A Newton—Faraday approach to electromagnetic energy and angular
momentum storage in an electromechanical system
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The dynamical behavior of a simple rotating mechanical system that carries a charge on its surface
and is accelerated by a falling mass is considered. It is shown that a fraction of the total kinetic
energy is missing and that exactly this fraction of energy has been stored in the magnetic field
distribution. The conservation of electromagnetic angular momentum is also discussed on the same
basis. The concept of an electromagnetic moment of inertia is introduced to establish a close parallel
with the concept of mechanical moment of inertia in classical dynamics. It is suggested that the
present mechanical system can be used as a teaching tool at the early-to-intermediate level of an
undergraduate physics program to ease the transition from the dynamics of rigid bodies to that of
more abstract fields. @002 American Association of Physics Teachers.
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[. INTRODUCTION plied Newton’s laws to the motion of rigid bodies and who
have solved some elementary cases of Faraday's law. The

Most introductory presentations of the concept of mag-model was originally developed by the author for explaining

netic energy storage rest on the assumed current—voltage rgwe role of Faraday’s law of induction in terms of the basic

lation for a linear self-inductance elemént, conservation laws of physics. It will be explicitly shown that
di energy and angular momentum have to be ascribed to the
V=L—I. (1) distribution of the electromagnetic fields in order to restore
dt overall energy and angular momentum conservation.

The model system will be described in Sec. Il and its
dynamical behavior will then be discussed. Section Il will
focus on the stored kinetic and magnetic energy aspects
while Sec. Ill will consider the important issue of overall
. (2) angular momentum conservation.

The instantaneous pow® supplied to the inductor is then
shown to equal the rate of change of the stored engtgy;

d(l

—iv— | Zy;2
P=iVv at 2L|

In these expressions,is the currentV is the instantaneous
voltage drop, and. is the self-inductance parameter. Il. GRAVITATIONAL WORK BECOMES

Another important topic, that of electromagnetic angulary;=~pANICAL KINETIC ENERGY AND MAGNETIC
momentum, is not coveréd at all at the introductory level, IENERGY

in spite of the great physical significance of overall angula
momentum conservation. The subject is mentioned at the

more advanced undergraduate stage howkvebut the magnetically nonpermeable cylindrical shell of lengtha-

number of applications that are discussed is usually I|m|teddius R, and moment of inerti4 that can rotate freely about

gﬁg&%"y due to the mathematical complexity of theits horizontal symmetry axis; a net uniformly distributed

chargeQ is on the shell. A massless string is wound around

Simple presentations of magnetic energy and of electrog, gy o|i 5 rface and a vertically hanging masss attached
magnetic angular momentum are done mostly on the basis of its free end and released from rest at tiraed. The prob-
gualitative arguments and usually not from the perspective o : P

the work done by the individual forces that are involved in alc™ IS to determine the angular acceleration, the mechanical
specific case. A student may often not appreciate until th&IN€tic energy and mechanical angular momentum of the as-
more advanced undergraduate level that a system’s magne mbly after lthe'hanglng mass has fallen a dlstfimc(eQe
energy and electromagnetic angular momentum are ofteqd- 1- A cylindrical coordinate systemp(¢,z) with unit
stored at the expense of their mechanical counterparts. ~ Vectors p,¢,z) will be used.

Introductory-to-intermediate level discussions that ap- Quasistationary acceleration conditions of motion are as-
proach the overall conservation of electromechanical energgumed to hold throughout the process. In this approximation,
from a mechanical perspective do not appear to be availabkadiation losses due to acceleration effects are not significant,
in textbooks or in the pedagogical literature, although Refand Maxwell’s displacement current term may be neglected
10 does provide a simple example using a parallel-plate inwhen doing the field calculations.
ductor arrangement. As mentioned, there also is a similar If there were no charge on the shell, the angular accelera-
lack of early coverage of electromechanical angular momention, assumed to be positive, would be
tum, and these observations partly motivated the present ar-

Consider a long thin uniform electrically insulating and

ticle. maR
The article considers an electromechanical system whose ,— g , 3
motion can be understood readily by students who have ap- I+ mR?
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Fig. 1. Schematic diagram of the systel;=induced magnetic field;

E,=induced electric field,T=tension in the stringmg=weight of sus-
pended mass=linear acceleratiorny =linear velocity;H=distance of fall;

a=angular accelerationw=angular velocity; R=radius of the shell;

I=length of the shell+ signs denote distributed charge.

whereg is the acceleration due to gravity. Consequently, th
total kinetic energy after the hanging mass has dropped B

distanceH would be
K=3lw?+ 3mv’=1aA ¢+ mRaA
mgR H
(I1+mR)R

where v is the linear velocity of the falling weightA ¢
=H/R is the angle turned by the cylindrical shell, and

=(1+mR?) mgH, (4

=v/R=2aA ¢ is its angular velocity. These results follow

#oQ R)
a,

47l @)

wherea=dw/dt. This field produces a retarding torque on
the rotation of the shell, and this torque is proportional to the
angular acceleratiomr. We now examine the rotational—
translational equations of motion for the shell-weight assem-
bly.

We first express the electromagnetic contribution to the net
torque, 7., as an integral involving the circular force
E,4(p)dQ, which acts on an element of charg® inside the
shell, times the lever arm of that force with respect to the
spinning axis. The result is

TemEJ dQ Ey(p)p=QE4R)R. ®

To arrive at the second line of E(B), we note that the layer
in which the electric charge is uniformly distributed is as-

&umed to have a finite thickness, although it is very thin, and

+(p) is the circular component of the net electric field
within that layer of charge. Now, Maxwell’s theory predicts
that the tangential component of the net electric field must be
continuous across an interface. Hence the circular component
of the net electric field must be continuous across the shell
thickness. Consequently every charge elem@@t in the
shell will experience the same circular torque.

Under the above conditions, the equations of motion for
the assembly are

la=TR+QE,R (9a)

from an elementary exercise in dynamics and the details are q
an

omitted.

When there is charge on the shell, however, the situation is

—T+mg=maR, (9b)

different because the accelerating charge creates a time-

dependent magnetic field inside the shell, thereby giving risavith T the tension in the string; alsd ,=E,(R) is the

to a back emf, in accordance with Faraday's law of induc-induced circular component of the electric field on the shell
tion. Because of the assumed cylindrical symmetry of theand is given by Eq(7).

charge distribution, one can use Faraday’s law in integral Equation(9) is readily solved for the angular acceleration,

form'=3 to obtain the induced electric fiel,, that acts on

the deposited charg®,

j@cé-dF:—%ffé-dé, (59)
S
that is,
d
27REs=— a(wRZBZ), (5b)

whereB, is the axially directed uniform magnetic field pro-

duced inside the shell by the moving chargee Fig. 1L

Because quasistationary conditions of motion are assumed
hold, the magnetic field outside the cylindrical shell remain
very small at all times, and the interior field is the same as
that of a very long solenoid of lengthcarrying a total cur-

renti:l—3
Mol
B,=~ (62
dQ Quow
|= H: z (6b)

The reaction field is then obtained by inserting E&). into
Eq. (5b), and the result is
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«, and hence for the angular velocity of the spinning shell,
w. The results are

mgR (104
a= 2p2
R
| +mR2+ &
4l
and
[2aH 2mgH (10b)
w= —_—
R 2R27
|+mR2+ &
47l

ngpectively. Consequently, the total mechanical kinetic en-
ergy of the spinning shell-weight system is

et o (1+mR?) "
T pletT smut=mg 1Q°R?| 1Y
|+ MR+ ———
4l

The net acceleration of the spinning shell is indeed smaller
than that predicted in Eq3), due to the charge-dependent
increase uoQ?R%/4xl, in the inertial factod + mR? in the
denominator of Eq(10a. The total kinetic energy after a
dropH is thus reduced froormgH, as seen in the second line
of Eqg. (11). The missing kinetic energy is seen to be
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2R? . ([t . .t
“04Q| rzf dtrextzzf dt(mgR) (19
aw
AK=—mgH 7 (12) ° °
| +mR2+ 1oQ ) be the net angular impulse of the external gravitational
4l torque ;ext: z(mgR which is provided by the falling mass

We now transform Eq(12) by rewriting the denominator m. This impulse has taken the spinning shell from its original
using Eq.(109, and then using Eq6) to replace the factor state of rest at timé=0, and brought it to its final angular

Q? in the numerator. The result is that velocity @ at timet, as the hanging mass fell by the distance
oH R?\ [ 47212B2 H. The assumed quasistationary conditions again mean that
AK = — (_ Ko ) -z (13) radiation losses that are due to the acceleration of the spin-
R\ 4ml wiw? ning shell can be neglected.

The angular impulse of the external torque is readily

Equation(13) can be further simplified because by EtQb), evaluated. and we find that

w?=2aH/R. The final expression for the missing kinetic
energyAK is then

2
z

AK=-— R, 14 .
2u0 a4 =z[V2mgH(l + MR+ 14y)]. (20)
and this value is equal to minus the stored magnetic energxo arrive at the second line in ERO), it was noted that
as predicted by Maxwell's theofyy: = at because the motion is characterized by a constant ac-

=2 (mgRt]=2

w
ng;

B2 B2 celeration. Finally, Eq(10) was used to deduce the last line
Um:f f f 2 dr= > mRl. (15  of Eq. (20), along with the definition of the electromagnetic
space= o o moment of inertia that is given in EG18).

The statement of overall energy conservation for this electro- According to Newton's law for rotational motion, the an-
mechanical system then reads gular impulse due to the external torque must equal the
K+U,=mgH. (16) charlge of the angular momentum of the system, thak is,

Algy. As a result, the final angular momentum of the

The missing kinetic energy has in effect been stored in thps:ystem is

magnetic field distribution.

Fiqally, to make contact with the current-volt.ag.e apprzoach [syst: il—syst: Z[\2mgH(I+ MR+ 1 o) ], (21)
mentioned in Eqs(l) and(2), we use Eq(6) to eliminateB; o
in Eq. (15). The resulting expression then gives the stored’&cause the initial angular momentum equals zero. We now
magnetic energy in the more traditional form in terms of the€xamine how the total angular momentum is stored by the

square of the net current carried by the arrangement: system. . o
The mechanical contribution to the angular momentum

_E 7R 2 17) arises exclusively from the mechanical inertia of the rotating
mT2 I " shell and from that of the falling mass, and is
In this expressiongruoR?/| represents the self-inductance . o 2mgH
parameter. Lme= (1 + MR w=2(1 + mR?) \ /| ——.
(I+mR+1y)
(22

1. TRANSEORMATION OF EXTERNAL By comparing this result with Eq(21), one can see that
GRAVITATIONAL TORQUE TO MECHANICAL AND Lmech is smaller tharL. Therefore some of the angular
ELECTROMAGNETIC ANGULAR MOMENTUM momentum imparted by the angular impulse of the external

torque is missing from the mechanical contribution, and this
We now determine where the angular momentum is dismissing part is to be found in the electromagnetic angular
tributed in the system. In the denominator of Efj2), the  momentum. Indeed, we can simply add the quantity,

quantity . =1 ¢mw to both sides of Eq(22) to obtain
Q°R - - -
len=" (18) Cmectit Com= (1 + MR+ 1 o) @
clearly plays the role of a moment of inertia, but is associ- - R 2mgH
ated with the charge itself, not with the mass. For this reason =Z(I+ MR+ len) (1+mR+1 )
we will call it the electromagnetic moment of inertia of the €
assembly, to distinguish it from the more familiar mechanical =z\2mgH(I + MR+ 14y, (23

moment of inertia. The physical significance of this novel
type of moment of inertia will be emphasized at the end ofwherel ., is given in Eqg.(18). In other words, the missing
Sec. Il where we show that it appears in the expressions faangular momentum has been stored in the electromagnetic
the stored electromagnetic angular momentum and the stordiélds because the last line in E®3) is equal to the full
magnetic energy. angular impulse of the external torque by E®1). We con-

Let clude that
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L mecrit Cem= L syt (243 We have assumed that the shell, which extends frgm
Y =—1/2toz,=—1/2, is very long| —oo. If we taked to be
I:mechzl‘:’: (24b)  the spatial volume element in cylindrical coordinates, the
- electromagnetic angular momentum is
- poQ°R7- -
em= 2 @=em®- (249

Eemzﬂf drixg
space

focd jzwd J+|/2d< Q B)
“JROPP ¢ _y Z_Zﬁpl z

According to Newton’s law for rotational motion, we then
have that

d . - -

——[ Lmechit Leml = Texts (25 A Al A

dt mech e ext X[(pp+ZZ)>< ¢]
or, equivalently, o 27 +1/2 Q . Q .

. Zf dppJ’ d(,‘bf dZ<—pﬁZ+Zﬁp)Bz.
(I+mMR+1gm)a=z(mgR), (26) R 0 ~112 mp mp
- 31

where 7, is the gravitational torque. That is, the time de- 3
rivative of Eq.(21) equals the torque in Eq19): the rate of  Equation(31) reduces to
change of the total angular momentum of the system is equal
to the external torque applied to that system. If the external  _ Q o 27
torque vanishes, the total angular momentum, mechanical Lem=~5— fR dppfo d¢B,|z. (32

plus electromagnetic, remains constant in time, and the sys-
fzvn\: gfo ir:]tg;ggs to spin without losses, in accordance with thﬁ"o arrive at Eq(32), the term involving the unit radial vector
We now show that the concept of an electromagnetic mop Was integrated over the azimuthal angle and the result
ment of inertia also helps to simplify the energy discussioras found to vanish because of the assumed axial symmetry.
of Egs.(11)—(16). Indeed, using Eq6), we readily find that ~ Note that the factor in parentheses on the right-hand side of

the magnetic energy of E¢15) may be written in the form Ed. (32) cannot equal zero, in spite of the fact that the mag-
of a mechanical-like kinetic energy term netic field of the spinning shell is extremely small at all

exterior points. Indeed, the integral on the right-hand side
27 gives the return magnetic flux linking the entire region out-
side the cylindrical shell and, according to Maxwell’s theory,

where ler, is as defined in Eq(18). The electromagnetic  his return magnetic flux must be equal and opposite to the
moments of inertia that are associated with the E|eCtr°ma%agnetic flux in the interior of the SheHTRz(,LLOQa)/ZWD.

netic angular momentum and with the magnetic energy ar@q 3 rasult. we find that
the same, just as in nonrelativistic mechanics. Equatién '
can thus be rewritten as Q

28) Com=+ E[ R*

Up= %I emwzv

H#oQ } | 33

1+ MR+ g w2=mgH. 2l
The statement of overall energy conservation can now b@hich agrees with Eq(24).
formulated as follows: the total change in the energy of the
system, mechanical plus magnetic, equals the work done by
the external force. In the absence of external work, the total
energy of the system is conserved. Note that the electromadV. DISCUSSION
netic angular momentum for the present system can be cal-
culated, as usual, by invoking the field integral of the Poyn- We have solved a simple model problem where the me-
ting vector*~’ Such a rigorous calculation has beenchanical and electromagnetic behaviors are coupled to one
performed for the system under consideration here and thanother by the appropriate Newton—Faraday equations of
results support the findings given in E@4),'! a simpler motion. We have shown that part of the kinetic energy was
approach is now sketched. used to establish the magnetic field distribution created by
Let the motion of the assembly. When energy is ascribed to the
magnetic field distribution, we recover overall energy con-
servation.
_ _ . The model was also used to establish that we must simi-
be the electromagnetic momentum density, where by Gaussigy ascribe angular momentum to the distribution of the
law and symmetry, electromagnetic fields of the system. The concept of an elec-
E =0, 0=p<R tromagnetic moment of inertia was introduced to facilitate
P ’ the general description of the problem. It was then estab-

g=e0EXB=go(E,p)X(B,2)=—(eoE,B)d (29

Q (303 lished that the same electromagnetic moment of inertia de-
Epzﬁ, R<p, termines both the electromagnetic angular momentum and
P the magnetic energy, in a striking parallel with the more
and familiar mechanical situation. A more general presentation of
some of the ideas that are discussed in the present article is
B,=B,(p) (0=<p). (30b currently being considered for publicatith.
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