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The dynamical behavior of a simple rotating mechanical system that carries a charge on its surface
and is accelerated by a falling mass is considered. It is shown that a fraction of the total kinetic
energy is missing and that exactly this fraction of energy has been stored in the magnetic field
distribution. The conservation of electromagnetic angular momentum is also discussed on the same
basis. The concept of an electromagnetic moment of inertia is introduced to establish a close parallel
with the concept of mechanical moment of inertia in classical dynamics. It is suggested that the
present mechanical system can be used as a teaching tool at the early-to-intermediate level of an
undergraduate physics program to ease the transition from the dynamics of rigid bodies to that of
more abstract fields. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

Most introductory presentations of the concept of ma
netic energy storage rest on the assumed current–voltag
lation for a linear self-inductance element,1–3

V5L
di

dt
. ~1!

The instantaneous powerP supplied to the inductor is the
shown to equal the rate of change of the stored energy,1

2Li 2:

P5 iV5
d

dt S 1

2
Li 2D . ~2!

In these expressions,i is the current,V is the instantaneou
voltage drop, andL is the self-inductance parameter.

Another important topic, that of electromagnetic angu
momentum, is not covered1–3 at all at the introductory level
in spite of the great physical significance of overall angu
momentum conservation. The subject is mentioned at
more advanced undergraduate stage however,4–6 but the
number of applications that are discussed is usually limit
presumably due to the mathematical complexity of
subject.7–9

Simple presentations of magnetic energy and of elec
magnetic angular momentum are done mostly on the bas
qualitative arguments and usually not from the perspectiv
the work done by the individual forces that are involved in
specific case. A student may often not appreciate until
more advanced undergraduate level that a system’s mag
energy and electromagnetic angular momentum are o
stored at the expense of their mechanical counterparts.

Introductory-to-intermediate level discussions that a
proach the overall conservation of electromechanical ene
from a mechanical perspective do not appear to be avail
in textbooks or in the pedagogical literature, although R
10 does provide a simple example using a parallel-plate
ductor arrangement. As mentioned, there also is a sim
lack of early coverage of electromechanical angular mom
tum, and these observations partly motivated the presen
ticle.

The article considers an electromechanical system wh
motion can be understood readily by students who have
1034 Am. J. Phys.70 ~10!, October 2002 http://ojps.aip.org
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plied Newton’s laws to the motion of rigid bodies and wh
have solved some elementary cases of Faraday’s law.
model was originally developed by the author for explaini
the role of Faraday’s law of induction in terms of the bas
conservation laws of physics. It will be explicitly shown th
energy and angular momentum have to be ascribed to
distribution of the electromagnetic fields in order to resto
overall energy and angular momentum conservation.

The model system will be described in Sec. II and
dynamical behavior will then be discussed. Section II w
focus on the stored kinetic and magnetic energy asp
while Sec. III will consider the important issue of overa
angular momentum conservation.

II. GRAVITATIONAL WORK BECOMES
MECHANICAL KINETIC ENERGY AND MAGNETIC
ENERGY

Consider a long thin uniform electrically insulating an
magnetically nonpermeable cylindrical shell of lengthl, ra-
dius R, and moment of inertiaI, that can rotate freely abou
its horizontal symmetry axis; a net uniformly distribute
chargeQ is on the shell. A massless string is wound arou
the shell surface and a vertically hanging massm is attached
to its free end and released from rest at timet50. The prob-
lem is to determine the angular acceleration, the mechan
kinetic energy and mechanical angular momentum of the
sembly after the hanging mass has fallen a distanceH ~see
Fig. 1!. A cylindrical coordinate system (r,f,z) with unit
vectors (r̂,f̂,ẑ) will be used.

Quasistationary acceleration conditions of motion are
sumed to hold throughout the process. In this approximat
radiation losses due to acceleration effects are not signific
and Maxwell’s displacement current term may be neglec
when doing the field calculations.

If there were no charge on the shell, the angular accel
tion, assumed to be positive, would be

a5
mgR

I 1mR2
, ~3!
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whereg is the acceleration due to gravity. Consequently,
total kinetic energy after the hanging mass has droppe
distanceH would be

K5 1
2Iv

21 1
2mv25IaDf1mR2aDf

5~ I 1mR2!
mgR

~ I 1mR2!

H

R
5mgH, ~4!

where v is the linear velocity of the falling weight,Df
5H/R is the angle turned by the cylindrical shell, andv
5v/R5A2aDf is its angular velocity. These results follo
from an elementary exercise in dynamics and the details
omitted.

When there is charge on the shell, however, the situatio
different because the accelerating charge creates a t
dependent magnetic field inside the shell, thereby giving
to a back emf, in accordance with Faraday’s law of indu
tion. Because of the assumed cylindrical symmetry of
charge distribution, one can use Faraday’s law in integ
form1–3 to obtain the induced electric fieldEf that acts on
the deposited chargeQ,

R
C
EW •drW52

d

dtE E
S

BW •dsW, ~5a!

that is,

2pREf52
d

dt
~pR2Bz!, ~5b!

whereBz is the axially directed uniform magnetic field pro
duced inside the shell by the moving charge~see Fig. 1!.
Because quasistationary conditions of motion are assume
hold, the magnetic field outside the cylindrical shell rema
very small at all times, and the interior field is the same
that of a very long solenoid of lengthl carrying a total cur-
rent i:1–3

Bz5
m0i

l
, ~6a!

i[
dQ

dt
5

Qv

2p
. ~6b!

The reaction field is then obtained by inserting Eq.~6! into
Eq. ~5b!, and the result is

Fig. 1. Schematic diagram of the system:Bz5induced magnetic field;
Ef5induced electric field,T5tension in the string;mg5weight of sus-
pended mass;a5linear acceleration;v5linear velocity;H5distance of fall;
a5angular acceleration;v5angular velocity; R5radius of the shell;
l5length of the shell;1 signs denote distributed charge.
1035 Am. J. Phys., Vol. 70, No. 10, October 2002
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Ef52S m0QR

4p l Da, ~7!

wherea5dw/dt. This field produces a retarding torque o
the rotation of the shell, and this torque is proportional to
angular accelerationa. We now examine the rotational–
translational equations of motion for the shell-weight asse
bly.

We first express the electromagnetic contribution to the
torque, tem, as an integral involving the circular forc
Ef(r)dQ, which acts on an element of chargedQ inside the
shell, times the lever armr of that force with respect to the
spinning axis. The result is

tem[E dQ Ef~r!r5QEf~R!R. ~8!

To arrive at the second line of Eq.~8!, we note that the layer
in which the electric charge is uniformly distributed is a
sumed to have a finite thickness, although it is very thin, a
Ef(r) is the circular component of the net electric fie
within that layer of charge. Now, Maxwell’s theory predic
that the tangential component of the net electric field mus
continuous across an interface. Hence the circular compo
of the net electric field must be continuous across the s
thickness. Consequently every charge elementdQ in the
shell will experience the same circular torque.

Under the above conditions, the equations of motion
the assembly are

Ia5TR1QEfR ~9a!

and

2T1mg5maR, ~9b!

with T the tension in the string; also,Ef[Ef(R) is the
induced circular component of the electric field on the sh
and is given by Eq.~7!.

Equation~9! is readily solved for the angular acceleratio
a, and hence for the angular velocity of the spinning sh
v. The results are

a5
mgR

I 1mR21
m0Q2R2

4p l

~10a!

and

v5A2aH

R
5A 2mgH

I 1mR21
m0Q2R2

4p l

, ~10b!

respectively. Consequently, the total mechanical kinetic
ergy of the spinning shell-weight system is

K5
1

2
Iv21

1

2
mv25mgH

~ I 1mR2!

S I 1mR21
m0Q2R2

4p l D . ~11!

The net acceleration of the spinning shell is indeed sma
than that predicted in Eq.~3!, due to the charge-depende
increase,m0Q2R2/4p l , in the inertial factorI 1mR2 in the
denominator of Eq.~10a!. The total kinetic energy after a
dropH is thus reduced frommgH, as seen in the second lin
of Eq. ~11!. The missing kinetic energy is seen to be
1035N. Gauthier
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DK52mgH

m0Q2R2

4p l

S I 1mR21
m0Q2R2

4p l D . ~12!

We now transform Eq.~12! by rewriting the denominato
using Eq.~10a!, and then using Eq.~6! to replace the factor
Q2 in the numerator. The result is that

DK52S aH

R D S m0R2

4p l D S 4p2l 2Bz
2

m0
2v2 D . ~13!

Equation~13! can be further simplified because by Eq.~10b!,
v252aH/R. The final expression for the missing kinet
energyDK is then

DK52
Bz

2

2m0
pR2l , ~14!

and this value is equal to minus the stored magnetic ene
as predicted by Maxwell’s theory:4–6

Um5E E E
space

Bz
2

2m0
dt5

Bz
2

2m0
pR2l . ~15!

The statement of overall energy conservation for this elec
mechanical system then reads

K1Um5mgH. ~16!

The missing kinetic energy has in effect been stored in
magnetic field distribution.

Finally, to make contact with the current-voltage approa
mentioned in Eqs.~1! and~2!, we use Eq.~6! to eliminateBz

2

in Eq. ~15!. The resulting expression then gives the sto
magnetic energy in the more traditional form in terms of t
square of the net current carried by the arrangement:

Um5
1

2 S pm0R2

l D i 2. ~17!

In this expression,pm0R2/ l represents the self-inductanc
parameter.

III. TRANSFORMATION OF EXTERNAL
GRAVITATIONAL TORQUE TO MECHANICAL AND
ELECTROMAGNETIC ANGULAR MOMENTUM

We now determine where the angular momentum is d
tributed in the system. In the denominator of Eq.~12!, the
quantity

I em[
m0Q2R2

4p l
~18!

clearly plays the role of a moment of inertia, but is asso
ated with the charge itself, not with the mass. For this rea
we will call it the electromagnetic moment of inertia of th
assembly, to distinguish it from the more familiar mechani
moment of inertia. The physical significance of this nov
type of moment of inertia will be emphasized at the end
Sec. III where we show that it appears in the expressions
the stored electromagnetic angular momentum and the st
magnetic energy.

Let
1036 Am. J. Phys., Vol. 70, No. 10, October 2002
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GW [E
0

t

dt tWext5 ẑE
0

t

dt~mgR! ~19!

be the net angular impulse of the external gravitatio
torquetWext5z(mgR) which is provided by the falling mas
m. This impulse has taken the spinning shell from its origin
state of rest at timet50, and brought it to its final angula

velocity vW at timet, as the hanging mass fell by the distan
H. The assumed quasistationary conditions again mean
radiation losses that are due to the acceleration of the s
ning shell can be neglected.

The angular impulse of the external torque is read
evaluated, and we find that

GW 5 ẑ@~mgR!t#5 ẑFmgR
v

a G
5 ẑ@A2mgH~ I 1mR21I em!#. ~20!

To arrive at the second line in Eq.~20!, it was noted thatv
5at because the motion is characterized by a constant
celeration. Finally, Eq.~10! was used to deduce the last lin
of Eq. ~20!, along with the definition of the electromagnet
moment of inertia that is given in Eq.~18!.

According to Newton’s law for rotational motion, the an
gular impulse due to the external torque must equal
change of the angular momentum of the system, that isGW

5DLW syst. As a result, the final angular momentum of th
system is

LW syst5 ẑLsyst5 ẑ@A2mgH~ I 1mR21I em!#, ~21!

because the initial angular momentum equals zero. We n
examine how the total angular momentum is stored by
system.

The mechanical contribution to the angular moment
arises exclusively from the mechanical inertia of the rotat
shell and from that of the falling mass, and is

LW mech5~ I 1mR2!vW 5 ẑ~ I 1mR2!A 2mgH

~ I 1mR21I em!
.

~22!

By comparing this result with Eq.~21!, one can see tha
LW mech is smaller thanLW syst. Therefore some of the angula
momentum imparted by the angular impulse of the exter
torque is missing from the mechanical contribution, and t
missing part is to be found in the electromagnetic angu
momentum. Indeed, we can simply add the quantityLW em

5I emvW to both sides of Eq.~22! to obtain

LW mech1LW em5~ I 1mR21I em!vW

5 ẑ~ I 1mR21I em!A 2mgH

~ I 1mR21I em!

5 ẑA2mgH~ I 1mR21I em!, ~23!

where I em is given in Eq.~18!. In other words, the missing
angular momentum has been stored in the electromagn
fields because the last line in Eq.~23! is equal to the full
angular impulse of the external torque by Eq.~21!. We con-
clude that
1036N. Gauthier
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LW mech1LW em5LW syst, ~24a!

LW mech5IvW , ~24b!

LW em5
m0Q2R2

4p l
vW [I emvW . ~24c!

According to Newton’s law for rotational motion, we the
have that

d

dt
@LW mech1LW em#5tWext, ~25!

or, equivalently,

~ I 1mR21I em!aW 5z~mgR!, ~26!

wheretWext is the gravitational torque. That is, the time d
rivative of Eq.~21! equals the torque in Eq.~19!: the rate of
change of the total angular momentum of the system is e
to the external torque applied to that system. If the exter
torque vanishes, the total angular momentum, mechan
plus electromagnetic, remains constant in time, and the
tem continues to spin without losses, in accordance with
law of inertia.

We now show that the concept of an electromagnetic m
ment of inertia also helps to simplify the energy discuss
of Eqs.~11!–~16!. Indeed, using Eq.~6!, we readily find that
the magnetic energy of Eq.~15! may be written in the form
of a mechanical-like kinetic energy term

Um5 1
2I emv2, ~27!

where I em is as defined in Eq.~18!. The electromagnetic
moments of inertia that are associated with the electrom
netic angular momentum and with the magnetic energy
the same, just as in nonrelativistic mechanics. Equation~16!
can thus be rewritten as

1
2~ I 1mR21I em!v25mgH. ~28!

The statement of overall energy conservation can now
formulated as follows: the total change in the energy of
system, mechanical plus magnetic, equals the work don
the external force. In the absence of external work, the t
energy of the system is conserved. Note that the electrom
netic angular momentum for the present system can be
culated, as usual, by invoking the field integral of the Po
ting vector.4–7 Such a rigorous calculation has be
performed for the system under consideration here and
results support the findings given in Eq.~24!,11 a simpler
approach is now sketched.

Let

gW 5«0EW 3BW 5«0~Err!3~Bzz!52~«0ErBz!f ~29!

be the electromagnetic momentum density, where by Gau
law and symmetry,

Er50, 0<r,R,
~30a!

Er5
Q

2pr l
, R,r,

and

Bz5Bz~r! ~0<r!. ~30b!
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We have assumed that the shell, which extends fromz1

52 l /2 to z252 l /2, is very long,l→`. If we takedt to be
the spatial volume element in cylindrical coordinates, t
electromagnetic angular momentum is

LW em5E E E
space

dt rW3gW

5E
R

`

dr rE
0

2p

dfE
2 l /2

1 l /2

dzS 2
Q

2pr l
BzD

3@~rr̂1zẑ!3f̂#

5E
R

`

dr rE
0

2p

dfE
2 l /2

1 l /2

dzS 2r
Q

2pr l
ẑ1z

Q

2pr l
r̂ DBz .

~31!

Equation~31! reduces to

LW em52
Q

2p S E
R

`

dr rE
0

2p

dfBzD z. ~32!

To arrive at Eq.~32!, the term involving the unit radial vecto
r̂ was integrated over the azimuthal anglef, and the result
was found to vanish because of the assumed axial symm
Note that the factor in parentheses on the right-hand sid
Eq. ~32! cannot equal zero, in spite of the fact that the ma
netic field of the spinning shell is extremely small at a
exterior points. Indeed, the integral on the right-hand s
gives the return magnetic flux linking the entire region o
side the cylindrical shell and, according to Maxwell’s theo
this return magnetic flux must be equal and opposite to
magnetic flux in the interior of the shell,pR2(m0Qv/2p l ).
As a result, we find that

LW em51
Q

2p FpR2
m0Q

2p l
vGz, ~33!

which agrees with Eq.~24!.

IV. DISCUSSION

We have solved a simple model problem where the m
chanical and electromagnetic behaviors are coupled to
another by the appropriate Newton–Faraday equations
motion. We have shown that part of the kinetic energy w
used to establish the magnetic field distribution created
the motion of the assembly. When energy is ascribed to
magnetic field distribution, we recover overall energy co
servation.

The model was also used to establish that we must s
larly ascribe angular momentum to the distribution of t
electromagnetic fields of the system. The concept of an e
tromagnetic moment of inertia was introduced to facilita
the general description of the problem. It was then est
lished that the same electromagnetic moment of inertia
termines both the electromagnetic angular momentum
the magnetic energy, in a striking parallel with the mo
familiar mechanical situation. A more general presentation
some of the ideas that are discussed in the present artic
currently being considered for publication.11
1037N. Gauthier
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