and Newton’s second law for one turn of the slinky (dn
=1) yields

Fx F*x
K'a?+mg=m-5?‘. (A3)
The static solution to Eq. (A3) satisfying x(0,0) =0 is
given by

mg ,
» n“+bn,

where b is an arbitrary constant. The physically meaning-
ful values for » in the abovz formula are those for which
the tension is positive. Using Eq. (A1) the tension is given
by

T=—mgn+«b.

Xe=— (A4)

(A3)

The boundary condition 7=0 for n=N determines b for
the free slinky while 7'=F yields b for the stretched slinky.
All of the formulas for the static situation may be obtained
once b is defined.

To obtain the equation for longitudinal waves we may
expand x(n,t) about the static equilibrium position and
write

x(n,t) =u(n,t) +x4(n). (A6)

Substituting Eq. (A6) into Eq. (A3) then results in the
wave equation (2.14) from which the normal mode devel-
opment follows.
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In the lab frame the total linear charge density of a current-carrying wire must be zero, while in
the rest frame of the electrons making up the current the total volume charge density must be
zero. These two pieces of information enable the determination of the volume, surface, and
linear charge densities of such a wire in both of these frames using only straightforward
relativistic length contractions and simple mathematics.

L. INTRODUCTION

All magnetic fields and forces acting on an electrical
charge may be understood in terms of electric fields and
forces felt by the charge in its own rest frame. This view,
developed by Feynman, Leighton, and Sands,! Purcell,’
and others’® essentially describes magnetic phenomena as
relativistic effects. The case most often considered is the
Lorentz force felt by a charge moving through the mag-
netic field of a wire carrying constant current. The usual
approach is to model the current-carrying wire as a super-
position of two uniform charge densities: one positive (the
rigid ion lattice) and one negative (the flowing conduction
electrons). By transforming these two charge densities into
the rest frame of a test charge ¢ moving relative to the wire,
it is possible to show that the magnetic force felt by g in the
lab frame is equivalent to an electrostatic force in ¢’s rest
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frame. Although Purcell’s and Feynman’s approaches to
this question are quite similar, Purcell frames the problem
in terms of linear charge densities while Feynman frames it
in terms of volume charge densities.

It is a well-known fact that a current-carrying wire is
neutral in the rest frame of the lattice of ions making up
the wire, i.e., in the lab frame. More specifically, it is the
total linear charge density of the wire which is zero in this
frame. This may be understood as a consequence of the
availability of free electrons in the electron source and sink
associated with the current. Free electrons in the source
and sink are at rest in the lab frame, and if the wire is not
neutral in this frame these electrons will move to make it
so. Matzek and Russell* and later Peters® showed that if a
three-dimensional wire is considered, it is found that the
distribution of charge with radius in a cylindrical wire is
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not uniform, and that the wire has separate volume and
surface charge densities. This indicates that Feynman’s di-
rect generalization of the linear charge densities of a wire
to volume charge densities was not appropriate.

The nonuniformity in the radial charge distribution in a
current-carrying wire is such that there is a concentration
of negative charge toward the center of the wire. The ap-
parent mechanisms causing this nonuniformity are differ-
ent in the lab frame S and the rest frame of the electrons
making up the current, S’. In S, the mechanism has been
described as a “pinch effect” or a “self-induced Hall ef-
fect”: the electrons making up the current are moving
through a magnetic field caused by their fellow electrons,
and so fee] a force of magnitude ev;B(7) toward the center
of the wire. Here e is the magnitude of the electron charge,
v, is the drift velocity associated with the current, and
B(r) is the magnetic field strength at a radius 7 in the wire.
In equilibrium, the electrons will concentrate toward the
center of the wire until the electric force caused by the
resulting radial charge separation is balanced by the Lor-
entz force evyB(r). Thus, even though the linear charge
density in S, the lab frame, is zero, it is due to the super-
position of a negative volume charge density and a positive
surface charge density.

In §’, the electrons making up the current are at rest,
and so do not feel any magnetic force; however, the lattice
of positive ions appears to be Lorentz contracted, and so
there is initially an excess of positive charge in the bulk of
the wire. These electrons at rest in S’ therefore experience
an electrostatic force toward the center of the wire and
concentrate toward the center until this force is balanced
by the opposing force due to the resulting radial charge
separation. One way to view this situation is to consider a
cylindrical Gaussian surface with some radius less than the
radius of the wire; because of the length contraction of the
positive lattice, this Gaussian surface will initially contain
a net positive charge, which results in an electric field
pointing radially outward from the center of the wire.
When equilibrium is reached, the volume charge density of
the wire in S’ is zero and a thin layer of positive surface
charge density is left behind by the migration of electrons
toward the wire center. This mechanism for the generation
of the surface charge density in the S’ frame was appar-
ently not recogmzed by previous workers on this topic.5

We see that in both .S and S, a positive surface charge
density is induced, but in S the total linear charge density
is zero, while in S” the total volume charge density is zero.
This apparent asymmetry is due to the fact that in S free
electrons in the electron source and sink which are driving
the current will move so as to maintain neutrality of the
wire as a whole, while in S’ the free electrons in the wire
will move so as to maintain neutrality of the bulk of the
wire.

Peters derived correct expressions for the volume charge
densities in both S and S”, and for the surface charge den-
sity in S; although he also questioned the existence of this
surface charge density, due to lack of a mechanism for its
generation in S’. Hernandez et al.” later showed that the
deflection of electrons associated with the “self-induced
Hall effect” in § must occur in the S’ frame as well, but
agreed with Peters that this may not necessarily lead to a
surface charge density, and did not derive an expression for
it. In the following section we calculate the volume, sur-
face, and linear charge densities in both the S and S’
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frames, using only the transformation properties of the lin-
ear -and volume charge densities, and the information
above about the linear charge density in S and the volume
charge density in S’. In addition to the derivations here
being quite simple, they are the first such derivations done
completely w1thm the context of magnetic phenomena as
relativistic effects.®

II. THE LINEAR, VOLUME, SURFACE CHARGE
DENSITIES IN S AND §’

We denote linear charge densities by A, volume charge
densities by p, and surface charge densities by 0. Quanti-
ties in § will be “unprimed,” while those in .S’ will be
marked with a “prime” (’). We consider a cylindrical wire
of radius @ which is composed of a rigid lattice of ions and
a nonrigid distribution of electrons which make up the
current. In frame S, the lab frame, the ion lattice is at rest
and the negative charge dlstnbutlon appears Lorentz con-
tracted by a factor y=(1—v%/c?)"% where v, is the drift
velocity associated with the current and c is the speed of
light. In frame S’, the rest frame of the moving electrons,
the ion lattice appears contracted by the same factor. The
radius g is the same in the two frames, since the drift
velocity has no component in the radial direction. From
the arguments in Sec. I, we require that the total linear
charge density A in S be zero, and that the total volume
charge density p’ in S’ be zero.

Let pg be the volume charge density of the ion lattice in
S. The volume charge density of the lattice in S’, p’,, will
simply be yp,; since the length of the lattice is contracted,
the charge density is enhanced. Therefore, in order for the
net volume charge density in §’ to be zero the negative
volume charge density p’ , must be

We may find p_ immediately, since p_ will simply be the
negative volume charge density in S’ enhanced by the Lor-
entz contraction of the electron distribution as seen in S

p-=vp_=—Vpo.
The net volume charge density in the lab frame S is’

p=pi+p_=p(1-1), ..p=—pBY (2)

where B,=v,/c; this is negative, as expected.

We may now use the requirement that A be zero to
determine the surface charge density o in S. We may ex-
press A in terms of o and p by considering a small length
of wire dl, which has volume wa’dl and surface area
2ma dl. This length of wire contains a small amount of
charge dg, which is zero smce A is zero. The surface charge
density o is found to be!’

dg=Adl=p- (ma*dl) + o (2ma dl) =0,
A=p-7ra2+a-21ra=0,

.0=peaB/2, (3)

where the assumption has been made that the region of
excess positive charge density near the surface of the wire
is very thin, which is most definitely the case for typical

current drift velocities, as pointed out by Matzek and Rus-
sell.

o=—pa/2,
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Let us now find the surface charge density in S’. Con-
sider first the positive linear charge density A’,, which will
have contributions from both volume and surface charge
densities (since there is no negative charge density,
g,=0)

A =p', -ma’+0’ 2ma=yA, ,

where A, =p, -ma*+0-2ma. Substituting for p, and
p’, in terms of pg,

YPo* ra*+0’ - 2ma=y[po: wa*+o- 2ma), o' =vo.

(4)
In other words, the ion and electron volume charge densi-
ties in one frame must be transformed separately and su-
perposed to obtain the net volume charge density in the
other frame, but the surface charge density, since it is com-
posed of charge of only one sign, transforms directly, as
expected. Lastly, the total linear charge seen in .’ may
now be found (remember that in this frame, there is no net
volume charge density):

_'_/'L'=1ra2p06¢2,7/3. (5)

1. CONCLUSION

We have determined the surface, volume, and linear
charge densities of a cylindrical current-carrying wire in
both the lab frame § and in the rest frame of the electrons
constituting the current, S’, and have identified a mecha-
nism for the generation of the surface charge density in S’.
The derivations were based on the knowledge that in the
lab frame the total /inear charge density is zero, while in
the rest frame of the moving conduction electrons the total
volume charge density is zero. Both of these conditions
may be understood as consequences of the simple fact that
in any frame in which there are free electrons at rest, these
electrons will arrange themselves in such a way as to min-
imize any net charge density in that frame. The derivations
were done using only very simple mathematics and basic
length contractions. This approach may help students to

A'=0' - 2na,

develop a deeper understanding of the steady-state charge
distribution in a current-carrying wire as viewed from dif-
ference reference frames, and more generally, an appreci-
ation of magnetic fields and forces as relativistic phenom-
ena.
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PARTICLE PHYSICISTS’ GOSSIP
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jokes (preferably using technical language from particle physics to describe human behavior),
and being an informed gossip are crucial skills for a successful particle physicist.
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