The charge distribution on a conductor for non-Coulombic potentials
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We study the distribution of charge on a conductor for Yukawa*(/r) and power-law (/)
potentials. In the Yukawa case some charge goes to the surface, while the remainder distributes
uniformly over the volume. In the power-law case no such general result is available, but we obtain
the distribution for spheres, cylinders, and slabs, on the rasge<13. In the Coulomb limit

=1) the charge all goes to the surface; at the other extreme] it distributes uniformly over the
volume. © 2001 American Association of Physics Teachers.
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[. INTRODUCTION own. We shall take a conductor to be a material that has an
unlimitec® supply of charge that is free to move in response

In ordinary electrostatics, the charge on a solid conductoto electric fields(balanced, when neutral, by equal amounts
flows to the surface. This seems reasonable: Like chargesf fixed charge of the opposite sigrit follows that in the
repel, and they are simply getting as far away from one anstatic case thaetfield is zero inside a conductor, ¢equiva-
other as possible. On the other hand, it does seem a waste lghtly) that the potential is constant:
all the empty space inside—why doessdmeof the charge -
prefer to rzr)rqairr)l in the interior?yln point of fact,dbes ig E=0, V=constant (inside a conductor @)
other geometries: On two-dimensional conducting platesso the question becomes: How must charge arrange itself
most but not all of the charge goes to the ritnand on a over a conductor in order to achieve this condition?
one-dimensional wire the linear charge density is actually We do not address here the subtle and elusive problem of
uniform? Even for three-dimensional conductors, moreover,uniqueness and stabilifyln the Yukawa case our conclu-
exclusive accumulation at the surface is an artifact of thesions are presumably unambiguous, for the Yukawa potential
1/r? nature of Coulomb’s law. admits a standard uniqueness theorem. But it is conceivable

Our purpose in this paper is to explore the latter observathat there exist other solutions for the power-law potential—
tion. Specifically, we ask how charge would distribute itselfthat is to say, charge distributions different from ours that
over a solid conductor if the Coulomb potential of a pointalso lead toE=0 inside the conductor. We regard this as
chargeq were replaced by Yukawa’s: unlikely (except in certain anomalous cagdsut we cannot

q absolutely exclude the possibility.

47760r

V(r)= e H, @
Il. YUKAWA POTENTIAL

or by a power law: . o )
For the Yukawa potentiall) the electric field of a point

_ a charge is
V(f)—47760rn- ) .
(Of course €, need not have the same value—or even, inthe E=—VV= dmeq r—2(1+ urye e, (4)

second case, the sardenensions-as the ordinary vacuum

permittivity; this is just a convenient way to express the con-the analog to Gauss’s lawfis

stant. Note that ag—0 andn— 1 our results should reduce 1

to the standard ongs-or sphericalconductors this problem é E.-da+ ,U«ZJ V d7r=—Qenc, (5)

was solved by Spencer a decade 4gmd our paper repre- €0

sents an eXtenSion Of Spencel”s Work. In Sec. Il we prOVid%nd Poisson’s equation generalizes to

the general solution to the Yukawa caSameof the charge

goes to the surface, and the remainder distributes itself uni-

formly over the volume. Whafraction of the total goes to

the surface depends on the shape of the condyatat also, . . . .

of course, on the parametgy, but, remarkably, the volume InS|d_e a conductof(r) =V, is constant, and it follows im-

charge density is uniformegardlessof the shape. As ex- Mmediately that

amples we treat the sphere, the infinite cylinder, and the in-  p=¢,u2V, (7)

finite slab. In Sec. lll we consider power-law potentials. In, ) . o ) .

this case no general solution is available, but we again cor$ also constant. This surprising conclusion is entirely inde-

sider spheres, cylinders, and slabs. In Sec. IV we note thgendent of theshapeof the conducto?.

the results in Sec. 1) yieId_squtions to analog.ous p_roblem%_ Example 1: The slab

for two- and one-dimensional conductors, including the

vexed case of the conducting neetlle. Imagine first an infinite conducting slab, of thicknegs
Before we begin, however, it is appropriate to ask what itcarrying a total charge per unit ar@aside and on the sur-

meansto be a “conductor,” in this world that is not our face 2. We would like to know what fraction of the charge

—v2v+ﬂzv=ip. (6)
€0
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goes to the surface, and what fraction remdinsiformly)  whereC, andC, are constants. Only the first term is physi-
distributed over the volume. Outside the slatherep=0) cally acceptabldthe second blows up at infinityand the

“Poisson’s equation”(6) says constantC, is determined by the continuity &f at the sur-
5 face:
v -,
e V=0, tS) Vo, r<R

V(r)={ R (17)

where z runs perpendicular to the slalwith z=0 at the voTe*Mf*R), r=R.

centej. The general solution is
V(z)=C e #2+ CeH?, (9) To find Vg in terms of Q we apply “Gauss’s law” (5),

. _ using a spherical Gaussian surface at infinity; the first term
whereC; andC, are constants. For positieonly the first  yanishes, and we are left with

term is physically acceptablghe second blows up at infin-

. . . N 2p2
ity), and the constar@, is determined by the continuity &f Q_ zf‘” ’ - ©R
at the surface; similar considerations apply for negative 60—47TM 0 rV(rdr=4mVoR 3 TURTL)
Thus (18
Vo, |z|=d/2 Evidently,
V(z)= — u(|z~dr2) (10
Voe ™ # . |z|=d/2. Q
To find Vq in terms of Y we apply “Gauss’s law” (5), Vo= 202 ' (19

using a “pillbox” of areaA that straddles the slab and ex- AmeoR(uw RIS+ uR+1)
tends to infinity in both directions: the surface integral van-and hence?7)
ishes(E decreases exponentigllyand we are left with 5

SA (= p= w9 . (20

6—0=,u A ) V(z)dz= uAVy(ud+2). (11 A7R(u RI3+ uR+1)
Evidentl Multiplying by (4/3)7R® we obtain the volume charge; sub-

Y tracting this fromQ we get the surface charge; in this case
Voo 3 12 the dimensionless ratio is
O eou(pud+2)’ wo 1
and hence?), 7:1+ ﬁ (sphere. (22
2 _
P= ad+2)’ (13 C. Example 3: The cylinder

Multiplying by d we obtain the charge per unit area inside Imagine finally an infinite solid conducting cylinder of
the slab; subtracting this frofd we get the total charge at radiusSand net charge per unit length Outside the cylin-
the surfacgboth sidek It is convenient to express the final der, “Poisson’s equation” says

result in the form of the dimensionless rajio (whereo is

the charge per unit area on each surfameer p: _td Sd_\/ +u?V=0 (22)
sds\ ds '
no
i 1 (slab. (14 wheres s the radial coordinate. The general solution is
As u goes to zero, all the charge goes to the surf@om- V(8)=Cylo(u8) + C2Ko(us), (23
sistent with the Coulomb caeasu—< the charge is all in - \yhere |, and K, are hyperbolic Bessel functions. Big
the interior. blows upg® ass—=, so C;=0, while C, is determined by
the continuity ofV at the surface:
Vg, S=S
B. Example 2: The sphere 0
V(s)=1{ Ko(us) (24
Suppose we put a total char@eon a sphere of radiuR. oK o(1S)’ s=S.
Again, we would like to know what fraction goes to the
surface, and what fraction remairisniformly) distributed To find Vg in terms of A we apply “Gauss’s law” (5),
over the volume. Outside the sphere, “Poisson’s equation’using a cylindrical Gaussian surface of lengtland infinite
(6) says radius: the first term vanishes, and we are left With
1d dv AL o
- = 2y = —=2 ZLJ sV(s)ds
r2dr(r ar | T V=0, (15) o 2L (s)
to which the general solution is Ki(uS)
=7VouSL uS+2 . (25
Vv Gy g Co 18 Ko(uS)
(r=—e*+--e, 16 Evidently,
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A Our problem is to determing such thatV is constant inside

Vo= K (29’ (26)  the slab (- d/2<z=<d/2). Spencéf calls attention to a use-
7760#3( uS+2 Ki(ZS)) ful formula due to Auer and Gardnét:
+1 Cr(t)
and hencd7), f (1—t2)V$dt=Kr”nCr”n(x), (34
-1 X— v
uA
p= Ki(2S)| (270 whereC/ (x) are the Gegenbauer polynomials {<x<1)
TrS( 'U“S+2K1(—,u8)> and K/ is a constant related to their normalization. In par-
0

ticular, Cy(x)=1, so if we pick m=0, v=(n—3)/2,
Multiplying by 7S? we obtain the charge per unit length t=2z'/d, andx=2z/d, Eq. (34) becomes
inside the cylinder; subtracting this fromwe get the charge

h . . . 2 n—3)/2
per unit length on the surface. In this case the dimensionless ——(2')? ("
ratio is +di2| 4 32
f dz/ =K{" 372, (35
wo Ky(uS) _ —d2 |z—2z7'|"?
—= (cylinden. (28 o ]
p Ko(uS) The left-hand side is precisely the form we requiieg.

Comparing Eqs(14), (21), and(28), we see that the frac- (33)], and the right-hand side is independentzpthis sug-
tion of the total charge that resides at the surface depends @¢sts that

the shape of the conductor, except in the limiting cages g2 (n=3)/2
=0 (all charge to the surfat@nd u— o (all charge to the p(Z)=C(Z—ZZ) : (36)
interior).

whereC is a constant. Certainly thig(z) yieldsE=0 inside
the slab; as mentioned in Sec. |, it is conceivaabsent a

ll. POWER LAWS uniqueness theorgnthat some other distribution might also
' work.
For the power law potentidP) the field of a point charge ;0 determineC we set the total charge per unit area equal
is to X:
1 nq n—-1 2
E=-VV= f, (29) 2| o2 (n-3)/2 I —-
d1rey pntl — 2 — n—2
or =C Z— Z dz=C W d ,
but the analogs to Gauss’s law and Poisson’s equation are e 37)
not availablet? The general solution therefore eludes us, and
we must resort to special cases. and conclude that
F(n-13 [d> |(""97
A. Example 1: The slab p(z)= W(Z_Z ) (38)
s
To begin with, let us calculate the field at a heiglabove 2

an infinite plane with uniform charge density For what range oh do we expect this result to hold? Auer
and GardnéP confine their attention to the rangel/2<wv

noz (= s
= zif I (n+2)/2ds: — (30 <0 (which is to say, for us, n<3), but our own numeri-
€0 Jo (s°+2%) 260z cal studies indicate that it can be extended dowm+o—1
The corresponding potential is (n=1). We already know that=2 is a special case, but it
, is easy to check, using the logarithmic potential in B29),
V(z)= _J Edz (31  that(38) holds for this case too:
ZT| h f f d (2) > 1 (39
We may as well choosey=0 forn<2,z,=1 forn=2, an p(2)=—
zo=2 for n>2; then T dY4-z
yields
g
Z(—W (n#2) 1 +d/2 | d
€(N—2)|z V(z)=—+— zZ)In|z—=2'|dZ
V(z)={ 2 (32 i B
ag
_2—60|n|Z| (n=2). S +d2 In[(z_zr)Z] ,
=- z
Now imagine a slab of thicknesk carrying a charge den- 4meo ) a2 \Jd?/4—(2')?
sity p(z). Slicing it into planes, and applying E¢32) for s
n+2 (we'll treat the casen=2 separately the potential is =_ 2—In(d/4), (40)
€0
V(z)e f v2_e@) . (33 Wwhichis indeed independent afEvidently, Eq.(38) is valid
2e0(N=2) J-ar2|z—2'|""2 for 1<n<3. How about the end points? As-1 (the Cou-
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C. Example 3: The cylinder

1.5 First, we find the potential at a distansérom an infinite
line with uniform charge density:

+ r n—1
A f+°° 1 N 2

0.75 V(s)= dz= .
0.5 Ameg ) = (s2+ 22)"? deg\m "I (n/2)
' (44)
0.2> Using this, we determine the potential at a distaadeom
1 s G T the axis of an infinite cylindrical shellof radiuss’) with

uniform surface charge:'8
Fig. 1. Charge density on a slab, for the power law poteri@8l, usingd n—1

=2,3%=2,andn=1.1, 1.5, 2.0, 2.5, 2.8, and 3(@eading up from the

os'T

lowest curve. 2 2m d¢
V(S)_ 460\/;[,(”/2) fo [324‘(5')2_255’ Cosd)](n*l)/Z
lombic limit) the charge density drops to zero within the \/;UF(E)
slab, and goes over to a delta function -at/2: All the _ 2
charge now resides at the surfd€eAs n—3 the charge 2e0l'(N/2)
density goes to a constant, and, although the potential within ,
the slab is now infinite, the limit would appear to be non- S (”_1 ”_1_1_(5,/5)2) =g
problematic. In Fig. 1 we plop(z) for typical values ofn g1 2 27 ’
between 1 and 3. X
1 n—1 n_l.l. //2 —c!
(52 5 T i(s/s")?], sss'.
B. Example 2: The sphere (45

Finally, we construct the potential at a distarc&om the
axis of an infinite cylinder of radiu$ carrying a volume
charge density(s):

This is the case analyzed by Spenteand it will suffice
to summarize his results. The potential of a spheritadl|
with radiusr’ and uniform surface charge densityis

or’ n—-1
————[|r=r'|2 "= (r+r")2" "], n#2 ‘/;F(T
Zeo(n—Z)l’ V(S):
V(r)= or! fpr2 2e0l(n/2)
degr : r—r’) |’ n=2 » fs s’ . n—-1 n—l_l_ ' 1g)?2 Nds
(41) oait| T2 g LS9 p(sh)ds

It follows that the potential inside solid sphere of radiug,
with charge density(r), can be written in a form reminis- s 1 n-1n-1 o L
cent of Eq.(33): + s (52 5 11;(s/s")?|p(s’)ds’ .

) G (he2) 4 (46)

2eo(n—=2)r f—R [r—r’|"2 As always, our problem is to fing(s) such thatV(s) is
; _independent o§.
(again, we must handle the case 2 separately Our prob We have not discovered a way to do this deductively.

lem is to determing(r) such thatV'is independent of; it However, our experience with the sléB8) and the sphere
can be solved in the same way as before, only usligx) (43) sugdests that we try the form

=2vx in the Auer/Gardner formula. The result is

V(r)=

(n—=1)A
2nQIr'(n—1 §) = — 7 (R-_g?)(n=3)P2 4
p(r)= QI'( ) 5 (R2—r2)(n=3)12 (43) p(s) 2778”’1( ) (47)
m(2R)" F(T” (whereA is the total charge per unit lengthand exhaustive

numerical checkingusingMATHEMATICA ) confirms that this
whereQ is the total charge. This holds for the range&d  does indeed lead to a uniform potential inside the cylinder,
<3 (including the special case=2, which can be checked for 1<n<3.

by hand; as n—1, p(r) goes to zero inside and a delta

function at the su_rfa_céthe _Coulomp cage whereas fom D. The special case1=3

— 3 the charge distributes itself uniformly over the volume

of the sphere. The functional for43) is identical to that for Whenn=1 the charge flows to the surface: that’s no sur-
the slab(38), and Fig. 1(with the obvious modifications prise, of course—it’'s the familiar Coulomb case. Wlist
shows the charge distribution for various valuesof surprising is the other limitp= 3, for which in each example
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the charge distributes itselfniformly over the volume. Is

n=3 in Sec. ll), confirming—from yet another perspec-

this perhaps @eneralresult, independent of the shape of thetive—the emerging consensus that the electrostatic charge

conductor? It is. For if we taka=(3—¢€), and assume is
constant, the potential inside a conductor is

1
37
f|r_rr|3ed r

and we need only show that this integral is independemt of
in the limit e— 0. (We dare not se¢— 0 at the start, because
the integral blows up.Calculating the divergence in spheri-
cal coordinates, we find that

p

V(r): 47760

(48)

L to( 1)
r3-¢ € r2-e
and hence
;:_EV,.(L)_ 50
[r—r'|37¢ € [r—r'|3"¢
Therefore(invoking the divergence theorgm
vin=- 4:60 % |r(_rr_,73)e~da’. (5D

The integral itself is now perfectly finite as—0, and in fact
Gauss’s law tells us that its value isrd4so

__r
V(r)= e’ (52
which is indeed independent of ged®

[V. ANALOGS IN ONE AND TWO DIMENSIONS

density on a conducting needle is constnt.
B. The ribbon

Imagine an infinite conducting ribbon of width stretch-
ing along they axis and lying in thexy plane. We can think
of it as made up of a collection of infinite parallel wires, each
carrying a uniform line charge(x)dx. The potential at a
point x on the ribbon can be obtained from EHd4):

=

2 +d2 g(x')
= f dx’.
Aeq\mT(n12) J—ar2 |x—x'|" 1

Our problem is to determine(x) such thal/ is independent
of x. This is again mathematically identical to the s[&u.
(33)], with n—n+1, and we read off the solutio{38):

B AT (n) (dz
[T(n/2)]2d"~ 1\ 4
where A is the total charge per unit length on the ribbon.
This time the formula is valid for &n<2, and the limiting
cases arem=0 (all charge to the edges—though sinEe
=0 it’s not clear what we are to make of this gremndn

=2 (uniform distribution over the surfag.d~or the Coulomb
case i=1) we recover the standard regalt

V(x) (55

o(X)

(n—2)/2

A
o(X)= ————. 5
) m\(d?14) — x? 57
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ductors.

A. The needle

Consider an infinitesimally thin “needle” of lengtth car-
rying charge densityx(z). The potential at a poirg on the

axis is
+di2 \(Z")
[ 2y,
-di2 |z—2'|"

If the needle is a conductor, tharfz) must be such that is
independent ofz. This is mathematically identical to the
problem of the slaEq. (33)], only with n—n+2, and we
can simply quote the solutiof38):

1

47eg

V(z)= (53

Qr(n+1) [d? |12
MZ)ZT(Z—ZZ , (59
Fl—=-]| "

where Q is the total charge on the needle. This time the

formula is valid for—1<n<12°
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of the Physics Institute at the Berlin University. At the time, many students who were to become
eminent representatives of the new quantum physics saw Nernst as one of the grand old mep of the
field. It was in his institute, formerly directed by W. Rubens, that the famed physics colloquia,
inaugurated by Gustav Magsu. . ,took place every Friday afternoon. Regardless of the presen-
tations, “the main performance” was provided by the audience. The front rows were occupiéd by
Einstein, Max von Laue, Planck, Erwin Schinger, Gustav Hertz, and Nernst, joined by Otto
Hahn, Lise Meitner, and many younger luminaries.
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