electron decreases its “internal energy,”
transforming it into radiation. Does this mean that the rest mass of the electron decreases? An observer for whom
the electron is momentarily at rest (v = 0) will also find A0 = γ v · g = 0 and therefore ES = 0. Thus we obtain the
comforting result that the change in internal energy of the particle does not affect its rest mass. Rather, the radiation
energy is compensated by a decrease of that part of the field surrounding the charge, which does not escape to
infinity (in the form of radiation) and which does not contribute to the (electromagnetic) mass of the particle.

Grandy [30] gives the following interpretation:

The particle radiates irreversibly into the far field because RIN is nonzero, but all of the radiated energy is
supplied by the Schott term. It is the interaction energy between bound and radiated fields, both of which are
defined locally, that provides all the radiated energy in this case, and the energy provided by the external force is
converted completely into particle kinetic energy.

Fulton and Rohrlich leave the following question open:

If one accepts the equation of motion (3.1), (3.2) as correct, what is the physical meaning of the acceleration
energy and the apparently arbitrarily large depletion of the charge’s internal energy by radiation in the course of its
motion?

In order to exhibit some of the contents in the equation of motion (3.1) we shall consider motion
of a charged particle through a limited electrical field, specified by
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E(τ ) = 0, τ < 0
E(τ ) = E0, 0 < τ < τ1

E(τ ) = 0, τ > τ1

(4.17)

as a function of the proper time τ of the particle. This was considered in the non-relativistic limit by
R. Haag [33] and G. N. Plass [34], and generalized to the relativistic case by T. C. Bradbury [35].

Defining the rapidity α by

tanh α = v (4.18)

so that γ = cosh α and γ v = sinh α, the four-velocity Uµ and the four acceleration, Aµ = U̇µ

where the dot denotes differentiation with respect to the proper time of the particle, can be written

Uµ = (cosh α, sinh α, 0, 0), Aµ = α̇(sinh α, cosh α, 0, 0). (4.19)

Thus the rest acceleration of the charge is
√

Aµ Aµ = α̇. Substituting the expressions (4.19) into the
Lorentz–Dirac equation (3.1) one obtains

(2/3)Q2α̈ + QE = m0α̇. (4.20)

Bradbury [35] then writes:

The equation of motion (4.20) can be expressed in the form

QEv = d

dT
(m0 cosh α) − 2

3
Q2vα̈ (4.21)

where use is made of dτ = dT/ cosh α. Equation (4.21) is an expression of conservation of energy. Let us consider
a case where the external field is confined to a limited region such as that given by (4.17). If (4.21) is integrated
between any two limits, the result is

Q
∫

E d X = 
EK − 2

3
Q2

∫
α̈v dT (4.22)

where use is made of v dT = d X . If both limits lie outside the region of the field E, then α̇ = 0 at both limits of
integration, and the term representing radiation loss can be integrated by parts to give

−
∫

α̈v dT = −
∫

α̈ sinh α dτ = +
∫

α̇2 cosh α dτ = +
∫

α̇2 dT (4.23)

The above result shows that the over-all energy loss can be accounted for either by the conventional radiation
rate (2/3)Q2α̇2 or the radiation four-force (2/3)Q2α̈. Since we are considering a case when the electron always
moves the same distance X in the driving field, it emerges with less kinetic energy than it would have if radiation
were absent. Still, the motion in the region of the field is accurately hyperbolic—i.e., the same as if radiation were
neglected. The important thing is the inclusion of the points where α̈ comes into play, i.e., where the charged particle
enters and leaves the field.

This is commented on by D. W. Sciama et al. [36, 37] in the following way:

The radiation reaction force acts, during the initial and final periods of nonuniform acceleration, in just such a
way as to ensure that the total work done by the agency accelerating the charge is equal to the sum of the change
in the charge’s kinetic energy and the total amount of energy radiated to infinity. This statement amounts to the
assertion that the time integral of the rate at which work is done against the radiation-reaction force is equal to the
total amount of energy radiated, which is assured provided the motion is inertial at sufficiently early and sufficiently
late times.

The authors further write:

Although there is in reality no difficulty posed by overall conservation of energy, the fact that the force of
radiative reaction vanishes during the period of uniform acceleration seems counterintuitive, especially in light of
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the observation that the energy loss suffered by an accelerating charge can be equivalently viewed as either the
action of the self-field of the charge on itself, or as the effect of fluctuations of the electromagnetic field.

It is instructive to consider the absence of radiative reaction on a uniformly accelerated charge in the light
of this duality between the fluctuation and radiative-reaction pictures. It is a standard calculation in classical
electrodynamics [38] to show that the electromagnetic field of an accelerated charge acts back upon the charge
with a force that is proportional to the time derivative of the acceleration. Thus, during hyperbolic motion the field
arranges itself so that there is no radiation reaction upon the charge.

What we seek here is an understanding of this fact in terms of fluctuations. This is provided by the observation
first made by Unruh [39] that to a uniformly accelerated observer whose acceleration is a the Minkowski vacuum
takes on the appearance of a thermal mixture of temperature a/2π . We might say that the charge perceives the
vacuum fluctuations as comoving and comprising a thermal bath. Thus if the charge is constrained to move with
constant acceleration there can be no net transfer of energy or momentum between the charge and the vacuum as
seen in the accelerated frame.

V. L. Ginzburg [40, 41] noted that the application of Poynting’s theorem simplifies and sheds new
light upon the contents of the principle of conservation of energy in connection with the hyperbolically
moving charge and its field. He writes:

The presence of radiation in the absence of a radiation-deceleration force is paradoxical. The paradox arising in
connection with the radiation from a uniformly accelerated charge is connected with the incorrect identification of
the energy flux with the work of the radiation force.

The electromagnetic field equations yield the following relation (the Poynting theorem)

1

8π

∂

∂T
(E2 + B2) = −j · E − ∇ · S (4.24)

where S is the Poynting vector and j the current density. We confine ourselves to the case of vacuum and consider
the motion of a point charge. After integrating over a volume bounded by a surface σ , we get

d Eem

dT
= −Qv · E −

∫
S · dσ, Eem = 1

8π

∫
(E2 + B2) dV (4.25)

On the other hand, in the Newtonian limit we get from the time component of the equation of motion (3.1), (3.2)

d EK

dT
= Qv · Eext + 2

3
Q2 da

dT
− R (4.26)

where R is given in Eq. (3.19). This equation can be written

d EK

dT
= Qv · Eext + v · f (4.27)

and the radiation friction force f is given by

v · f = 2

3
Q2 da

dT
− R (4.28)

In (4.25) E is the total field, E = Eext + E′, where E′ is the field of the charge itself. At the position of the charge
QE′ = f, and hence in (4.25) we have Qv · E = Qv · Eext + v · f. We are thus, as one should expect, lead from
(4.25) and (4.26) to the conservation law

d(Eem + EK )

dT
= −

∫
S · dσ (4.29)

The change of field energy plus the change of mechanical energy inside a volume is equal to the flux of energy
through the boundary of the volume.

In the case of hyperbolic motion, with vanishing radiation friction force f = 0, Poynting’s theorem
(4.25) reduces to

d Eem

dT
= −Qv · Eext −

∫
S · dσ (4.30)
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and the time component of the equation of motion (3.2) takes the form

d EK

dT
= Qv · Eext (4.31)

Ginzburg then writes:

The vanishing of the radiation force during the uniformly accelerated motion is in no way paradoxical, in spite
of the presence of radiation. Indeed, the non-vanishing total energy flux through a surface surrounding the charge,
while the radiation force equals zero, is exactly equal to the decrease in the field energy in the volume enclosed by
that surface. In the general case, however, all three quantities d Eem/dT, v · f, and

∫
S · dσ are different from zero.

There are no grounds for expecting that the work done by the radiation force, v · f, and the energy flux
∫

S · dσ or
the radiation flux R are necessarily equal, especially as the force is applied to the charge, while the flux is calculated
through a spherical surface around the charge.

J. Cohn [42] has performed an interesting investigation of “hyperbolic motion and radiation,” with
the intention to clarify the connection between the Poynting vector and the rate of emission of energy
by an accelerated charge. He formulates the problem as follows:

Consider a charge moving eternally with constant intrinsic acceleration. The particle comes from infinity, mo-
mentarily comes to rest and goes back out to infinity with velocity reversed. At the moment the charge changes
direction, the magnetic field, and therefore the Poynting vector, is everywhere zero. The interpretation of this con-
clusion is central to the problem. On the one hand, as the charge approaches its turning point it certainly seems that
it must radiate according to the Larmor formula. But on the other hand, the fact that B = 0 at this moment implies
that the Poynting vector vanishes everywhere, which seems to impy that there is no radiation at this moment.

Cohn then consider straight motion of a charged particle and arrives at some useful results:

The Poynting vector vanishes everywhere (in the observing frame) on the “light sphere” whose radius r is given
by r = −v/γ 2a. We shall call such a light sphere a “null” light sphere. Note that when the particle’s velocity is
zero and its acceleration is not zero, the null light sphere is of radius zero.

It is possible to transform the Poynting vector to zero over the entire surface of any light sphere by a suitable
Lorentz transformation. Hyperbolic motion is the unique straight-line motion for which the set of such spheres
occupies all of space at the moment the charge is at the turning point.

He goes on and calculates the sign of the Poynting flux

F =
∫

S · n dσ (4.32)

over an arbitrary light sphere in the given reference frame. He finds that F ≥ 0. The total energy
flux is never negative. Then he considers the contributions from the Coulomb and radiation fields,
i.e., the fields I and II of Teitelboim [22], and finds that FI ≥ 0, FII ≥ 0, and FI,II ≤ 0, where FI,II is
the contribution to the flux coming from mixed terms involving both radiation and Coulomb fields,

SI,II ∝ (EI × BII + EII × BI ).

Cohn further comments:

By assumption we consider the radiant energy flux to be always given by FII (indeed, this is the only contribution to
F that cannot be transformed to zero by some Lorentz transformation). Only when mixed and Coulomb contributions
are negligible can this be identified with F . Thus radiant energy flux is not generally given by F . When the light
sphere under consideration happens to be much larger (or later) than the null light sphere, we can identify FII as
just F , and when it is not much larger (or later) than the null light sphere we must only use FII to evaluate the
radiant flux. This yields the customary Larmor result.

Finally Cohn applies the above results to the case of a hyperbolically moving charge and comments
on Pauli’s conclusion that a hyperbolically moving charge does not radiate:
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The mistake made by Pauli was to use F instead of FII to indicate radiant energy flux. Only when the light sphere
is much larger than the null light sphere is this permissible. In the case of eternal hyperbolic motion such light
spheres only exist some time after the turning point. On such a sphere F ≈ FII is then determined by the retarded
kinematical properties of the charge at the emission time in the remote past, yielding the customary Larmor result.

5. THE RELATIONSHIP OF THE FIELD EQUATIONS AND THE EQUATION OF MOTION

Dirac [4] deduced an equation of motion of a charged point particle from Maxwell’s equations
and the principle of conservation of energy and momentum,

T µv
;v = 0, (5.1)

where T µv is the energy-momentum tensor of the electromagnetic field. The deduction has been re-
viewed by Rohrlich [21] and developed further by himself [43], Teitelboim [22], and co-workers [44].

We shall only note the main points here.
Dirac considers a tube surrounding the world-line of the charge. The tube has an invariant radius

ε, and a surface-element of the tube is d3σv . For any two points 1 and 2 on the world line, the flow
of four-momentum out of the surface between these points is


Pµ =
2∫

1

T µvd3σv. (5.2)

Dirac showed (by a rather long calculation) that this can be expressed (in our notation) as


Pµ =
2∫

1

(
Q2

2ε
Aµ − QUv Fµv

ext − �µ

)
dτ, (5.3)

where �µ is the Abraham four-vector given in Eq. (3.2), and Fµv
ext is the external electromagnetic

field. Using the conservation law (5.1) Dirac further proved that the integral (5.3) depends only on
the end points 1 and 2, so that the integral has to be a perfect differential of some vector Bµ, i.e.,
equal to Ḃµ dτ . Like the integrand Ḃµ must be orthogonal to Uµ. The simplest choice, but not the
only possible one, is to put Bµ = kUµ, where k is a constant.

Dirac further puts k = Q2/2ε − m, where m is another constant, and gets the following equation

Q2

2ε
Aµ − QUv Fµv

ext − �µ =
(

Q2

2ε
− m

)
Aµ (5.4)

or

m Aµ = QUv Fµv
ext + �µ (5.5)

which is interpreted as the equation of motion of a charged particle in an external electromagnetic
field. This is the Lorentz–Dirac equation (3.1).

Dirac has interpreted the time component of Eq. (3.1), i.e., the equation of energy conservation,
in the following way:

The rate at which work is done on the charge, is equated to the sum of three terms; mU̇ 0, −(2/3)Q2Ü 0 and
(2/3)Q2a2U 0. The first two of these are perfect differentials and the things they are differentials of, namely mU 0
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and −(2/3)Q2U̇ 0, may be considered as intrinsic energies of the charge. The former is just the usual expression
for the kinetic energy of a particle of rest mass m, while the latter is what is called the “acceleration energy” [20].
Changes in the acceleration energy correspond to a reversible form of emission or absorption of field energy, which
never gets very far from the charge. The third term (2/3)Q2a2U 0 corresponds to irreversible emission of radiation
and gives the effect of radiation damping on the motion of the charge.

Note that Rohrlich’s definition of radiation reaction, Eq. (4.6), is in agreement with Dirac’s interpre-
tation.

A particularly interesting feature about Dirac’s deduction is that it establishes a connection between
Maxwell’s equations and the equation of motion for a charged particle. It shows that the presence
of the Abraham four-vector in the equation of motion comes from conservation of energy and
momentum of the electromagnetic field. It must be present in the equation of motion of a charged
particle in order for this to be consistent with energy-momentum conservation for a closed system
consisting of a charge and its field.

We have seen in the preceding paragraph that the source of radiation energy in the case of a
hyperbolically accelerated charge was still not fully understood in the sixties. A significant advance
was made by Teitelboim [22]. He made a Lorentz invariant separation of the electromagnetic field
tensor into two parts

Fµv = Fµv

I + Fµv
II , (5.6)

where Fµv

I is the velocity field, and Fµv
II is the acceleration field. Inserting these fields into the

energy-momentum tensor of the electromagnetic field, Teitelboim finds that the energy-momentum
tensor contains terms of three types: a part T µv

I,I independent of the acceleration, a part T µv

I,II depending
linearly upon the acceleration, and a part T µv

II,II depending linearly upon the square of the acceleration
of the charge producing the fields.

It is a consequence of Maxwell’s equations that the total energy-momentum tensor is covariantly
divergence free outside the world line of the charge,

T µv
;v = 0. (5.7)

This expresses the conservation of energy and momentum of the electromagnetic field. Teitelboim
shows that

T µv
II,II;v = 0. (5.8)

Then we have

T µv = T µv

I + T µv
II (5.9)

with

T µv

I ;v = 0, T µv
II;v = 0, (5.10)

where

T µv

I ≡ T µv

I,I + T µv

I,II, T µv
II ≡ T µv

II,II, (5.11)

where the separate conservation equations in (5.10) are valid off the world line of the charge. The
contribution of the interference between the fields I and II has been included in T µv

I , whereas the
tensor T µv

II is related only to the part of the field depending upon the square of the acceleration.
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Teitelboim further shows that the energy-momentum associated with the field Fµv
II is travelling with

the speed of light. The field fronts are spheres centered at the corresponding emission points. The
four-momentum associated with T µv

I remains bound to the charge.
Teitelboim goes on and calculates these four-momenta in terms of the properties of the charge.

The radiated four-momentum present at the proper time τ is defined by

Pµ
II (τ ) ≡

∫
σ (τ )

T µv
II Uv(τ ) d3σ, (5.12)

where σ is an arbitrary spacelike surface that intercepts the world line of the charge at the point of
time τ . The result of Teitelboim’s calculation is

Pµ
II (τ ) =

τ∫
−∞

2

3
Q2a2(τ )Uµ(τ ) dτ. (5.13)

Differentiating this equation, he finds that when a charge is being accelerated, four-momentum is
being radiated at the instant τ in accordance with the relativistic Larmor formula (3.20).

The bound four-momentum present at the proper time τ is defined by

Pµ

I (τ ) =
∫

σ (τ )

T µv

I Uv(τ ) d3σ, (5.14)

where σ (τ ) is the three space at time T as viewed from the rest system of the charge at the proper time
τ . Using the asymptotic condition limτ→−∞(motion) = uniform motion, his calculation leads to

Pµ

I = Q2

2ε
Uµ − 2

3
Q2 Aµ. (5.15)

This expression shows that Pµ

I is a state function of the charge; i.e., it depends only upon the world
line of the particle at its position. This is a confirmation of the bound character of Pµ

I . Differentiation
gives the rate of change of bound field four-momentum

d Pµ

I

dτ
= Q2

2ε
Aµ − 2

3
Q2 Ȧµ. (5.16)

Teitelboim summarizes the above result with the words:

The “bound” electromagnetic four-momentum contains, besides the generally accepted “Coulomb mass” × four-
velocity term, the extra term −(2/3)Q2 Aµ, whose time derivative is precisely the negative of the yet-to-be-explained
Schott term.

Teitelboim then derives the Lorentz–Dirac equation in a manner similar to that employed by Dirac
and Rohrlich, but obtains an additional insight as to the significance of the Schott term by utilizing
the results above.

Since the charged particle cannot be separated from its bound electromagnetic four-momentum, the four-
momentum of the particle is the sum of the mechanical or “bare” momentum and the electromagnetic one; that is
to say,

Pµ = Pµ

(bare) + Pµ
I (5.17)
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If we assume the bare four-momentum to have the usual form for an uncharged particle, we obtain

Pµ =
(

m(bare) + Q2

2ε

)
Uµ − 2

3
Q2 Aµ (5.18)

To handle the divergence (when ε → 0), we make the usual identification

m = m(bare) + Q2

2ε
(5.19)

Thus, for the four-momentum of a point charge in arbitrary motion we have

Pµ = mUµ − 2

3
Q2µ (5.20)

The equation of motion for a charged particle which is not under the action of any external force follows readily
from the conservation of momentum for the closed system particle plus radiation; that is to say,

m Aµ − 2

3
Q2 Ȧµ = − 2

3
Q2a2Uµ (5.21)

When the particle is acted upon by an external four-force, Eq. (5.21) must, of course, be replaced by the Lorentz-
Dirac Equation (3.1).

Defining the Schott four-momentum

Pµ

S = −2

3
Q2 Aµ (5.22)

with the Schott energy (3.24) in the time component, the four-momentum Eq. (5.20) corresponding
to the energy Eq. (4.16) takes the form

Pµ = mUµ + Pµ

S . (5.23)

A further comment is given in [44]:

The magnitude of Pµ is not conserved. However mUµ does have a conserved magnitude. The difference between
mUµ and Pµ is the Schott term, which vanishes if the particle is free and negligible in weak external fields. Therefore,
as long as physical measurements are effected when the particle is free or nearly free, the empirical evidence cannot
distinguish between the conservation of Pµ Pµ and that of m2UµUµ = −m2.

However, from our point of view, it would be conceptually mistaken to identify mUµ as the true four-momentum
of the particle, as this interpretation would be tenable only if the term (“Abraham four-vector”) �µ in the Lorentz-
Dirac equation could be considered as the negative of the instantaneous rate of emission of electromagnetic radiation.
Such an interpretation cannot possibly be correct, since �µ is spacelike and hence the sign of its time component can
be changed by a Lorentz transformation, which is not consistent with the irreversible character of electromagnetic
radiation.

Finally, Teitelboim [22] mentions briefly the hyperbolically accelerated charge and its field.

Hyperbolic motion is a special case in which all radiated energy comes from the bound electromagnetic energy of
the particle. In the general case there is a conversion of both mechanical and bound electromagnetic four-momentum
into radiation.

The conversion of four-momentum of type I into momentum of type II is forbidden in the whole spacetime off
the world line of the particle, since in this region the tensors corresponding to both parts conserve separately. The
change of status of the four-momentum occurs only at the singularity of the fields, where both tensors have their
sources.

Therefore a charge in hyperbolic motion can be pictured as being only a source of radiated four-momentum and
a sink of bound four-momentum.

The results of Rohrlich and Teitelboim have been summarized by P. Pearle [45] who writes:

The term �µ in the Lorentz-Dirac equation, as given in Eq. (3.2), is called the Abraham force. Its first term,
(2/3)Q2 Ȧµ, is called the Schott term, and its second, −(2/3)Q2 Av AvUµ, the radiation reaction term.
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The zeroth component of the radiation reaction term is to be interpreted as the radiation rate. Indeed, the scalar
product of this term with Uµ is the relativistic version of the Larmor formula. The spatial component of this term,
proportional to −v like a viscous drag force, may similarly be interpreted as the radiation reaction force on the
electron.

The physical meaning of the Schott term has been puzzled over for a long time. Its zeroth component represents
a power which adds “Schott acceleration energy” to the electron and its associated electromagnetic field. The work
done by an external force not only goes into electromagnetic radiation and into increasing the electron’s kinetic
energy, but it causes an increase in the “Schott acceleration energy” as well. This change can be ascribed to a change
in the “bound” electromagnetic energy in the electron’s induction field, just as the last term in Eq. (3.22) can be
ascribed to a change in the “free” electromagnetic energy in the electron’s radiation field.

What meaning should be given to the Schott term? Teitelboim [22] has argued convincingly that when an electron
accelerates, its near field is modified so that a correct integration of the electromagnetic four-momentum of the
electron includes not only the Coulomb four-momentum (Q2/2ε)Uµ, but an extra four-momentum −(2/3)Q2 Aµ

of the bound electromagnetic field. This suggests that the Lorentz-Dirac equation be written in the form (5.21). The
Schott term is the negative rate of change of Teitelboim’s four-momentum.

6. IS THE SCHOTT ENERGY LOCALIZED AT THE PARTICLE?

Rowe [23] has modified Teitelboim’s separation of the energy momentum tensor of an electro-
magnetic field and introduced a separation into three divergence free parts. We shall examine what
this separation reveals about the localization of the Schott energy.

Teitelboim’s separation is given in Eqs. (5.6), (5.9), and (5.11). Calculating the expressions for
the separate parts of the energy momentum tensor, one arrives at

T µv

I,I = Q2

4π

[
1

2
ηµv + Uµ Rv + U v Rµ

s
− Rµ Rv

s2

]
1

s4
(6.1)

T µv

I,II = Q2

4π

[
Aµ Rv + Av Rµ + (Rβ Aβ)(Uµ Rv + U v Rµ)

s
− 2(Rβ Aβ)Rµ Rv

s2

]
1

s4
(6.2)

T µv
II,II = Q2

4π

[
Aβ Aβ − (Rβ Aβ)2

s2

]
Rµ Rv

s4
, (6.3)

where the null-vector Rv = (T − TQ, X − XQ) is the distance four-vector between the observation
event, i.e., the field point, (T, X), and the emission event, i.e., the source point, (TQ, XQ), and
s = −Uv Rv = κγ R, where R = T − TQ , κ = 1 − n · v, and n is a unit vector directed from the
emission point to the field point in space.

Teitelboim writes the energy momentum tensor T µv as the sum of a tensor T µv
II = T µv

II,II for the
radiation field, II, and a tensor T µv

I ≡ T µv

I,I + T µv

I,II for the Coulomb/velocity field, I, including the
cross terms with the radiation field. He shows that the tensors T µv

I and T µv
II are both divergence

free. Hence, there is no exchange of energy nor momentum between T µ

I and T µ
II , except possibly at

the point s = 0 where the tensors are not defined. The four-momentum of the radiation field depends
upon the whole prehistory of the particle. According to Teitelboim the four-momentum of type I, the
so-called bound momentum, is given by the instantaneous values of the velocity and acceleration and
consists of the Schott energy-momentum, −(2/3)Q2 Aµ, and of the Coulomb energy-momentum,
(Q2/2ε)Uµ.

Rowe’s separation of the energy momentum tensor is

T µv = T µv

1 + T µv

2 + T µv

3 , (6.4)
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where

T µv

1 = T µv

I,I + Q2

2π

Rβ Aβ Rµ Rv

s6
(6.5a)

T µv

2 = TI,II − Q2

2π

Rβ Aβ Rµ Rv

s6
(6.5b)

T µv

3 = T µv
II,II. (6.5c)

This is a separation of the energy momentum tensor into three symmetrical tensors. Computation
(differentiation of retarded quantities) shows that each of the tensors are divergence free.

We shall first study the energy and momentum of type 2, at a point of time T , of the electromagnetic
field from a charged particle, which we consider as a point charge. The field produced at a point of
time TQ is found at the time T at an eikonal (a light front) shaped as a spherical surface K with radius
T −TQ . The field produced by the particle during an infinitesimal time interval from TQ to TQ + dTQ

is found between two non-concentric spherical surfaces with distance κdTQ in the direction n. The
energy-momentum at time T of type 2 in this region is given by the space angle integral

d Pv = (T − TQ)2 dTQ

∮
κT 0v

2 d�. (6.6)

Calculation shows that all integrals
∮

κT µv

2 d� vanish. In other words, integrated over all directions
the particle does not emit any energy-momentum of type 2. Hence, the total amount of energy and
momentum of type 2 in the space V′ outside an arbitrary eikonal K is zero,

∫
V ′

T 0v d3 X = 0. (6.7)

We shall now find the integrals
∫

V T 0v
2 dV over the volume V outside an ellipsoid (corresponding

to a spherical surface in the rest frame of the charge) with half axes ε and ε/γ enclosing the particle,
and inside an eikonal K which is just outside the ellipsoid. We want to express the result in terms of
the instantaneous values of the particle’s velocity and acceleration. The calculation of the integral
follows the same procedure as the calculations in Section 3 of Ref. [46] and is not given in detail
here. We find the following expressions for the total energy and momentum of type 2 in V in the
limit ε → 0,

∫
V

T 00
2 dV = 2

3
Q2γ 4a · v = 2

3
Q2 A0 (6.8a)

∫
V

T 0i
2 dV = 2

3
Q2γ 4(a · v)v = 2

3
Q2 A0v. (6.8b)

Outside the eikonal the corresponding energy and momentum are zero. Hence the energy and
momentum of type 2 are given by Eq. (6.8) and are localized inside an eikonal K of arbitrary size.
This energy and momentum do not form a four-vector, but may be interpreted as the energy and
momentum of a system with variable mass (energy) moving with a velocity v. It may be noted
that in order to arrive at the results (6.8) for the energy and momentum of type 2, we omitted a
Lorentz contracted sphere of radius ε around the particle and took the limit ε → 0. No divergent
integrals appeared in this limit. This means that as far as the energy and momentum of type 2 are
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concerned, there are no divergences for the total energy and momentum anywhere in the space, not
even arbitrarily close to the point charge.

Considering the field from a point particle Rowe finds that the expressions (6.5a), (6.5b) should
be completed by δ-function expressions at the position of the particle. He finds, using distribution
theory, that in spite of the fact that T µv

1 and T µv

2 are symmetrical for s = 0, this is not the case at
s = 0. He symmetrizes the s = 0-term and finds a symmetrical extension of the original tensors.
This leads to the following modified tensor of type 2 at laboratory time T ,

T µv

2new = T µv

2 − 2

3
Q2γ −1(AµU v + AvUµ)δ(X − XQ), (6.9)

where Aµ, U v , XQ refer to the particle at the point of time T . For T µv

1 there is a corresponding term
with opposite sign, so there is no δ-function contribution to the sum T µv

1new + T µv

2new. Integrating the
last term in Eq. (6.9) over all of space one finds that the contribution of the δ-function term to the
energy is


P0
2 = −4

3
Q2 A0 (6.10a)

and to the momentum


P2 = −2

3
Q2(A0v + A). (6.10b)

Adding this to the expressions (6.8) we find that the total energy-momentum of type 2 inside K is
given by the Schott four-momentum Pv

S = −(2/3)Q2 Av .
According to Rowe’s assumptions and our calculations we arrive at the following physical picture.

At an arbitrary point of time T space may be thought of as filled by spherical eikonals. Each spherical
surface has center at a retarded position of the charge, so that R = T − TQ , where TQ is the retarded
time. The total energy and momentum of type 2 and “2new” summarized over all directions vanish
outside an eikonal of arbitrarily small radius, but inside the eikonal there is a Schott four-momentum,

Pv
S = −(2/3)Q2 Av (6.11)

which is partly concentrated at the particle as a δ-function distribution. Note, however, that totally
there is no energy or momentum situated at the particle since the δ-functions from “1new” and
“2new” cancel each other.

The energy and momentum of type “1new” are found from the relation

T µv

I = T µv

1new + T µv

2new = T µv

1 + T µv

2 . (6.12)

We find from Eqs. (3.8) and (3.12) in Ref. [46] that the energy and momentum of type I, which were
produced from TQ1 = −∞ to TQ2, are at time T localized in the space outside an eikonal K with
radius T − TQ2, and are given by

UI (−∞, TQ2, T ) = Q2

2(T − TQ2)
γ 2(TQ2)

(
1 + 1

3
v2(TQ2)

)
(6.13a)

PI (−∞, TQ2, T ) = 2

3

Q2

T − TQ2
γ 2(TQ2)v(TQ2). (6.13b)
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TABLE I

Type of At the Inside K
tensor particle (outside the ellipsoid) Outside K In all space

T µv
1 0 UC + 2ES − UI UI UCoul + 2ES

T µv
2 0 −ES 0 −ES

T µv
1new −2ES UC + 2ES − UI UI UCoul

T µv
2new 2ES −ES 0 ES

T µv
I 0 UC + ES − UI UI UCoul + ES

Here we have assumed that γ 2(TQ1)/(T − TQ1) → 0 when TQ1 → −∞.
Similarly we find from Eqs. (3.8), (3.12), and (3.13) in [46] that the energy and momentum of

type I in the space outside the ellipsoid and inside an eikonal K of arbitrary size are

∫
V

uI d3 X = Q2

2ε
γ

(
1 + 1

3
v2

)
− 2

3
Q2 A0 − UI (−∞, TQ2, T ) (6.14a)

∫
V

PI d3 X = 2

3

Q2

ε
γ v − 2

3
Q2A − PI (−∞, TQ2, T ), (6.14b)

where the symbols without argument refer to the point of time T .
By means of Eqs. (6.11)–(6.14) we may summarize the results of Rowe’s and Teitelboim’s sepa-

rations in a table showing the distribution of energy inside and outside an eikonal K of arbitrary size.
In Table I, ES = −(2/3)Q2 A0 = −(2/3)Q2γ 4a ·v is the Schott energy, UC = (Q2γ /2ε)(1+v2/3),
and UI is given by Eq. (6.13a).

Table I shows the distribution of field energy for the tensor T µv

I and its separations T µv

I = T µv

1 + T µv

2
and T µv

I = T µv

1new + T µv

2new.
The Schott energy—interpreted as a field energy—is localized inside the eikonal K. We shall

introduce the concept of interaction energy, i.e., the field energy due to the interaction between the
fields Fµv

I and Fµv
II , and examine whether this energy is related to the Schott energy. For this purpose

we shall make use of the bound energy-momentum tensor T µv

I , being the sum of Coulomb terms
and interaction terms.

Consider a particle moving along the X -axis. We assume that the motion was uniform in the far
past, but at a certain time some force started acting upon the particle, and since then it has had an
arbitrary motion. At the point of time TQ2 the particle has a velocity v2. The field which the particle
has emitted up to TQ2 has at time T > TQ2 an energy of type I given by UI , which is dependent only
on the velocity v2 at this point of time. This is the same energy as if the particle had moved with
constant velocity v2 up to TQ2.

We may choose TQ2 gradually closer to T until the eikonal touches the ellipsoid from outside.
Then we have a situation as shown in Fig. 1, where T − TQ2 � γ ε(1 + v) and X (T ) − X (TQ2) �
v(T − TQ2).

In the region V there is an energy energy UC + ES − UI . This is a region close to the particle
which vanishes in the limit ε → ∞.

The Schott energy ES is a quantity of first order in the acceleration. One may wonder whether ES

is a measure of the interaction energy.
Let us consider the density uI,II of the interaction energy in the future light cone from the particle

as given by Eq. (6.2). In three dimensional notation the expression takes the form
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FIG. 1. The Schott energy is localized in the shaded region between the eikonal and the ellipsoid surrounding the particle.
Here v = 0.6.

uI,II = Q2

2π R3γ 2κ6
[κa · v + (κ − γ −2)a · v], (6.15)

where v, γ, a refer to the retarded time TQ , R = T − TQ, κ = 1 − n · v, and n = R/R.
The field produced by the particle in the infinitesimal time interval from TQ to TQ + dTQ is at time

T situated in the region between two eikonals with radii T − TQ and T − TQ − dTQ , respectively.
The interaction energy in this region is

dU I,II = (T − TQ)2 dTQ

∫
κuI,II d� = 4

3
Q2γ 4 a · v

T − TQ
dTQ = − 2

T − TQ
ES(TQ) dTQ . (6.16)

Thus, the interaction energy produced from TQ I = −∞ to TQ2 is at time T given by (assuming
constant velocity in the infinite past)

UI,II(−∞, TQ2, T ) = −2

TQ2∫
−∞

ES(TQ)

T − TQ
dT Q . (6.17)

We shall now show by considering a particular situation that in general there is no connection
between the Schott energy and the amount of interaction energy. Consider a particle being in uniform
motion in the infinite past, and having arbitrary motion during a finite period until it comes to rest
at time the TQ2. When the particle is at rest for T > TQ2 the space close to the particle is filled by
a Coulomb field. Hence, at a point of time T after TQ2 the total interaction field energy is correctly
given by Eq. (6.17) and spreads over all space outside the eikonal from TQ2. The integral (6.17)
depends upon the prehistory of the particle and may have any value. On the other hand the Schott
energy at the time T is zero.

The general expression for the interaction energy at time T in the region V between the ellipsoid
and the eikonal just outside it may be found by the same procedure as used in the calculations in
Section 3 of Ref. [46]. The result is

∫
V

uI,II d3 X =
(

2 ln
ε

T − TQ2
+ f (v)

)
ES(T ), (6.18)
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where

f (v) = −17

12
+ 1

4v2
+ 3v4 + 6v2 − 1

4v3
artanh v = 6

5
v2 + 3

14
v4 + · · · (6.19)

and v = v(T ). Adding the expression (6.17) and omitting terms which vanish in the limit ε = 0, we
find that the total amount of interaction energy in all of space is

∫
uI,II d3 X = (2 ln ε + f (v))ES(T ) − 2

T∫
−∞

E ′
S(TQ) ln(T − TQ) dT Q . (6.20)

Due to the last term we see that the interaction energy is not a state function of the particle.
As an example consider a particle moving in the negative X -direction from X = ∞ at T = −∞,

the motion being uniform until the point of time T1. Then the motion becomes hyperbolic with proper
acceleration g and with turning point at T = 0. We shall find the interaction energy in the field at
T = 0. We put T = 0 and v = 0 in Eq. (6.20) and get

∫
uI,II d3 X = −2

0∫
−∞

E ′
S(TQ) ln(−TQ) dTQ . (6.21)

Here we introduce ES(TQ) = 0 for TQ < T1 and ES(TQ) = −(2/3)Q2g2TQ for TQ > T1. Taking
into account that E ′(TQ) has a δ-function contribution,−(2/3)Q2g2T1δ(TQ − T1), we find that the
interaction energy when the particle is at the turning point is not equal to the Schott energy ES(0) = 0,
but ∫

uI,II d X = −2ES(T1), (6.22)

where ES(T1) is the Schott energy just after the particle has entered the hyperbolic motion.

7. THE FIELD REACTION FORCE

A calculation of the self force upon an accelerated charge was originally made by Lorentz [1] and
has been reviewed among others by Jackson [38] and by Panowski and Phillips [47], who performed
the calculation in the instantaneous rest frame of the charge. It is not obvious that a more general
calculation, with arbitrary velocity, shall give the same result as the calculation in the rest frame of
the charge, Lorentz transformed to an arbitrary reference frame, because the calculations involve
an integration over the volume of the charge. This volume is defined as a simultaneity space in the
laboratory frame, which is different from the simultaneity space in the rest frame of the charge. For
this reason we have made a general calculation, which is found in Appendix B (see also Eqs. (A.15)
and (A.24) in Appendix A). The result of the calculation is as follows.

Consider a non-rotating particle moving along a straight line in the laboratory. The particle is
assumed to be Born rigid and spherically symmetric in its rest frame. Then the motion of each
element of the charge is determined by specifying the motion of one element, for example, the center
of the charge.

The electromagnetic force between two elements of the charge will in general not satisfy Newton’s
3.law; the force from an element d Q1 on an element d Q2 is different from the force from d Q2 on d Q1.
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The self force is the vector-sum obtained by adding internal electromagnetic forces by simultaneity
in the laboratory frame.

The calculation is simplified due to the following circumstance. The force acting upon an element
d Q1 from all the other elements of the charge is partly due to a magnetic field and partly an electrical
field with one component normal to the direction of motion of the charge and one component E X

along this direction. Due to the rotational symmetry of the charge about the direction of motion, only
the component E X contributes to the self force. Moreover, E X is invariant against a transformation
in the X -direction so the force on each element of the charge may be calculated in the rest frame
of the element. But the integration that defines the resultant force, F , on the whole charge must be
performed by simultaneity in the laboratory frame.

We find that the self force in the laboratory system is equal to the self force in the rest system.
Also we have performed a separation in a Coulomb/velocity part and a radiation/acceleration part,
following Teitelboim, and found that the field of type I does not contribute to the self force, when the
charge-distribution which is spherically symmetric in its rest frame, has vanishing extension. Hence

F = FI + FII, FI = 0, FII = −4

3
V0g + 2

3
Q2 dg

dτ
, (7.1)

where τ is the proper time of the charge,V0 is its electrostatic energy, and g = d(γ v)/dT its acc-
eleration in the instantaneous rest frame. The last term is the Lorentz–Dirac field reaction force for
rectilinear motion.

Newton’s 2.law as applied to a charged particle acted upon by an external force Fext then takes the
form

M0g = Fext + 2

3
Q2γ

dg

dT
− 4

3
V0g. (7.2)

Here M0 is formally a mechanical rest mass. The last term expresses “a resistance against being put
into motion,” and acts as an addition to the rest mass. We normalize to a physical rest mass

m0 = M0 + 4

3
V0. (7.3)

Equation (3.1) then takes the form

Fext = m0g − 2

3
Q2γ

dg

dT
. (7.4)

The field reaction force may be written

2

3
Q2γ

dg

dT
= 2

3
Q2 d(γ vg)

v dT
− 2

3
Q2 g2

v
. (7.5)

Using this in Eq. (7.4) we find the following expression for the work performed by the external force

Wext =
T ′′∫

T ′

Fextv dT = 
EK + 
ES + 2

3
Q2

T ′′∫
T ′

g2 dT, (7.6)

where EK is the kinetic energy of the particle and ES its Schott energy, defined in Eq. (3.24). The
last term in Eq. (7.6) is the work WR which must be performed to overcome a sort of “resistance”
(different from the radiation reaction force) which always acts against the accelerated motion of a
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charged particle. From the field point of view this work contributes the energy which is emitted by
the particle from T ′ to T ′′.

The Schott energy is sometimes thought of as a quantity belonging to the particle, but can also
be perceived as a field quantity. These different ways of interpreting the Schott energy are not
contradictory, but have a complementary character. In connection with the equation of motion of
the charge and the associated energy budget, the particle aspect is significant. But when it comes to
localizing the Schott energy, the field aspect is the central one.

In this section we have seen how a charged particle acts upon itself because of internal retarded
forces that summarize to a field reaction force (2/3)Q2γ dg/dT , according to Eq. (7.4). In the
deduction we have assumed a spherically symmetric distribution of the charge in the rest frame of
the particle, and we have considered the case of rectilinear motion.

We shall now present an alternative point of view, referring to Section 3 of Ref. [46], leading
to the same result. There we studied the field outside the particle produced by the particle from an
infinitely remote point of time up to an arbitrary point of time. We considered a particle with arbitrary
(curvilinear) motion and calculated the retarded field from the charge. The region outside the charge
was defined as the space outside a spherical boundary in the rest frame of the particle with the charge
concentrated as a point charge in the center.

The Coulomb energy, which is included in the mass of the particle, diverges in the limit when the
radius of the charge approaches zero, but there are no other divergences in this limit.

The four-momentum Pµ for the system of particle and field is given in Eq. (3.20) of Ref. [46]. If
the particle does not interact with the world outside, Pµ will be constant. However, if an external
force Fµ

ext acts upon the particle, then Fµ
ext = Ṗµ, and we get

Fµ
ext = m0 Aµ − 2

3
Q2 Ȧµ + Ṗµ

R, (7.7)

where

Ṗµ

R = 2

3
Q2g2Uµ (7.8)

in accordance with Larmor’s formula. We find the field reaction formula

�µ = 2

3
Q2( Ȧµ − g2Uµ) (7.9)

in agreement with Eq. (3.2). There are two contributions to the Abraham-vector �µ: the term
(2/3)Q2 Ȧµ, which is the Schott vector representing the acceleration reaction, is due to the bound
four-momentum of the field (Teitelbaum’s type I); while the Rohrlich-vector −(2/3)Q2g2Uµ rep-
resenting the radiation reaction, is due to the radiation field (i.e., field of type II). The latter term
has recently been discussed by Hartemann and Luhman [48]. They deduced it by integrating the
radiation pressure due to the radiation emitted by the particle, over an eikonal, and taking the limit
when the radius tends to zero.

We should also like to point out the somewhat astonishing circumstance that the term g2Uµ, which
appears in the expression for �

µ

R , also appears in the expression for Ȧµ. By linear motion

Ȧµ = g2Uµ + γ (v · g, g) (7.10)

and Eq. (3.2) for the Abraham vector reduces to

�µ = 2

3
Q2γ (v · ġ, ġ), (7.11)
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i.e.,

Γ = 2

3
Q2ġ (7.12)

in accordance with Eqs. (3.17) and (7.4).
Summarizing the contents of this subsection, we have considered two methods of finding the field

reaction force Γ:

(i) The interpretation of Γ obtained by summing up the internal electromagnetic forces in the
particle is that the field reaction force is entirely due to the acceleration (radiation) field Fµv

II .
(ii) By taking the time rate of the momentum in all of space contained in the field produced by

the particle from T = −∞ and up to the present time, we get Γ = ΓA + ΓR where ΓA is due to the
bound momentum (Teitelboim’s tensor T µv

I ), and �
µ

R is due to the radiation field. In an instantaneous
rest frame of the charge ΓR = 0 and Γ = ΓA, so referring to this frame the field reaction force Γ
depends only upon the bound momentum.

We find it rather remarkable that Γ may be calculated by two methods being so different, and that
the parts I and II of the field seem to have complementary roles in connection with the two ways of
calculating this single quantity.

8. ENERGY CONSERVATION FOR A CHARGE ENTERING A REGION
OF HYPERBOLIC MOTION

As mentioned in Section 3 even if a charge radiates as observed from the laboratory system during
hyperbolic motion, the field reaction vanishes. All of the work performed by the force causing the
hyperbolic motion is used to change the kinetic energy of the particle. Nothing of it contributes to
the energy radiated by the charge. So where does the radiated energy come from?

This question may be investigated by considering, not the eternal hyperbolic motion, but a situation
where a charge initially moves with constant velocity, and then, at a position X1 and point of time
T1, enters a region, H, where it is acted upon by a constant force Fext = m0g. In this connection
phenomena such as runaway motion, pre-acceleration, and acceleration in the opposite direction
of that given by the Lorentz equation of motion turn up in certain solutions of the LAD-equation.
The non-causal character of these phenomena has lead to several investigations [49–58] trying to
find out how they can be resolved either by imposing asymptotic conditions, or by modifying the
equation. C. C. Yan [53] has recently introduced a new definition of momentum which removes
preacceleration and runaway solution. M. A. Oliver [54], on the other hand, has claimed that the
LAD-equation contains an error of sign, and that when this is corrected one obtains an equation of
motion with only physically well behaved solutions. This claim is, however, due to an unmotivated
change of sign in Eq. (10) in Oliver’s deduction of the equation of motion.

Consider a point charge initially moving with constant velocity at a finite distance from a bounded
region H with a uniform electric field. The equation of motion, Eq. (4.20), is a first order linear
differential equation in α̇ with general solution

α̇ =
(

C − Q

m0τ0

∫
E(τ )e−τ/τ0 dτ

)
eτ/τ0 , τ0 = 2

3

Q2

m0
, (8.1)

where C is a constant of integration. Inserting the electric field (4.17), and letting g = QE0/m0,
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Eq. (4.20) leads to

α̈ = A1

τ0
eτ/τ0 , α̇ = A1eτ/τ0 , α = A1τ0eτ/τ0 + A2 (8.2)

outside the field, and

α̈ = (B1/τ0)eτ/τ0 , α̇ = g + B1eτ/τ0 , α = gτ + B1τ0eτ/τ0 + B2 (8.3)

inside the field. Here A1, A2, B1, B2 are constants of integration. In the case that the charge enters the
field and later leaves it again, the constants A1, A2 may have different values in the different field free
parts of the motion. It is demanded that the acceleration vanishes in the asymptotic region far from
the field, i.e., that the solution contains no so-called runaway term. This requires that A1after = 0.

The solutions (8.2) and (8.3) have been discussed by C. J. Eliezer [49], who asks,

From where does the electron obtain the energy to increase its kinetic energy and also at the same time to continue
to lose energy by radiation?

Considering the free motion (8.2) he writes,

For non zero A1 the motion is non physical with the velocity steadily increasing and tending to the velocity of
light. In this motion there is a loss of energy by radiation. This outflow of energy can take place at the same time
as the electron is increasing its mechanical energy, mU 0, because the field energy in the immediate neighbourhood
of the electron can become increasingly more and more negative, thus releasing energy for radiation. The energy
tensor corresponding to the equation of motion (3.1) is such that the field energy near the electron is not necessarily
positive definite. It is the acceleration energy, (2/3)Q2 A0, which contributes towards the increase of mechanical
energy, mU 0, and also towards loss of energy by radiation at a rate (2/3)Q2 Aµ Aµ. The energy of the electron and
the field near it is mU 0 − (2/3)Q2 A0, which is negative after sufficient lapse of time. It is however desirable to
regard the energy portion −(2/3)Q2 A0 not as field energy but as energy possessed by the electron in virtue of its
acceleration. As the electron acquires this negative energy it releases an equal amount of positive energy which
supplies the increase of kinetic energy and also the loss of radiation.

Considering the motion (8.3) in a uniform electrical field, Eliezer writes,

B1 equal to zero gives the physical motion with the velocity gradually increasing in the direction of the field. For
this motion Ȧµ − Av AvUµ = 0. The entire energy released by the electron, as it requires its negative acceleration
energy, is being lost by radiation. The electric field contributes towards the increase of the kinetic energy of the
electron.

We shall now consider in more detail two different types of solutions of Eq. (3.1).

(A) The conventional solution with pre-acceleration.

(B) Motion with reaction forces neutralized.

8A. Motion with Pre-acceleration

It may be noted that the relativistic LAD-equation (4.20) and the nonrelativistic equation (2.1) are
mathematically identical in the case of rectilinear motion. The latter may be written in terms of the
velocity v and the external field E as

(2/3)Q2v′′(T ) + QE = m0v
′(T ) (8.4)

which is exactly the same equation as Eq. (4.20) if we replace v by the rapidity α and T by the proper
time τ . Thus there is a one to one correspondence between these equations as applied to rectilinear
motion.
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According to Eq. (2.2) the relativistic general solution may be written

α̇(τ ) = eτ/τ0


α̇(0) − 1

m0τ0

τ∫
0

e−τ ′/τ0 QE(τ ′) dτ ′


 . (8.5)

In order to supress runaway motion (getting pre-acceleration instead) we have in the non-relativistic
case the condition (2.3) with the solution (2.4). Translated to the relativistic case we get the condition

m0τ0α̇(0) =
∞∫

0

e−τ ′/τ0 QE(τ ′) dτ ′ (8.6)

with the solution

m0α̇(τ ) =
∞∫

0

e−s QE(τ + τ0s) ds. (8.7)

From Eq. (4.19) we have that α̇ = (Aµ Aµ)1/2 = g, where g = γ 3a is the acceleration in the rest frame
of the charge. Equation (8.7) thus demonstrates that the particle’s acceleration depends on the future
values of the external force.

Solutions without runaway motion have been considered by Haag [33], Plass [34], and Bradbury
[35] for the following case. A charged free particle comes from an infinitely remote distance with
rapidity α0. At a point of time τ = τ1 it enters H, where it performs approximately (except for the pre-
acceleration) hyperbolic motion. The electric field in H is given by Eq. (4.17). The particle moves out
of H at a point of time τ2. Demanding that α̇ and α be continuous and writing α(−∞) = α0 = tanh v0,
the solution of the LAD-equation (4.20) for the present case becomes

α̈ = α̇
τ0

, α̇ = g
(

e− τ1
τ0 − e− τ2

τ0

)
e

τ
τ0 , α = α0 + α̇τ0, τ < τ1

α̈ = − g
τ0

e− τ2−τ

τ0 , α̇ = g
(

1 − e− τ2−τ

τ0

)
, α = α0 + g(τ − τ1) + α̇τ0, τ1 < τ < τ2 (8.8)

α̈ = 0, α̇ = 0, α = α0 + g(τ2 − τ1), τ > τ2.

The graphs of these functions are shown in Fig. 2.

FIG. 2. The rapidity and its rate of change times τ0 as functions of proper time. Here α0 = α(−∞) = −0.8 and
gτ0 = 0.1. The particle enters H at τ = 0 and leaves H at τ = 14τ0.
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The particle gets a pre-acceleration just before it enters and just before it leaves H.
We shall first investigate the motion and energy of the particle during the period τ < τ1 before the

charge enters H. Assuming that τ0 � τ2 − τ1, i.e., that the time τ0 is much less than the time the
charge is inside the region H, the solution given in the first of Eqs. (8.8) reduces to

α̇ = ge
τ−τ1

τ0 , α = α0 + gτ0e
τ−τ1

τ0 , τ < τ1 (8.9)

α̇ = g, α = α0 + gτ0 ≡ α1, τ = τ1, (8.10)

where α0 < 0 is the limiting initial value of the rapidity for τ → −∞.
The values of the kinetic energy of the particle and the Schott energy, respectively, for τ = −∞,

are

EK = m0(cosh α0 − 1), ES = 0. (8.11)

At the moment τ = τ1 when the particle enters H, the values of these energies are

EK = m0(cosh α1 − 1), ES = −2

3
Q2g sinh α1. (8.12)

To 2.order in gτ0, which we assume is much less than the velocity of light, c = 1, the changes in the
kinetic energy and the Schott energy from τ = −∞ to τ = τ1 are


EK = γ0m0v0gτ0 + 1

2
γ0m0g2τ 2

0 (8.13)


ES = −γ0m0v0gτ0 − γ0m0g2τ 2
0 . (8.14)

From the energy equation (3.30), which for τ < τ1 takes the form 
ER + 
EK + 
ES = 0, it
follows that the radiated energy during this period is


ER = 1

2
γ0m0g2τ 2

0 . (8.15)

From Eqs. (8.13)–(8.15) it follows that the particle during the pre-acceleration gets an increase of
the Schott energy which is nearly equal to the loss of kinetic energy of the particle. Only a minor
part of the particle’s loss in kinetic energy (2.order in gτ0) is radiated away.

The change of velocity of the particle, tanh α1 − tanh α0, during the pre-acceleration may be
expressed as

v1 − v0 = sinh gτ0

γ1γ0
(8.16)

which shows that v1 − v0 → 0 when γ0 → ∞.
We shall now consider the energy budget during the time when the charge is within H, i.e., for

τ1 < τ < τ2. From Eqs. (3.28) and (8.8) we get an energy equation Ẇ ext = Ė K + ES + Ė R with the
following rates of change per unit proper time

Ẇ ext = m0g sinh α (8.17)

Ė K = m0α̇ sinh α (8.18)
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Ė S = m0(g − α̇) sinh α − 2

3
Q2α̇2 cosh α (8.19)

Ė R = 2

3
Q2α̇2 cosh α. (8.20)

The equations shall now be interpreted for the case that α̇ ≈ g, i.e., when the motion of the particle
is approximately hyperbolic. According to Eq. (8.8) this is the case when τ � τ2 − τ0, i.e., when
the particle is not too near its exit from H. In this region Ẇ ext = Ė K so that there is no other effect
of the external force than a change in the kinetic energy. Thus the sum of the kinetic energy of the
charge and its potential energy in the field of force accelerating it in H is approximately constant,
and the radiated energy is taken from the Schott energy, which according to Eq. (8.19) decreases
uniformly with time,

d E S

dT
= Ė S

γ
≈ −2

3
Q2g2. (8.21)

When the particle arrives at the point where it turns back, there is no Schott energy left, and at this
moment the energy that has been radiated by the particle is equal to its loss of kinetic energy during
the pre-acceleration. The energy has been radiated as a pulse with energy 
ER , given in Eq. (8.15),
during the pre-acceleration, and then with a constant effect (2/3)Q2g2 during the hyperbolic motion.

The situation changes when the particle approaches the position where it leaves H, i.e., when
τ ≈ τ2 − τ0. Then the particle experiences a new non-negligible pre-acceleration, which reduces the
acceleration from ≈g to 0, and the emitted power is reduced from ≈(2/3)Q2g2 to 0. The velocity still
increases during this period, but less than in the case of hyperbolic motion. The Schott energy, which
until now (in H) has decreased at a constant rate, increases from the negative value −(2/3)Q2gγ v

to zero. All the energies ER, EK , ES increase during this pre-acceleration. The energy is provided
by the work of the external force Fext = m0g, or in other words from the loss of potential energy of
the particle in the field of this force.

In the region where the motion can be considered as hyperbolic, α̇ = g = constant, and the reaction
force m0τ0α̈ vanishes. Here Fext = m0g is the only force acting upon the particle, and EK + EP =
constant. This is no longer the case when the particle approaches the exit of H, where the pre-
acceleration makes α̈ = 0.

In order to make a complete energy budget in the region H, we must know the proper time τ2 when
the particle leaves H. The position X (τ ) of the particle at a point of time τ is given by

X (τ ) − X1 =
τ∫

τ1

γ v dτ =
τ∫

τ1

sinh α dτ, (8.22a)

where α is given by Eq. (8.8). The point of time τ2 when the particle leaves H is found from the
equation X (τ2) = X1. Solving the integral (to second order in gτ0) the equation reads

g

τ2∫
τ1

sinh α dτ = (
1 − g2τ 2

0

)
cosh(α1 + g(τ2 − τ1)) − cosh α1, (8.22b)

where we have utilized that τ0 � τ2 − τ1. We get the following solution to second order in gτ0

τ2 − τ1 = − 1

g

(
2α1 + g2τ 2

0 coth α1
)
, (8.23)
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where α1 = α0+gτ0 is the rapidity of the particle at the moment it enters H. The term −2α1/g, which
is dominating, is the proper time that the particle would have spent inside H, if the motion had been
hyperbolic. Then α̇ = g, so the travelling proper time would be 
τ = 
α/g, where 
α = −2α1 is
the increase of α during the motion in H. Equation (8.23) tells that τ2 − τ1 is a little larger than this
value.

Inserting τ2 from Eq. (8.23) into the second of Eq. (8.8) we get

α(τ2) = −α1 − gτ0 − g2τ 2
0 coth α1 (8.24)

which gives

cosh α(τ2) =
(

1 + 3

2
g2τ 2

0

)
cosh α1 + gτ0 sinh α1. (8.25)

From this we find the following (negative) changes of the kinetic energy of the charge and its Schott
energy during the period, τ1 < τ < τ2, when the charge moves in H,


EK = m0gτ0γ1v1 + 3

2
m0g2τ 2

0 γ1 (8.26)


ES = m0gτ0γ1v1. (8.27)

Since the total work performed by the external force Fext upon the charge during its motion in H
vanishes, the energy equation (3.30) gives for the energy radiated by the charge during this motion


ER = −
EK − 
ES = −2m0gτ0γ1v1 − 3

2
m0g2τ 2

0 γ1. (8.28)

The dominating term, −2m0gτ0γ1v1, may be interpreted as the energy radiated by a particle with
exact hyperbolic motion. This is seen as follows. Using that

g = α̇ = γ
dα

dT
= cosh α

dα

dT
= d(sinh α)

dT
(8.29)

for hyperbolic motion, leads to


(sinh α) = g
T . (8.30)

Thus, the time that the charge stays inside H is


T = −2 sinh α1/g. (8.31)

The dominating term in Eq. (8.28) may be written

m0g2τ0
−2 sinh α1

g
= m0g2τ0
T = 2

3
Q2g2
T (8.32)

in agreement with Larmor’s formula.
According to Eqs. (8.26) and (8.27) the Schott energy and the kinetic energy decrease by about

the same amount, which means that the Schott energy and the kinetic energy give approximately the
same contribution to the radiated energy.
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FIG. 3. Kinetic energy and Schott energy in units of m0 as functions of proper time for the motion shown in Fig. 2.

To get the complete energy budget from τ = −∞ to τ = ∞ we utilize that Wext = 0 and that
ES(−∞) = ES(∞) = 0. Then, according to Eq. (3.30), 
ER + 
EK = 0, where 
ER is the sum of
the expressions (8.15) and (8.28). Expressing the relationships in terms of the velocity v0 (which is
negative) at τ = −∞, we find that the radiated energy is


ER = 
EK = EK (−∞) − EK (∞) = −2m0gτ0γ0v0 − 3m0g2τ 2
0 γ0. (8.33)

Diagrams with EK , ES, ER are shown in Figs. 3 and 4.
Let us summarize what happens to the particle and its energy from τ = −∞ to τ = ∞. The

charge comes from an infinitely far region with constant velocity. It moves towards a region H
with, say, a constant electrical field anti-parallel to its direction of motion. Approaching H it gets
an increasing pre-acceleration, which causes the kinetic energy of the particle to decrease. A Schott
energy of about the same magnitude appears. Also a small amout of energy is radiated away by the
particle.

In the region H the particle moves approximately hyperbolically until it experiences a new pre-
acceleration before it leaves H. During the hyperbolic part of the motion the external work performed
by the field force upon the particle is used only to change the kinetic energy of the particle. The

FIG. 4. Mechanical energy, i.e., EK + EP , Schott energy, and radiated energy as functions of proper time. Here EP is the
potential energy in the force field m0g with EP = 0 for X > X1, and EP = m0g(X1 − X ). Note that EK + EP + ES + ER =
constant. All energies are in units of m0.
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particle radiates at a constant rate, and the radiated energy comes from the Schott energy, which
decreases steadily during this part of the motion. Before the particle leaves H the pre-acceleration
decreases the acceleration towards zero. The particle still radiates although the Schott energy now
increases.

What happens all together while the particle is in H is that the kinetic energy and the Schott energy
decrease by about the same amount, giving about the same contribution to the radiated energy.

When the particle has left H and disappears towards an infinite remote region, the Schott energy
has vanished again. The particle has lost kinetic energy, and this loss of energy is equal to the energy
that the particle has radiated.

8B. Motion with Reaction Forces Neutralized

We now let the particle, in addition to the given force Fext, be acted upon by a force fext which is
opposite to the field reaction force. That is, we consider a modified problem of motion by introducing
a force which at every point neutralizes the field reaction force. Then the particle moves as if there
were no field reaction force, and consequently no pre-acceleration or runaway solution.

We consider a particle moving in an external field Fµ
ext. If we neglect the field reaction force, the

equation of motion is

Fµ
ext = m0 Aµ. (8.34)

Let xµ(τ ) be a solution of this equation. Then the field reaction force �µ, which we have neglected,
is

�µ = 2

3
Q2 Ȧµ − 2

3
Q2g2Uµ, Aµ = U̇µ, Uµ = Ẋµ. (8.35)

Now we introduce a compensating force f µ
ext,

f µ
ext = −�µ. (8.36)

Then Eq. (3.1) can be written

Fµ
ext + f µ

ext + �µ = m0 Aµ (8.37)

which is the LAD-equation with an extra force f µ
ext. Thus by solving Eq. (8.34) for a given force Fµ

ext

and introducing a force f µ
ext as calculated by inserting the found solution, xµ(τ ), into Eqs. (8.35),

(8.36), we have a solution of the Lorentz–Dirac equation (8.37).
The rate of work performed per unit proper time by the force f µ

ext is

f 0
ext = −2

3
Q2 Ȧ0 + 2

3
Q2γ g2 = Ė S + Ė R, (8.38)

where ES is the Schott energy and ER is the radiation energy. The rate of change of momentum per
unit proper time due to the force fext is

γ fext = −2

3
Q2Ȧ + 2

3
Q2g2γ v = ṖS + ṖR, (8.39)
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where fext is a 3-force, PS is the Schott momentum, and

(Ė R, ṖR) = 2

3
Q2g2γ (1, v) (8.40)

is the 4-momentum radiated per unit proper time.
Assume that the charged particle experiences a force Fµ

ext, given by a step function, making the
4-acceleration Aµ increase by 
Aµ during a vanishingly small time interval. The velocity is then
(approximately) unchanged, since the acceleration is finite and the time interval is arbitrarily small.
In this case the change of 4-momentum due to the force f µ

ext is


Pµ =
∫

f µ
ext dτ =

∫
−2

3
Q2 Ȧµ dτ = −2

3
Q2
Aµ. (8.41)

Such a blow thus leads to a change −(2/3)Q2γ v · 
g of Schott energy and a change −(2/3)Q2
A
of Schott momentum. In the instantaneous rest frame of the particle 
P0 = 0, which means that in
this frame there is only a change of momentum and not of energy.

We now specialize to linear motion in which the charge moves towards the region H and enters it.
Then g = gex , fext = fextex , and

fext = −2

3
Q2ġ, (8.42)

i.e.,

fext = −m0τ0α̈, (8.43)

where τ0 = (2/3)Q2/m0 and g = α̇.
In the case considered here the solution is that the particle comes from X = ∞ with constant

rapidity α1 (velocity v1). At proper time τ = τ1 = α1/g (laboratory time T1 and position X1) the proper
acceleration α̇ is changed discontinuously from α̇ = 0 to α̇ = g. During the time that the particle is in
H it has a constant proper acceleration α̇ = g, i.e., α = gτ . The particle performs a hyperbolic motion
from T = T1 to T = − T1. When the particle leaves H at the point of time τ = τ2 = − α1/g = − τ1,
the proper acceleration α̇ changes discontinuously from α̇ = g to α̇ = 0. Thus, the solution is

α̇ = 0, α = α1, τ < τ1

α̇ = g, α = gτ, τ1 < τ < τ2
(8.44)

α̇ = 0, α = −α1, τ > τ2

α̈ = g[δ(τ − τ1) − δ(τ − τ2)].

This is a special case of the general solution (8.1) with A1 = B1 = 0 and B2 = A2before = −A2after = α1.
In the present case the extra force fext vanishes everywhere except at the transition into and out of

H,

fext = −m0gτ0δ(τ − τ1) + m0gτ0δ(τ − τ2) = −2

3
Qgγ δ(T − T1) + 2

3
Qgγ δ(T − T2). (8.45)

This means that the particle must be given an impulse in the direction of motion when it enters H,
and also when it leaves H, in order to compensate for the field reaction force.
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Due to the acausal behaviour of the pre-acceleration that takes place in the ordinary case, the force
fext that prevents this pre-acceleration in the present case has the strange property of acting just at
the end of the periods of pre-acceleration. Thus, the effect of the force fext comes before the force is
acting.

The energy provided by the force fext when the particle enters H is

wext =
∫

fextv dT = −m0gτ0

∫
δ(τ − τ1)vγ dτ

(8.46)

= −m0gτ0v1γ1 = −2

3
Q2gv1γ1 = −2

3
Q2g2T1.

The equation shows that the energy which must be given to the particle in order to bring it from
a state of motion with vanishing proper acceleration to a state with the same velocity but a proper
acceleration α̇ = g is given by the increase of the Schott energy. The same amount of energy must
be conveyed to the particle in order that it can leave H with unchanged velocity and a sudden change
of proper acceleration from α̇ = g to α̇ = 0.

We shall write down the energy expressions for a particle entering and leaving a hyperbolic region
H. The equation of motion is Eq. (8.34). The particle comes from the infinite far (X = ∞) with a
constant velocity v1 which is negative. At a point of time T1 < 0 the particle enters the region H, the
velocity being continuous. In H the proper acceleration g is constant. The particle stops at T = 0,
then reverses its motion and leaves the region at −T1, and returns to X = 0 with constant velocity
−v1.

During the hyperbolic motion

v = T/X, γ = X/L = gX, X =
√

L2 + T 2. (8.47)

The energy equation for the system of the particle and the field is

Wext + wext = 
EK + 
ES + 
ER, (8.48)

where Wext is the work done by the force m0g, and wext is the work done by the impact force fext in
Eq. (8.45). The energy expressions are for

T < T1 EK = γ1m0 − m0 = (gX1 − 1)m0, ES = ER = 0 (8.49a–c)

T1 < T < −T1

EK = (gX − 1)m0

ES = −(2/3)Q2γ vg = −(2/3)Q2g2T

ER = (2/3)

T∫
T1

g2 dT = (2/3)Q2g2(T − T1)

(8.50a–c)

T > −T1 EK = (gX1 − 1)m0, ES = 0, ER = −(4/3)Q2g2T1. (8.51a–c)

Note that when the particle is in H, ES + ER = constant = −(2/3)Q2g2T1 and wext = 0. It follows
that 
ER = −
ES and that Wext = 
EK .
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Let EP be the potential energy of the particle in the given field,

EP = −m0g(X − X1) for X < X1, and EP = 0 for X > X1 (8.52)

Then the mechanical energy of the particle is

EK + EP = constant = (gX1 − 1)m0 (8.53)

which is equal to the kinetic energy of the particle before it enters the region H. Equation (8.53) is
valid in the whole domain of X .

The different types of energy as functions of the time are shown in Fig. 5.
At the transition into H the particle (or its field) is “loaded” with Schott energy, so that immediately

after the particle has entered H, it has a positive Schott energy −(2/3)Q2γ1v1g. During the motion
inside H the field reaction force upon the particle vanishes, and the work performed by the external
force upon the particle is used only to change its kinetic energy. This means that the energy radiated
by the particle must be provided by the Schott energy.

From the moment when the particle enters H until it stops at X = L , the Schott energy diminishes
by −(2/3)Q2γ1v1g, i.e., by −(2/3)Q2g2T1. This is just the energy radiated by the particle, according
to Larmor’s formula, from the time T1 to T = 0. During the motion back to the boundary of H, the
Schott energy is further diminished by the same amount of energy, which is radiated away by the
particle. When the particle arrives at X1 again, and is about to leave H, its Schott energy is negative.
In order to change its proper acceleration from g to zero, it must be acted upon by a force, which
performs a positive work upon the particle. This work provides the energy necessary to make the
Schott energy equal to zero at the transition.

We have found that the Schott energy during the hyperbolic motion is −(2/3)Q2g2T at the point
of time T . This expression shows that the Schott energy has the limit ∞ as T → −∞. Thus, in the
case of eternal hyperbolic motion the Schott energy diminishes from ∞ at an infinitely far past time
to −∞ in the indefinite future.

FIG. 5. The particle comes from X = ∞ with constant velocity v1. An external impact force performing a work
−(2/3)Q2gγ1v1 is acting upon the particle when it enters the hyperbolic region at T = T1, and when it leaves it at T = −T1.
All of this work is used to increase the Schott energy ES . These steps are found in the graphs of ES and of the sum ES + ER .
The work performed by the force m0g in H is equal to the change of the kinetic energy EK of the particle. Hence the
mechanical energy EK + EP is constant. In the figure we have put gτ0 = 0, 1, T1 = −7, 6τ0, and v1 = −tanh 0, 7 = −0, 6.
All energies are in units of m0. T1 = −7.6τ0.
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9. FIELD ENERGIES IN THE CASE WITH NEUTRALIZED REACTION FORCES

We shall consider the field energies in the case where an extra force acts upon the charge so that
there is no pre-acceleration. The total field energy is in general the sum of the radiated energy ER

and the bound energy UI . The energy ER is given by the prehistory of the particle, according to
Larmor’s formula,

ER(T ) = 2

3
Q2

T∫
−∞

g2(TQ) dT Q, (9.1)

where g(TQ) is the proper acceleration. The bound energy UI = UI,I + UI,II is the field energy due
to the zeroth and first order terms in the particle’s acceleration, i.e., the sum of the energy of the
Coulomb/velocity field and the interaction energy between the fields Fµv

I and Fµv
II (the latter energy

is not necessarily positive). The energies UI,I and UI,II are not state functions of the particle, but
their sum is. From Eq. (3.18A) in Ref. [46],

UI = ES + UC , (9.2a)

where

ES = −2

3
Q2γ vg (9.2b)

and

UC = Q2γ

2ε

(
1 + 1

3
v2

)
. (9.2c)

These equations show that the energy has a remarkable property. When the particle has come into
a state of constant velocity after it has left the region H, the bound energy is given by this velocity,
just as if it had moved with this contant velocity all the time.

Like the interaction energy, the Schott energy ES is of first order in the acceleration, but as shown
in Section 6 it cannot be identified with the interaction energy in the field. Note also that UC is not
equal to the energy of the Coulomb field produced by the charge. For instance, when the particle
in hyperbolic motion stops at T = 0, then ES = 0 and UC = Q2/2ε, but as shown in Eq. (6.22),
the interaction energy in the field is UI,II = (4/3)Q2γ1v1g = (4/3)Q2g2T1, where we have used
Eq. (8.47). Hence UI,I = Q2/2ε − (4/3)Q2g2T1.

When the particle comes from X = ∞ with constant velocity v1 outside H, the field is a (Lorentz
contracted) Coulomb field symmetric about a plane through the particle normal to the direction of
motion, and with energy given by Eq. (9.2c),

UC = Q2γ1

2ε

(
1 + 1

3
v2

1

)
= Q2

6ε

(
4gX1 − 1

gX1

)
� −2

3

Q2

ε
gT1. (9.3)

The last term is valid in the limit X1 → ∞, i.e., when T1 → −∞. When the particle enters H, the
field suddenly acquires an increase of energy since the proper acceleration then jumps from 0 to
g. A radiation field Fµv

II appears, and the total energy of the field increases instantaneously by
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ES = −(2/3)Q2γ1v1g. This result is based upon our calculations in Ref. [46]. Hence these calcu-
lations provide an analytical proof of the discontinuity of the field energy in the present situation,
which was found numerically by Ng [59].

When the particle is in H the radiated energy is provided by the bound energy of the field, such
that the Schott energy ES diminishes at the same rate as energy is radiated. The transition between
the energies must take place at the position of the particle since the same amount of radiation energy
passes per second through each spherical surface around the charge. Let K1 be an eikonal with center
at the point X = X1 and with radius T − T1 where T1 < T < −T1. The Coulomb field produced by
the charge before the charge entered H is outside K1. According to Eq. (3.8) in Ref. [46] the energy
of this field at the time T > T1 is

U1(−∞, T1, T ) = Q2

2(T − T1)

(
1 + 4

3
γ 2

1 v2
1

)
= Q2

2(T − T1)

(
1 + 4

3
g2T 2

1

)
� 2

3
Q2g2(−T1 − T ),

(9.4)
where the last term is valid when T1 → −∞ and T is finite. In the limit T1 → −∞ this energy is
concentrated at the plane following the virtual position of the particle, normal to the X -axis. This is
the front-energy of the Bondi–Gold field [60, 61].

Inside K1 is the Schott field with energy consisting of the bound energy UI and the radiation
energy ER . From Eq. (3.18A) in Ref. [46],

UI = Q2

2εgX

(
1 + 4

3
g2T 2

)
− 2

3
Q2g2T − Q2

2(T − T1)

(
1 + 4

3
g2T 2

1

)

� Q2

2εgX

(
1 + 4

3
g2T

)
+ 2

3
Q2g2T1 (9.5)

ER = 2

3
Q2g2(T − T1). (9.6)

We see that infinite terms that appear in UI and ER in the limit T1 → −∞ cancel each other, so that
even in this limit the energy of the Schott field is finite, and given by

U = UI + ER � Q2

2εgX

(
1 + 4

3
g2T 2

)
+ 2

3
Q2g2T, (9.7)

where X = √
L2 + T 2.

After the particle has left H, the field has a bound energy equal to that before it entered H, since
the magnitude of the velocity is the same. However, while the field was a pure Coulomb field before
the particle entered H, this is not the case after it has left H. Let us introduce a second eikonal K2

at T > −T1 with center at X = X1 and radius T + T1. Inside K2 and outside K1 there are Coulomb
fields produced by the particle with respective velocities −v1 and v1. Between the eikonals the field
consists of a Coulomb field Fµν

I and a radiation field Fµv
II . The energy of the radiation field is equal

to the work performed by the neutralizing force fext acting when the particle enters and leaves H.
This is again equal to the reduction of the Schott energy while the particle is in H. In addition to the
radiation energy there is bound field energy consisting of Coulomb energy and interaction energy.
The value of the bound energy between the eikonals is as if the velocity of the particle had been
constant and equal to v1 (or −v1).

D. Villaroel [62] has recently considered the problem of causality violation in classical electrody-
namics. In particular he has constructed analytic solutions without pre-acceleration to the Lorentz–
Dirac equation, for situations with an electrostatic field which vanishes outside a region of limited
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extension. Villaroel pointed out that the existence of the non-causal solutions with pre-acceleration
depends, among others, upon the requirement that the acceleration of the charge is continuous even
at points where it enters or leaves an electric field with a discontinuous boundary. This represents, in
itself, a non-physical behaviour. Thus, he permits discontinuities of the acceleration at points where
the external force acting upon the charge is discontinuous.

The case considered in the present subsection represents a modification of Villaroel’s method. We
have introduced an external force counteracting the field reaction force. Thus, the rate of change of
the rapidity with proper time is given by

QE = m0α̇. (9.8)

The equation was applied to a situation with a region H with a uniform electric field, E = m0g,
and an exterior region with E = 0. In these regions α̈ = 0. This means that (8.44) is a solution of
Eq. (4.20) in these regions. Furthermore the rapidity is continuous at the boundary between the
regions. The solution is therefore in accordance with the solution Villaroel presents in order to
prevent pre-acceleration.

However, our method is different from that of Villaroel in one essential respect. The particle
must be supplied with energy and momentum as it enters and leaves H, since the acceleration
shall change discontinuously. This is due to the fact that the particle, in addition to the kinetic
four-momentum m0Uµ, has a Schott four-momentumPµ

S = −(2/3)Q2 Aµ. This was not taken into
account by Villaroel. The energy of the particle is

Epart = γ m0 − 2

3
Q2γ v · g (9.9)

whether the particle is pre-accelerated or not.
The Schott energy (or “acceleration energy”) which must be supplied to the particle in order to

suddenly change its acceleration as it enters H is just the energy that the particle radiates away in H
before it stops instantaneously at the turning point.

10. SOME COMMENTS ON THE LORENTZ–DIRAC EQUATION AND DISCONTINUITIES
IN THE DYNAMIC VARIABLES

We shall first discuss whether it is possible to have a discontinuity in the velocity when the charge
enters H. Then we first consider a transition layer with finite thickness, and afterwards take the
limit representing a sharp boundary for the region H. Assume that a charged particle changes the
four velocity from U1 at T1 to U1 + 
U at T1 + 
T . The acceleration in the instantaneous rest
frame of the particle is easily shown to be equal to the derivative of U with respect to T , i.e.,
U ′(T ) = (γ v)′ = γ 3av2 + γ a = γ 3a = g, so the radiated energy during the transition is


ER = 2

3
Q2

T1+
T∫
T1

U ′(T )2 dT . (10.1)

We shall find an equation for the minimum of this integral with the given boundary conditions.
This is determined by a Hamiltonian variational principle, leading to the Euler–Lagrange equation

(
d

dT

∂

∂U ′ − ∂

∂U

)
U ′2 = 0 (10.2)
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giving U ′′(T ) = 0, i.e., U ′(T ) = g0 = constant. Thus, the radiation loss is minimal if the transition
is performed as a hyperbolic motion. Then

U = g0T + constant, (10.3)

where

g0 = 
U


T
(10.4)

is the proper acceleration in the transition region. This leads to


ER = 2

3
Q2 (
U )2


T
. (10.5)

It follows that 
ER → ∞ when 
T → 0 and 
U = 0. This infinite amount of radiation loss cannot
be avoided by any type of transition with a discontinuity in the velocity, since it represents a minimum
value.

The instantaneous work performed at T1 is equal to the difference of Schott energy just before T1

and just after T1. If the acceleration is g1 just before T1 and g0 just after T1, the work at the point of
time T1 is

W1 = 2

3
Q2(g1 − g0)U1. (10.6)

Just after T1 + 
T , when the charge has moved through the transition region and entered H, it has
hyperbolic motion with proper acceleration g. Thus, the work performed at T1 + 
T is

W2 = 2

3
Q2(−g + g0)(U1 + 
U ). (10.7)

During the hyperbolic motion in the transition zone, from T1 to T1 + 
T , there acts a constant force
m0g0 performing the work

WH = m0
γ. (10.8)

The total work performed from just before T1 to just after T1 + 
T is

W = 2

3
Q2[g1U1 − g(U1 + 
U )] + 2

3
Q2g0
U + m0
γ (10.9)

or

W = 
ES + 
ER + 
EK , (10.10)

where


ES = 2

3
Q[g1U1 − g(U1 + 
U )] (10.11)
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is the increase of Schott energy from just before T1 to just after T1 + 
T ,


ER = 2

3
Q2g0
U = 2

3
Q2 (
U )2


T
(10.12)

is the radiated energy, and


EK = m0
γ. (10.13)

is the increase of kinetic energy.
The infinitely large radiation energy in the limit 
T → 0, 
U = 0 cannot be taken from the kinetic

energy of the charge or its Schott energy, since the velocities and accelerations just before T1 and after
T1 + 
T are finite quantities. Thus the discontinuity of velocity must be due to a force performing
an infinitely great work. Not even an infinitely large impulsive force, given by a δ-function, will let
the particle enter H with a discontinuity in the velocity, since the work performed by such a force is
finite.

Next we shall consider the case that the velocity is continuous, but the acceleration has a jump. At
a transition of this type there is no radiated energy and there is no change of kinetic energy, but there
is a discontinuity in the Schott energy. Such a transition requires that the particle is acted upon by a
force performing a work equal to the change of the Schott energy, i.e., the Lorentz–Dirac equation
requires an infinite force of a δ-function character if the acceleration makes a sudden jump. Thus, if
the external forces acting on the particle are finite, the acceleration is continuous.

Consider a particle arriving from a region free of any forces infinitely far away, at τ = −∞, with
asymptotic rapidity α0(<0). At X = X1 the particle enters a region X < X1 with a field of force (H
in the case of a uniform electric field). The force per unit mass is f = QE/m0, and points in the
positive X -direction. The transition may be continuous or discontinuous in E , but we assume that
E is finite at all points, and that the particle moves without being acted upon by any other external
force. Then α(τ ) and α̇(τ ) are continuous functions, but α̈(τ ) is discontinuous if f is so. In this case
the Lorentz–Dirac equation may be written

α̇ − τ0α̈ = f. (10.14)

Solving this equation, with the general solution given in Eq. (8.1), we find the following expressions
for the rapidity, with pre-acceleration,

α(τ ) = α0 +
τ∫

−∞
f (τ ) dτ + eτ/τ0

∞∫
τ

e−τ/τ0 f (τ ) dτ, (10.15)

and without pre-acceleration,

α(τ ) = α0 +
τ∫

−∞
f (τ ) dτ − eτ/τ0

τ∫
−∞

e−τ/τ0 f (τ ) dτ. (10.16)

The two first terms at the right hand side are those expected without any field reaction. The effect of
the field reaction is expressed by an integral over the future in the first case, and over the past in the
latter case.

Let the particle enter the field at τ1 and leave the field at τ2. We assume that f = g = constant
for τ1 < τ < τ2, and f = 0 for τ < τ1 and τ > τ2. Then Eq. (10.15) leads to Eq. (8.8), representing a
motion where the particle moves away from the force field with constant velocity for τ > τ2.
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In the second case the motion is given by Eq. (10.16), which leads to

α(τ ) = α0, τ < τ1
(10.17)

α(τ ) = α0 + (τ − τ1)g +
(

1 − e
τ−τ1

τ0

)
gτ0, τ > τ1.

In this case a strange circumstance appears, that has previously been noted by C. J. Eliezer [55] and
S. Parrot [52, 58], namely that the particle accelerates into the field in spite of the fact that the field
force acts in the opposite direction. If the field had been oppositely directed, i.e., into the field, the
particle would have behaved equally as strangely: moving into the field due to its velocity, being
retarded, stopping, and accelerating back, moving out of the field.

In the case with pre-acceleration we find that the particle has an acceleration before it enters
the field, and it has constant velocity after it has left the field. One may wonder: What about time
reversal of this motion? Would not that mean a motion with constant velocity before the particle
enters the field? The reason that this way of reasoning is not valid is the presence of the α̈ term in
the Lorentz–Dirac equation, which implies that the motions that it describes are not generally time
reversible.

11. A MODIFIED LAD-EQUATION WITHOUT PRE-ACCELERATION

The LAD-equation is the preferred equation of motion of a radiating point charge. It reduces to
Eq. (2.1) in the instantaneous rest frame of the charge. The runaway free solution given in Eq. (2.4)
contains pre-acceleration. Yaghjian [19] has investigated the deduction of the LAD-equation in order
to find the cause of pre-acceleration and to eliminate it.

The method of Yaghjian is to find the equation of motion of a uniformly charged shell with finite
radius ε and retaining only terms that do not vanish in the limit ε → 0. He considers a charged shell
which is not acted upon by any forces until a point of time τ = 0 and notes that deduction involves a
Taylor series expansion which converges only for 0 < τ < 2ε. Hence the LAD-equation is not valid
during this time interval. Correcting for this lack of convergence by renouncing to specify the motion
of the shell during this time interval, he arrives at the following modified LAD-equation for a point
charge

Fµ
ext + �(τ )�µ = m0Uµ, (11.1)

where � is the Heaviside step function. We shall call this equation the Lorentz–Abraham–Dirac–
Yaghjian equation, or for short, the LADY-equation.

Applying this equation to the charge entering the region H there is no pre-acceleration in the passive
case, and hence there is no need for an extra external force fext neutralizing the pre-acceleration as
in Section 8B. However, this introduces a new problem. We saw that there is a discontinuity in the
energy of the electromagnetic field of the charge when it enters H which is accounted for by the
work performed by the force fext. This sudden increase in field energy cannot be accounted for if
the equation of motion of the point charge is the LADY-equation. The explanation of the sudden
energy increase is now to be found in the point particle limit. In the case of a charge distribution
with finite extent there is a period from T = 0 to T = 2ε during which the Abraham vector in the
LADY-equation is multiplied by a function η(τ ) which increases from η(0) = 0 to η(2ε) = 1. During
this period the acceleration reaction force performs work which accounts for the increase of the field
energy. In the limit of a point particle the time interval becomes infinitely short, acceleration reaction
approaches a delta function, and the increase of field energy gets a step function behaviour.
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12. CONCLUSION

The equation of motion of a radiating charge has some well known problems, i.e., the existence
of runaway solutions and pre-acceleration. Also a full understanding of the so-called acceleration
energy or Schott energy has been lacking. In the present work we have made an effort to clarify the
significance of this energy in connection with energy-momentum conservation for a radiating charge
and the field it produces.

The Lorentz–Abraham–Dirac equation (3.1) contains an additional term, called the Abraham four-
vector, which is not present in the ordinary form of Newton’s 2.law. We have followed Rohrlich and
called the spatial component of this vector the field reaction force. This force is given in Eq. (3.11c). It
is the sum of an acceleration reaction given in Eq. (3.a) and a radiation reaction given in Eq. (3.11b).
This sum is equal to the rest frame acceleration reaction.

We have reviewed earlier works of the physics contained in the LAD-equation with special em-
phasis on a discussion presented by Rohrlich some years ago, where several points are made in a
clear and illuminating way. We began our analysis of the Schott energy from a field point of view
in Section 5, where Teitelboim’s separation of the electromagnetic field into a velocity field and an
acceleration field was introduced. Then we utilized Rowe’s modification of this separation to argue
that the Schott energy is localized close to the charge.

Also we have shown how the field reaction force can be found by two different considerations:
Either by calculating the electromagnetic forces inside the charged particle, or by calculating the
effect of its own external field upon itself.

A thorough understanding of the role of the Schott energy in the case of a radiating charge moving
hyperbolically can be obtained by considering a charge entering and leaving a region of hyperbolic
motion. We have analyzed two versions of such a situation, one in which the charge is not acted
upon by any external force except the one in H. Then there is pre-acceleration. Second, we have
considered a case with constant velocity outside H, which requires that the charge is acted upon by an
extra force neutralizing the pre-acceleration. In both cases we have provided a detailed description
of the evolution of energy-momentum of the electromagnetic field produced by the charge, and the
role of the Schott energy has been clarified. Also continuity properties of the motion as the charge
enters and leaves the region H have been discussed.

APPENDIX A

The Electron as an Extended Particle

We shall find the electromagnetic field of an accelerated spherical charged shell according to
the approximation which is linear in the velocity and its derivatives. Also we shall calculate the
electromagnetic force acting between two concentric charged shells, and letting the radius of the
shells approach each other, the force of an accelerated charged shell upon itself is found.

A.1. The Electromagnetic Field of an Accelerated Point Charge in the Linear Approximation

The components of the retarded electromagnetic field of a point charge q1 moving along the X -axis
in the laboratory system are

E X
ret = q1{(1 + Ṙ)−3 R−3[(s − Rv)(1 − v2) − ρ2a]}ret (A.1a)

Eρ
ret = q1{(1 + Ṙ)−3 R−3(1 − v2 + sa)ρ}ret (A.1b)

Bϕ
ret = q1{(1 + Ṙ)−3 R−3[(1 − v2)v + Ra]ρ}ret. (A.1c)
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Here R = |R|, where R is the vector from the point charge, (X1, ρ = 0), to the field point, (X2, ρ2),
and the overdot denotes differentiation with respect to the laboratory time, = d/dT . Furthermore

s = X2 − X1, v = Ẋ1 = −ṡ, a = v̇ = −s̈, Ṙ = −sv/R, ρret = ρ. (A.2)

In the linear approximation we neglect v2 and approximate (1 + Ṙ)−3 by

(1 + Ṙ)−3 ≈ 1 − 3Ṙ = 1 + 3sv/R. (A.3)

In this approximation E X
ret reduces to

E X
ret ≈ q1{3s2vR−4 + (s − aρ2)R−3 − vR−2}ret. (A.4)

For the calculation of retarded values we shall utilize a remarkable formula deduced by Page [64].
Let f be a quantity depending upon the position, velocity, and acceleration of the particle. Hence, f
is a function of the time. The retarded value fret can be expressed by the instantaneous value f and
the series of higher order derivatives by the formula

fret = f − R ḟ +
∞∑

n=2

(−1)n

n!
Dn−1(Rn ḟ ), (A.5)

where D = d/dT . R is the distance between the field point and the instantaneous position of the
particle. We shall apply this formula to our linearized expressions. From Eq. (A.4), putting f = E X/q1

and neglecting non-linear terms,

ḟ = (3s2 − R2)vR−5 + (3s2 − R2)a R−4 − ρ2ȧ R−3. (A.6)

Here all the quantities have instantaneous values. When we insert this expression into Eq. (A.5), the
operator Dn−1 must act upon v, a, and ȧ only in order that non-linear terms in these quantities shall
not appear. Introducing

Dn−1v = −Dns, Dn−1a = Dnv, Dn−1ȧ = Dna (A.7)

and utilizing a Taylor expansion, we obtain

(1/q1)E X
ret = fret = s

R3
+ R2 − 3s2

R5
[s(T − R) − s] − R2 − 3s2

R4
v(T − R) − ρ2

R3
a(T − R), (A.8a)

where R and s = RX have instantaneous values. Similarly we find

(1/q1)Eρ
ret = ρ

R3
− 3ρs

R5
[s(T − R) − s] + 3ρs

R4
v(T − R) + ρs

R3
a(T − R) (A.8b)

(1/q1)Bϕ
ret = ρ

R3
v(T − R) + ρ

R2
a(T − R). (A.8c)

A.2. The Force between Two Concentric Shells

We shall calculate the force between two rigid concentric spherical shells in the linear approxi-
mation. In the instantaneous inertial rest frame all points of the shell are momentarily at rest, but
with different accelerations. A point with X -coordinate 
X relative to the center of the shells has
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acceleration g/(1 + g
X ) ≈ g − g2
X , where g is the acceleration of the center. In the linear ap-
proximation the latter term is neglected such that all points of the shells have the same acceleration.
Furthermore the acceleration a in the laboratory system is equal to the acceleration in the rest system,
since (in the linear approximation) a = g/γ 3 ≈ g. The spherical shells have radii ε1 and ε2, ε1< ε2,
with charges Q1 and Q2 uniformly distributed.

We shall first consider shell 1 as the active part; i.e., this shell produces a field acting upon shell
2 by a force called F12. Let R be the vector from points on the shell 1 to points on the shell 2. It is
a consequence of the symmetry that the net force is due to the component E X , only. The force is
found by integrating over two spherical surfaces. The term s/R3 in Eq. (A.8a) will not contribute
since s changes sign during the integration so that the contributions to the left and to the right of the
center cancel each other. We now consider the next two terms, containing the factor R2 − 3s2 (times
a function of R). Due to the spherical symmetry s2 can be replaced by R2/3 in the integrals, showing
that these two terms do not contribute to the integral. Finally, in the last term we can replace ρ2 by
2R2/3, so that we get

F12 = −2

3

Q1

4πε2
1

Q2

4πε2
2

∫
σ1

∫
σ2

1

R
a(T − R) dσ1 dσ2, (A.9)

where σ1 and σ2 signify the interior and exterior spherical surface, respectively. Note that the ac-
celeration is taken at the time T − R such that Eq. (A.9) is a relation between a present force and
accelerations in the past.

Since both shells are assumed to have identical motions, the integral (A.9) can be interpreted to
give the force, F21 from 2 upon 1, as well. Hence,

F12 = F21. (A.10)

This is opposite of what one would expect from Newton’s 3.law.
Calculating the integrals, let us start by performing the integral over the internal surface. Then

R is the distance from the point of integration to a point P on the external surface. We introduce
polar coordinates (θ, ϕ) with the line from the center to the point P as axis and use R = (ε2

1 + ε2
2 −

2ε1ε2 cos θ )1/2 as the integration variable with limits of integration ε2 − ε1 and ε2 + ε1. This gives

dσ = ε2
1 sin θ dθ dϕ = (ε1/ε2)R d R dϕ, (A.11)

i.e.,

∫
σ1

1

R
a(T − R) dσ1 = 2π

ε1

ε2

ε2+ε1∫
ε2−ε1

a(T − R) d R = −2π
ε1

ε2
[v(T −ε2−ε1)−v(T −ε2 + ε1)]. (A.12)

Inserting this into Eqs. (A.9) and (A.10) leads to

F21 = F12 = Q1 Q2

3ε1ε2
[v(T − ε2 − ε1) − v(T − ε2 + ε1)]. (A.13)

The result (A.13) contains some interesting special cases.
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Letting Q2 = Q1 and ε2 → ε1, we obtain the action of a spherical charged shell upon itself. Then

F11 = 1

3

(
Q1

ε1

)2

[v(T − 2ε1) − v(T )] (A.14)

which is a well-known result [63]. Making a series expansion in powers of ε1,

F11 = 2

3
Q2

1

[
− a

ε1
+ ȧ − 2

3
ε1ä + · · ·

]
(A.15)

we recover the force of a point charge upon itself in the limit ε1 → 0.
Another special case is obtained by letting ε1 → 0 in Eq. (A.13). This gives the force between a

charged spherical shell and a point charge at its center,

F12 = F21 = −2

3

Q1 Q2

ε2
a(T − ε2). (A.16)

It follows that the electrical field strength at the center of the shell is

E X = −2

3

Q2

ε2
a(T − ε2) = Q2

[
−2

3

a

ε2
+ 2

3
ȧ − ε2

3
ä + · · ·

]
. (A.17)

A.3. The Field inside an Accelerated Charged Spherical Shell

The shell has radius ε, and a uniformly distributed charge Q. It has an acceleration a and is
instantaneouly at rest in the laboratory frame at the moment of observation. The expressions (A.8)
shall be applied to find the elctromagnetic field inside the shell in the linear approximation.

Performing a series expansion in R we get

s(T − R) = s − 1

2
R2a + 1

6
R3ȧ − 1

24
R4ä + · · · (A.18a)

v(T − R) = −Ra + 1

2
R2ȧ − 1

6
R3ä + · · · (A.18b)

a(T − R) = a − Rȧ + 1

2
R2ä + · · · , (A.18c)

where s, a, ȧ, ä refer to instantaneous time T . We find the field at a point with position vector r
relative to the center of the spherical shell. The vector r makes an angle θ with the positive X -axis
the direction of the acceleration. Integration over the spherical shell gives the following components
of the electromagnetic field for r < ε up to the second order derivative ä

E X

Q
= −2

3

a

ε
+ 2

3
ȧ − ä

15ε
(5ε2 + r2 + r2 sin2θ ) (A.19a)

Eρ

Q
= ä

30ε
r2 sin 2θ (A.19b)

Bϕ

Q
= − ȧ

3ε
r sin θ + ä

3
r sin θ. (A.19c)

Putting r = 0 the result (A.17) for the field at the center of the spherical shell is confirmed.
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A.4. Self Force upon a Spherically Symmetric Spatial Charge Distribution

The expression (A.9) for the force between charged spherical shells is easily generalized to the
self force of a spherically symmetric charge distribution ρ(r ) in space.

Let dq1 = ρ(r1) dV 1 and dq2 = ρ(r2) dV 2 be infinitesimal elements of charge in the distribution.
According to Eq. (A.9) the self force is given by

F = −2

3

∫
V1

∫
V2

dq1 dq2

R
a(T − R), (A.20)

where R = |r2 − r1|. Performing a series expansion we get

F = −2

3

∫
V1

∫
V2

dq1 dq2

R
[a(T ) − Rȧ(T ) + · · ·]. (A.21)

Here

∫
V1

∫
V2

dq1 dq2

R
= 2U (A.22)

and

∫
V1

∫
V2

dq1 dq2 = Q2, (A.23)

where U is the electrostatic self energy, and Q is the total charge of the distribution. Hence the force
of the charge distribution upon itself is

F = −4

3
Ua + 2

3
Q2ȧ + · · · (A.24)

in accordance with Eq. (A.15) for a spherical shell.

A.5. Equation of Motion of a Charged Shell

We consider a spherical shell with radius ε and a uniformly distributed surface charge Q. From
the deductions above we have two expressions for the self force, namely Eq. (A.20) where we let
dq1 and dq1 denote infinitesimal surface charges,

F(T ) = −2

3

∫
σ1

∫
σ2

a(T − R)

R
dq1 dq2 (A.25)

and Eq. (A.14)

F(T ) = 1

3

(
Q

ε

)2

[v(T − 2ε) − v(T )] (v2 � 1). (A.26)
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Let m0 be the mechanical (bare) mass, and fext an external force. Then we have the equation of
motion

m0a(T ) = fext(T ) + 1

3

(
Q

ε

)2

[v(T − 2ε) − v(T )]. (A.27)

The dominating term in the self force is proportional to the acceleration (see Eq. (A.15)) and is given
by

1

3

(
Q

ε

)2

[−2εa(T )] = −δma(T ), (A.28)

where δm = (4/3)Q2/2ε is the electrodynamic contribution to the physical mass of the particle. We
add δma(T ) on both sides of Eq. (A.28) and obtain a mass renormalization due to the term δm. Then
Eq. (A.27) becomes

ma(T ) = fext(T ) + 1

3

(
Q

ε

)2

[v(T − 2ε) − v(T ) + 2εa(T )], (A.29)

where m = m0 + δm is the physical (observed) mass. Introducing τ0 = (2/3)(Q2/m) leads to
m = m0 + (τ0/ε)m or m0 = (1 − τ0/ε)m. Equation (A.29) can also be written

(1 − τ0/ε)ma(T ) = fext(T ) + (τ0/2ε2)m[v(T − 2ε) − v(T )]. (A.30)

Note that the acceleration is multiplied by the mechanical mass m0, not the physical mass m.
Making a series expansion for small ε we get

ma(T ) = fext(T ) + mτ0ȧ(T ) (A.31)

which is the LAD-equation in the rest frame of the charge.
E. J. Moniz and D. H. Sharp [14] have investigated solutions of Eq. (A.30) for the cases of negative

and positive mechanical mass. They found that there is no pre-acceleration or runaway solution for
m0 > 0. Furthermore they claim that the classical theory is valid for m0 > 0 only. Hence there are no
pathological solutions of the equation of motion of a charged shell within the region of applicability
of the classical theory.

Taking the limit ε → 0 the mechanical mass, m0 = (1 − τ/ε)m, becomes negative, which seems
to imply that the LAD-equation, which is presumably valid for a point charge, is not valid at all
according to Moniz and Sharp. However, the introduction of the mass (1 − τ0/ε)m at the left
hand side of the equation may be somewhat misleading. Making a series expansion v(T − 2ε) =
v(T ) − 2εa(T ) + 2ε2ȧ(T ) − · · · the term (τ0/ε)ma is cancelled. This means that Eq. (A.29) and not
Eq. (A.30) is the physically significant way of writing the equation of motion of the charged shell.
In this equation only the physical mass of the charged shell appears, and there is no ambiguity of
sign when the limit ε → 0 is taken.

APPENDIX B

The Self Force on a Charged Particle

Consider a charged particle moving along the X -axis in the laboratory frame, �. The self force
on the charge shall here be found by summarizing the internal electromagnetic forces acting upon
each element of the charge.
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In the instantaneous inertial rest frame, �′, of the particle it has a spherically symmetric distribution
of charge. Let P1 and P2 be two arbitrary points in the charge distribution. Their distances from a
plane orthogonal to the X -axis through the center of the particle are ξ1 and ξ2, respectively. The
separation vector from P1 to P2 is R. We define

R‖ = ξ2 − ξ1, R⊥ = [
R2 − R2

‖
]1/2

, (B.1a,b)

where R‖ and R⊥ are the components of R parallel to and perpendicular to the X -direction, respec-
tively.

All the points of the charge are at rest in �′ at the point of time t ′ = 0. We shall first calculate the
field strength d E X at P2 at t ′ = 0 due to the charge dq1 at P1. The state of motion of the element at
P1 at the time t ′ = 0 is given by

v′
1 = 0,

(
dv′

1

dt ′

)
t ′=0

= a′
1,

(
da′

1

dt ′

)
t ′=0

= b′
1. (B.2)

The retarded values at P1 are found in terms of a series expansion in R, where we have included
the number of terms necessary to obtain the field strength d E X correct to zero order in R. The
Coulomb part (I) and the acceleration part (II) are calculated separately, using Eq. (2.1a), with the
result

d E X
I =

{
R‖ + 1

2

(
R2 − 3R2

‖
)(

a′
1 − 2

3
Rb′

1

)
+ (

15R2
‖ − 9R2

)
R‖a′2

1/8

}
R−3 dq1 (B.3a)

d E X
II = R2

⊥

{
−a′

1 + 3

2
R‖a′2

1 + Rb′
1

}
R−3 dq1. (B.3b)

We shall first find the self force in�′ for the case that the acceleration and its derivative are independent
of the position in the charge. Hence, for arbitrary choice of P1, a′

1 = g and b′
1 = dg/dτ , where g is

the proper acceleration of the center. This leads to the following double integrals for the self force
F = FI + FII:

FI =
∫ ∫

d E X
I dq2 = 0 (B.4a)

FII =
∫ ∫

d E X
II dq2 = −4

3
V0g + 2

3
Q2 dg

dτ
, V0 = 1

2

∫ ∫
dq1dq2

R
. (B.4b)

Here V0 is the electrostatic self energy, and Q the charge of the particle. Calculating the integrals we
have utilized that the terms with R‖ as a factor do not contribute to the integrals due to the spherical
symmetry, and that R2

‖ can be replaced by R2/3 and R2
⊥ by 2R2/3.

Next we consider the particle as a Born rigid body. Then the acceleration in the instantaneous rest
frame of the particle depends upon the position in the charge distribution. At the point P1,

a′
1 = g/(1 + ξ1g) = g − ξ1g2 + · · · (B.5a)

b′
1 = ġ − 2ξ1gġ + · · · , (B.5b)

where g is the proper acceleration of the center of the particle, and ġ = dg/dτ .
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Inserting Eqs. (B.5) into Eqs. (B.3) we get to the necessary order the following field in the rest
frame at the point P2

d E X
I =

{
R‖ + 1

2

(
R2 − 3R2

‖
)(

g − ξ1g2 − 2

3
Rġ

)
+ (

15R2
‖ − 9R2

) R‖g2

8

}
dq1

R3
(B.6a)

d E X
II = R2

⊥

{
−g + ξ1g2 + 3

2
R‖g2 + Rġ

}
dq1

R3
. (B.6b)

Putting these expressions into the integrals
∫

d E X
I dq2 and

∫
d E X

II dq2 we get the previous result
Eq. (B.4). Thus the variation of the acceleration due to Born rigidity has no effect upon the self force
in the rest frame of a spherically symmetric particle in the limit of vanishing extension.

We shall now calculate the self force in the laboratory frame � assuming that the charge performs
a Born rigid motion. The electromagnetic self force is now found summarizing by simultaneity in
�. We utilize that the field component E X is the only one of significance for the self force, and that
this component is invariant against a Lorentz transformation in the X -direction. Thus we may utilize
Eqs. (B.6) that are valid in the rest frame, with all quantities referring to simultaneity in this frame,
g being the proper acceleration of the center of the particle.

The electrical field shall be calculated at a point P2 at time T in the laboratory frame �. Let �′

be the instantaneous rest frame in P2 at the point of time T . At simultaneity in the rest frame �′,
the time in the laboratory frame � at the center of the charge is T0, and the velocity of the center is
v(T0). The relationship between T and T0 is found by making a Lorentz transformation between �

and �′, from which follows

T − T0 = γ (T0)v(T0)ξ2. (B.7)

To first order in ξ2,

T0 = T − γ (T )v(T )ξ2. (B.8)

Hence the proper acceleration of the center at the point of time T0 is to first order in ξ2,

g(T0) = g(T ) − dg(T )

dT
γ (T )v(T )ξ2. (B.9)

We now utilize Eq. (B.6), replacing g by

g(T0) = g − ġvξ2, (B.10)

where g, ġ, v refer to the laboratory time T , and ġ = dg/dτ . Then, to the necessary order, the
expressions for d E X

I and d E X
II must be supplied with the respective terms

−1

2

(
R2 − 3R2

‖
)
ġvξ2

dq1

R3
(B.11a)

and

R2
⊥ġvξ2

dq1

R3
. (B.11b)
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Due to the spherical symmetry these terms will not contribute to the self force, so we get the previous
result, Eq. (B.4).

We have studied linear Born rigid motion of a charge distribution which is spherically symmetric
in its rest frame, and which has vanishing extension. The result of the calculation is that the self force
is the same in the laboratory frame as in the instantaneous rest frame of the particle.

Note also that from the present point of view the self force is a pure type II phenomenon. The
Coulomb/velocity component does not contribute to the self force. The self force as calculated by
summarizing the internal forces on the charge elements of the distribution is in accordance with
the self force, Eq. (7.9), as calculated by considering the rate of change of the momentum of the
electromagnetic field produced by the charge. But the interpretation of the self force is different in
these two procedures. This is seen most clearly in the instantaneous rest frame of the charge. Here
the self force is due to the bound momentum according to the field consideration and due to the
radiation field according to the internal force consideration.
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