NOTES AND DISCUSSIONS

Uncertainty principle applied to the deuteron

Brian Williams®
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(Received 25 June 1979; accepted 8 January 1980)

Many undergraduate texts!:2 apply the uncertainty
principle to the problem of the existence of atoms. The
problem, as is well known, is to account for the stability of
the ground state of atoms, which contrary to prequantum
expectations do not radiate energy. By using the uncertainty
principle as a constraint and minimizing the total gnergy,
orie obtains an excellent estimate of the grourid-state energy,
the radius of the electron distribution, and the momentum
of the electrons in hydrogenic atoms. In this note it is shown
that similar arguments can be used to estimate the size and
energy structure of the deuteron, as well as the strength of
the strong force.

In the quantum mechanics course at this university the
Yukawa potential and the relatlonshlp between the range
of the potential and the mase of the pion g,

r’ = hfuc, (D

are obtained following the lines of the discussion given by
Eisberg and Resnick.? The total energy of the deuteron is
then written -

E =p2M — gXe~""[r), (2)
where g2 gives the strength of the interaction and M is the

reduced mass of the deuteron. Minimizing Eq. (2) subject
to the constraint implied by the uncertainty principle

pr=h (3)
gives
h2 [r+r ,
e e e @

and eliminating g2, the energy is then

Dipole radiation: A film

R. H. Good

California State University—Hayward, Hayward, California 94542

(Received 8 May 1979; accepted 12 March 1980)

This note reports the production of a new animated film,
in super-8 cassette form, dealing with electromagnetic ra-
diation.

The film is divided into three parts. In the first a charge
accelerates uniformly from rest, then coasts at constant
velocity v = 0.5¢ (see Fig. 1). In the second part a charge
undergoes simple harmonic motion with maximum velocity
v = 0.5¢ (see Flg 2). In the third part a dipole radiates (see
Fig. 3).

The equations and procedures involved in the first two
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The ground-state binding energy of —2.2 MeV is readily
obtained from the mass defect of the deuteron and Eqgs. (1)
and (4) then give 1 fm for the radius of the deuteron
Equations (1) and (2) give 28 MeV for the kinetic energy
and, with the aid of Eq. (3), — 30 MeV for the potential
energy.? Finally, Eq. (3) and the value obtained for the
radius of the deuteron give the ratio of the strength of the
strong force to the electromagnetic force expressed as
g%4mep/e? a value of 60. The virial theorem* may also be
demonstrated since it is easy to show using Eq. (3).that

2{T) = (r-VV). 5)

Using very simple arguments, it is therefore possible to
derive estimates of the size, kinetic energy, and potential
energy of the deuteron, as well as the strength of the strong
force. The only data requ1red are the masses of the neutron,
proton, pion, and deuteron. This analysis also demonstrates
the central role played by the uncertainty pr1n01ple in
quantum mechanics. Students can thus be introduced to a
number of important results without recourse to compli-
cated mathematical formalisms.

'R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures
on Physics (Addison- Wesley, Reading, MA, 1964).

2R, Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules,
Solids, Nuclei and Particles (Wiley, New York, 1974), pp. 269, 690.

3L. R. B. Elton, Infroductory Nuclear Theory (Pitman, London, 1959),
pp. 61,75, 241.

4L. 1. Schiff, Quantum Mechanics (McGraw-Hill ISE, Kogakusha, Tokyo,
1968), p. 180.

parts are described by Hamilton and Schwartz.! Differ-
ences between their films and the one discussed here in-
clude: (i) Because of the generally lower velocity in this film,
field lines are less distorted by the acceleration; (i) ThlS film
shows a radiating dipole.

The equations and procedures involved in calculating the
field lines of the radiating dipole will now be described. An
electric dipole will be assumed; the magnetlc field lines of
a radiating magnetic dipole are identical.

The differential equation governing the field lines is
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Fig. 1. Charge accelerates uniformly from rest, then coasts at constant
velocity v = 0.5¢.

dr/rd = E,/E,, (1)

where r and # are polar coordinates and E, and Eg are the
corresponding electric field components. The field is to be
found in standard texts2:

_ 2pgcosf A r .| )
Er —4160"2)\ rcos X wt| + sin X wtil; 2)
- posind (A _r cos | — wt| + sin [+ ~ wt
4merA |\r A X el PR 1

(3)

where py is the amplitude of the dipole moment, A is radian
length, w is circular frequency, and ¢ is time. Field com-
ponents from Egs. (2) and (3) are now substituted into Eq.
(1), resulting in

(i)cos L—-wt)+sin(£— t)

dr =20050 r A A ©

rdf sinf ()\ ,) (, ) ) (, )
———|cos |— — wt| + sin X—wt

r R A
(4)
Separating variables,
2(.:050 46
sin 8

) (7’\_22 B 1) co8 (% B “’t)+(§) sin (% - w')d La P
oo

Logarithmic forms are found on both sides; thus3

sin2 8 = K (6)

A cos r—~-t.ot + sin L—wt ’
r A A

where K is a constant of integration. This one relatively
simple equation generates all of the seemingly complex
phenomena seen.

In the film different values of w? are used for different
frames; the entire cycle 0 < wt < 27 is divided into 64 ap-
proximately equal parts. Within each frame different values
of | K| produce different field lines, here 0.15, 0.45, 0.75,
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Fig. 2. Charge undergoes simple harmonic motion with maximum velocity
v =0.5c.

1.05, 1.35 are used. And finally, for a given field line, many
different values of r/X are introduced into Eq. (6) to find
corresponding values of 6 and thus locate points on the field
line.

It is interesting that for 1 < |K| < 1.15, field lines form
loops which break away but eventually dwindle and vanish;
whereas for smaller | K| the loops break away and grow, and
for larger | K| no loops break away. All three cases are ob-
servable in the film.

The process of separation of a loop is shown in detail in
a special section of the film, for | K| = 0.75. The process is
enlarged by a factor of 2, and slowed by a factor of 16, so
that minimum time between pictures represents less than
1/1000 of a full cycle.

Within each part of the film, the order of presentation
is (a) the process is shown; (b) a noteworthy aspect is
pointed out; (c¢) the process is repeated in a slow-motion
“instant replay.”

The density of field lines shown gives only a rough indi-
cation of field strength, because their representation is
two-dimensional, whereas the field itself spreads out in three
dimensions. Also the idea of moving field lines is a priori
suspect because field should be regarded not as moving
relative to the observer, but rather as changing in magnitude

Ly

Fig. 3. Dipole radiates.
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and direction at fixed points, as is proper. However, the field
lines shown do follow the direction of the field and so they
are helpful in visualizing it.

!John C. Hamilton and Judah L. Schwartz, Am. J. Phys. 39, 1540 (1971);
Roger Y. Tsien, Am.J. Phys. 40, 46 (1972). Field of a charge that starts
or stops is also discussed at an elementary level in Edward M. Purcell,

Electricity and Magnetism (McGraw-Hill, New York, 1965), Vol. 2,
pp. 163-167.

2Paul Lorrain and Dale Corson, Electromagnetic Fields and Waves, 2nd
ed. (Freeman, New York, 1970), p. 601; John R. Reitz, Frederick J.
Milford, and Robert W. Christy, Foundations of Electromagnetic
Theory, 3rd ed. (Addison-Wesley, New York, 1979), pp. 454-455.

3Heinrich Hertz, Electric Waves (Dover, New York, 1962), p. 142.
(Originally published by Macmillan, New York, 1893); Lorrain and
Corson, Ref. 2, p. 607.

Computation of eigenvalues and eigenvectors of a symmetric matrix
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The power method for producing the dominant eigen-
value and eigenvector of a symmetric matrix A is well
known.! Most textbooks, however, fail to mention the fact
that, instead of using the so-called Rayleigh quotient, it is
much better for quick convergence to repeatedly square the
matrix 4. After n iterations the matrix

B= A (1)

gives an approximation of the dominant eigenvector in the
form

Vi = ; B (2)

The dominant eigenvalue is then obtained multiplying the
eigenvector (2) by the matrix 4. So far, so good. What
about eigenvectors and eigenvalues other than the dominant
one? Here all textbooks become rather confusing for a
student. To quote from Ref. 1, “The difficulty is to sidetrack
the dominant eigenvalue itself and to keep it sidetracked.
Roundoff errors have spoiled seyeral theoretically sound
methods by returning the dominant eigenvalue to the main
line of computation and obscuring the next dominant. . ..”
Most textbooks give a special recipe to compute the abso-
lutely smallest eigenvalue by using the power method with
the matrix 4™, although, to quote again from Ref. 1,
“Finding 4~/ is ordinarily no simple task, but this method
is sometimes the best approach to the absolutely smallest
eigenvalue.”

To make it short, no one seems aware of what I had
considered till now an *“obvious” extension of the power
method to compute gny eigenvalue and eigenvector.2 To
Jind the eigenvector corresponding to the eigenvalue nearest
to A use the power method above with the matrix

C=(A-N)2— (N +A), 3)

where [ is the unit matrix and A any number equal or
greater than the absolute value of the dominant eigen-
value.

The proof is trivial. The matrix (4 — AI)? has only pos-
itive eigenvalues and its absolute smallest eigenvalue cor-
responds to the eigenvalue of A nearest to A. Subtracting
from this matrix a sufficiently high positive multiple of the
unit matrix, all eigenvalues become negative with the ab-
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solute smaller becoming the absolute greater. To it the
power method applies.

To get a feeling of what is going on, let me give a simple
example. Take the matrix

0 6—-10 -8
=[6 0 8 10
A= .
-10 8 15 6 )
-8 10 6 15

Suppose you want to find the smallest eigenvalue. By simply
looking at thé matrix, and remembering the very definition
of eigenvalue you know that by putting A = 100, you are
on the safe side. The smallest eigenvalue can then be taken
as the one nearest to A = —100. Iterating C 10 times on my
programmable pocket calculator 1 get the eigenvector
(1,—1,0.5,0.5) and the eigenvalue —15 exactly.? Of course,
the convergence is improved if you take A = 30, the domi-
nant eigenvalue, that you could have computed beforehand
using matrix A instead of matrix C. The same procedure
to find the eigenvalue nearest to 7.6 (almost half way be-
tween the other two eigenvalues S and 10 of matrix 4) gives
the “exact” eigenvalue 10 with eigenvector (1,1,—2,2) after
20 iterations instead of 10. Six minutes instead of three on
my pocket calculator.

The method is precise and simple both theoretically and
practically (you only need a subroutine to square a matrix
and divide all the elements when they get too big). I found
it particularly useful to teach quantum mechanics. You can
often get very good approximations to some of the lowest
energy levels of assorted Hamiltonians simply by truncating
the matrix. Try, for example, with a matrix representation
of the anharmonic oscillator p2 + x4.

!See, for example, F. Scheid, Numerical Analysis, Schaum’s Outline
Series (McGraw-Hill, New York, 1968).

2| have been teaching this extension of the power method to my students
for many years. Eventually, someone asked me for a reference and with
amazement I discovered that 1 could not find one!

3This is, of course, due to the roundoff effect of my calculator that uses
twelve digits, but displays only ten. It means that after 10 iterations you
get correctly 10 significant figures.
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