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We study the distribution of charge on a conductor for Yukawa (e2mr /r ) and power-law (1/r n)
potentials. In the Yukawa case some charge goes to the surface, while the remainder distributes
uniformly over the volume. In the power-law case no such general result is available, but we obtain
the distribution for spheres, cylinders, and slabs, on the range 1<n<3. In the Coulomb limit (n
51) the charge all goes to the surface; at the other extreme (n53) it distributes uniformly over the
volume. © 2001 American Association of Physics Teachers.
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I. INTRODUCTION

In ordinary electrostatics, the charge on a solid conduc
flows to the surface. This seems reasonable: Like cha
repel, and they are simply getting as far away from one
other as possible. On the other hand, it does seem a was
all the empty space inside—why doesn’tsomeof the charge
prefer to remain in the interior? In point of fact, itdoes, in
other geometries: On two-dimensional conducting pla
most, but not all of the charge goes to the rim,1 and on a
one-dimensional wire the linear charge density is actu
uniform.2 Even for three-dimensional conductors, moreov
exclusive accumulation at the surface is an artifact of
1/r 2 nature of Coulomb’s law.3

Our purpose in this paper is to explore the latter obser
tion. Specifically, we ask how charge would distribute its
over a solid conductor if the Coulomb potential of a po
chargeq were replaced by Yukawa’s:

V~r !5
1

4pe0

q

r
e2mr , ~1!

or by a power law:

V~r !5
1

4pe0

q

r n . ~2!

~Of course,e0 need not have the same value—or even, in
second case, the samedimensions—as the ordinary vacuum
permittivity; this is just a convenient way to express the co
stant. Note that asm→0 andn→1 our results should reduc
to the standard ones.! For sphericalconductors this problem
was solved by Spencer a decade ago,4 and our paper repre
sents an extension of Spencer’s work. In Sec. II we prov
the general solution to the Yukawa case:Someof the charge
goes to the surface, and the remainder distributes itself
formly over the volume. Whatfraction of the total goes to
the surface depends on the shape of the conductor~and also,
of course, on the parameterm!, but, remarkably, the volume
charge density is uniformregardlessof the shape. As ex-
amples we treat the sphere, the infinite cylinder, and the
finite slab. In Sec. III we consider power-law potentials.
this case no general solution is available, but we again c
sider spheres, cylinders, and slabs. In Sec. IV we note
the results in Sec. III yield solutions to analogous proble
for two- and one-dimensional conductors, including t
vexed case of the conducting needle.5

Before we begin, however, it is appropriate to ask wha
meansto be a ‘‘conductor,’’ in this world that is not ou
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own. We shall take a conductor to be a material that has
unlimited6 supply of charge that is free to move in respon
to electric fields~balanced, when neutral, by equal amoun
of fixed charge of the opposite sign!. It follows that in the
static case thenetfield is zero inside a conductor, or~equiva-
lently! that the potential is constant:

E50, V5constant ~ inside a conductor!. ~3!

So the question becomes: How must charge arrange i
over a conductor in order to achieve this condition?

We do not address here the subtle and elusive problem
uniqueness and stability.7 In the Yukawa case our conclu
sions are presumably unambiguous, for the Yukawa poten
admits a standard uniqueness theorem. But it is conceiv
that there exist other solutions for the power-law potentia
that is to say, charge distributions different from ours th
also lead toE50 inside the conductor. We regard this
unlikely ~except in certain anomalous cases!, but we cannot
absolutely exclude the possibility.

II. YUKAWA POTENTIAL

For the Yukawa potential~1! the electric field of a point
charge is

E52¹V5
1

4pe0

q

r 2
~11mr !e2mr r̂ , ~4!

the analog to Gauss’s law is8

R E•da1m2E V dt5
1

e0
Qenc, ~5!

and Poisson’s equation generalizes to

2¹2V1m2V5
1

e0
r. ~6!

Inside a conductor,V(r )5V0 is constant, and it follows im-
mediately that

r5e0m2V0 ~7!

is also constant. This surprising conclusion is entirely ind
pendent of theshapeof the conductor.9

A. Example 1: The slab

Imagine first an infinite conducting slab, of thicknessd,
carrying a total charge per unit area~inside and on the sur
face! S. We would like to know what fraction of the charg
435p/ © 2001 American Association of Physics Teachers
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goes to the surface, and what fraction remains~uniformly!
distributed over the volume. Outside the slab~wherer50!
‘‘Poisson’s equation’’~6! says

2
d2V

dz2
1m2V50, ~8!

where z runs perpendicular to the slab~with z50 at the
center!. The general solution is

V~z!5C1e2mz1C2emz. ~9!

whereC1 andC2 are constants. For positivez only the first
term is physically acceptable~the second blows up at infin
ity!, and the constantC1 is determined by the continuity ofV
at the surface; similar considerations apply for negativez.
Thus

V~z!5H V0 , uzu<d/2

V0e2m~ uzu2d/2!, uzu>d/2.
~10!

To find V0 in terms ofS we apply ‘‘Gauss’s law’’~5!,
using a ‘‘pillbox’’ of area A that straddles the slab and e
tends to infinity in both directions: the surface integral va
ishes~E decreases exponentially!, and we are left with

SA

e0
5m2AE

2`

`

V~z!dz5mAV0~md12!. ~11!

Evidently,

V05
S

e0m~md12!
, ~12!

and hence~7!,

r5
mS

~md12!
. ~13!

Multiplying by d we obtain the charge per unit area insi
the slab; subtracting this fromS we get the total charge a
the surface~both sides!. It is convenient to express the fina
result in the form of the dimensionless ratioms ~wheres is
the charge per unit area on each surface! over r:

ms

r
51 ~slab!. ~14!

As m goes to zero, all the charge goes to the surface~con-
sistent with the Coulomb case!; asm→` the charge is all in
the interior.

B. Example 2: The sphere

Suppose we put a total chargeQ on a sphere of radiusR.
Again, we would like to know what fraction goes to th
surface, and what fraction remains~uniformly! distributed
over the volume. Outside the sphere, ‘‘Poisson’s equatio
~6! says

2
1

r 2

d

dr S r 2
dV

dr D1m2V50, ~15!

to which the general solution is

V~r !5
C1

r
e2mr1

C2

r
emr , ~16!
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whereC1 andC2 are constants. Only the first term is phys
cally acceptable~the second blows up at infinity!, and the
constantC1 is determined by the continuity ofV at the sur-
face:

V~r !5H V0 , r<R

V0

R

r
e2m~r 2R!, r>R.

~17!

To find V0 in terms ofQ we apply ‘‘Gauss’s law’’~5!,
using a spherical Gaussian surface at infinity; the first te
vanishes, and we are left with

Q

e0
54pm2E

0

`

r 2V~r !dr54pV0RS m2R2

3
1mR11D .

~18!

Evidently,

V05
Q

4pe0R~m2R2/31mR11!
, ~19!

and hence~7!

r5
m2Q

4pR~m2R2/31mR11!
. ~20!

Multiplying by (4/3)pR3 we obtain the volume charge; sub
tracting this fromQ we get the surface charge; in this ca
the dimensionless ratio is

ms

r
511

1

mR
~sphere!. ~21!

C. Example 3: The cylinder

Imagine finally an infinite solid conducting cylinder o
radiusSand net charge per unit lengthL. Outside the cylin-
der, ‘‘Poisson’s equation’’ says

2
1

s

d

ds S s
dV

dsD1m2V50, ~22!

wheres is the radial coordinate. The general solution is

V~s!5C1I 0~ms!1C2K0~ms!, ~23!

where I 0 and K0 are hyperbolic Bessel functions. ButI 0

blows up10 as s→`, so C150, while C2 is determined by
the continuity ofV at the surface:

V~s!5H V0 , s<S

V0

K0~ms!

K0~mS!
, s>S.

~24!

To find V0 in terms ofL we apply ‘‘Gauss’s law’’~5!,
using a cylindrical Gaussian surface of lengthL and infinite
radius: the first term vanishes, and we are left with11

LL

e0
52pm2LE

0

`

sV~s!ds

5pV0mSLS mS12
K1~mS!

K0~mS! D . ~25!

Evidently,
436D. J. Griffiths and D. Z. Uvanovic´
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V05
L

pe0mSS mS12
K1~mS!

K0~mS! D
, ~26!

and hence~7!,

r5
mL

pSS mS12
K1~mS!

K0~mS! D
. ~27!

Multiplying by pS2 we obtain the charge per unit leng
inside the cylinder; subtracting this fromL we get the charge
per unit length on the surface. In this case the dimension
ratio is

ms

r
5

K1~mS!

K0~mS!
~cylinder!. ~28!

Comparing Eqs.~14!, ~21!, and~28!, we see that the frac
tion of the total charge that resides at the surface depend
the shape of the conductor, except in the limiting casesm
50 ~all charge to the surface! andm→` ~all charge to the
interior!.

III. POWER LAWS

For the power law potential~2! the field of a point charge
is

E52¹V5
1

4pe0

nq

r n11
r̂ , ~29!

but the analogs to Gauss’s law and Poisson’s equation
not available.12 The general solution therefore eludes us, a
we must resort to special cases.

A. Example 1: The slab

To begin with, let us calculate the field at a heightz above
an infinite plane with uniform charge densitys:

E5
nsz

2e0
E

0

` s

~s21z2!~n12!/2
ds5

s

2e0zn21
. ~30!

The corresponding potential is

V~z!52E
z0

z

E dz. ~31!

We may as well choosez050 for n,2, z051 for n52, and
z05` for n.2; then

V~z!55
s

2e0~n22!uzun22
~nÞ2!

2
s

2e0
lnuzu ~n52!.

~32!

Now imagine a slab of thicknessd, carrying a charge den
sity r(z). Slicing it into planes, and applying Eq.~32! for
nÞ2 ~we’ll treat the casen52 separately!, the potential is

V~z!5
1

2e0~n22!
E

2d/2

1d/2 r~z8!

uz2z8un22
dz8. ~33!
437 Am. J. Phys., Vol. 69, No. 4, April 2001
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Our problem is to determiner such thatV is constant inside
the slab (2d/2<z<d/2). Spencer13 calls attention to a use
ful formula due to Auer and Gardner:14

E
21

11

~12t2!n
Cm

n ~ t !

ux2tu112n
dt5Km

n Cm
n ~x!, ~34!

whereCm
n (x) are the Gegenbauer polynomials (21<x<1)

and Km
n is a constant related to their normalization. In pa

ticular, C0
n(x)51, so if we pick m50, n5(n23)/2,

t52z8/d, andx52z/d, Eq. ~34! becomes

E
2d/2

1d/2 Fd2

4
2~z8!2G ~n23!/2

uz2z8un22
dz85K0

~n23!/2 . ~35!

The left-hand side is precisely the form we require@Eq.
~33!#, and the right-hand side is independent ofz; this sug-
gests that

r~z!5CS d2

4
2z2D ~n23!/2

, ~36!

whereC is a constant. Certainly thisr(z) yieldsE50 inside
the slab; as mentioned in Sec. I, it is conceivable~absent a
uniqueness theorem! that some other distribution might als
work.

To determineC we set the total charge per unit area equ
to S:

S5CE
2d/2

1d/2S d2

4
2z2D ~n23!/2

dz5C
FGS n21

2 D G2

G~n21!
dn22,

~37!

and conclude that

r~z!5
G~n21!S

FGS n21

2 D G2

dn22
S d2

4
2z2D ~n23!/2

. ~38!

For what range ofn do we expect this result to hold? Aue
and Gardner15 confine their attention to the range21/2,n
,0 ~which is to say, for us, 2,n,3!, but our own numeri-
cal studies indicate that it can be extended down ton521
(n51). We already know thatn52 is a special case, but i
is easy to check, using the logarithmic potential in Eq.~32!,
that ~38! holds for this case too:

r~z!5
S

p

1

Ad2/42z2
~39!

yields

V~z!52
1

2e0
E

2d/2

1d/2

r~z8!ln uz2z8udz8

52
S

4pe0
E

2d/2

1d/2 ln@~z2z8!2#

Ad2/42~z8!2
dz8

52
S

2e0
ln~d/4!, ~40!

which is indeed independent ofz. Evidently, Eq.~38! is valid
for 1,n,3. How about the end points? Asn→1 ~the Cou-
437D. J. Griffiths and D. Z. Uvanovic´
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lombic limit! the charge density drops to zero within th
slab, and goes over to a delta function at6d/2: All the
charge now resides at the surface.16 As n→3 the charge
density goes to a constant, and, although the potential wi
the slab is now infinite, the limit would appear to be no
problematic. In Fig. 1 we plotr(z) for typical values ofn
between 1 and 3.

B. Example 2: The sphere

This is the case analyzed by Spencer,17 and it will suffice
to summarize his results. The potential of a sphericalshell
with radiusr 8 and uniform surface charge densitys is

V~r !5H sr 8

2e0~n22!r
@ ur 2r 8u22n2~r 1r 8!22n#, nÞ2

sr 8

4e0r
lnF S r 1r 8

r 2r 8D
2G , n52.

~41!

It follows that the potential inside asolid sphere of radiusR,
with charge densityr(r ), can be written in a form reminis
cent of Eq.~33!:

V~r !5
1

2e0~n22!r E2R

1R r 8r~r 8!

ur 2r 8un22
dr8 ~nÞ2! ~42!

~again, we must handle the casen52 separately!. Our prob-
lem is to determiner(r ) such thatV is independent ofr; it
can be solved in the same way as before, only usingC1

n(x)
52nx in the Auer/Gardner formula. The result is

r~r !5
2nQG~n21!

p~2R!nFGS n21

2 D G2 ~R22r 2!~n23!/2, ~43!

whereQ is the total charge. This holds for the range 1,n
,3 ~including the special casen52, which can be checked
by hand!; as n→1, r(r ) goes to zero inside and a del
function at the surface~the Coulomb case!, whereas forn
→3 the charge distributes itself uniformly over the volum
of the sphere. The functional form~43! is identical to that for
the slab~38!, and Fig. 1~with the obvious modifications!
shows the charge distribution for various values ofn.

Fig. 1. Charge density on a slab, for the power law potential~38!, usingd
52, S52, and n51.1, 1.5, 2.0, 2.5, 2.8, and 3.0~reading up from the
lowest curve!.
438 Am. J. Phys., Vol. 69, No. 4, April 2001
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C. Example 3: The cylinder

First, we find the potential at a distances from an infinite
line with uniform charge densityl:

V~s!5
l

4pe0
E

2`

1` 1

~s21z2!n/2
dz5

l

4e0Ap

GS n21

2 D
sn21G~n/2!

.

~44!

Using this, we determine the potential at a distances from
the axis of an infinite cylindrical shell~of radius s8! with
uniform surface charges :18

V~s!5

ss8GS n21

2 D
4e0ApG~n/2!

E
0

2p df

@s21~s8!222ss8 cosf#~n21!/2

5

ApsGS n21

2 D
2e0G~n/2!

35
s8

sn21
FS n21

2
,
n21

2
;1;~s8/s!2D , s>s8

1

~s8!n22
FS n21

2
,
n21

2
;1;~s/s8!2D , s<s8.

~45!

Finally, we construct the potential at a distances from the
axis of an infinite cylinder of radiusS carrying a volume
charge densityr(s):

V~s!5

ApGS n21

2 D
2e0G~n/2!

3H E
0

s s8

sn21
FS n21

2
,
n21

2
;1;~s8/s!2D r~s8!ds8

1E
s

S 1

~s8!n22
FS n21

2
,
n21

2
;1;~s/s8!2D r~s8!ds8J .

~46!

As always, our problem is to findr(s) such thatV(s) is
independent ofs.

We have not discovered a way to do this deductive
However, our experience with the slab~38! and the sphere
~43! suggests that we try the form

r~s!5
~n21!L

2pSn21
~S22s2!~n23!/2 ~47!

~whereL is the total charge per unit length!, and exhaustive
numerical checking~usingMATHEMATICA ! confirms that this
does indeed lead to a uniform potential inside the cylind
for 1,n,3.

D. The special casenÄ3

Whenn51 the charge flows to the surface: that’s no s
prise, of course—it’s the familiar Coulomb case. Whatis
surprising is the other limit,n53, for which in each example
438D. J. Griffiths and D. Z. Uvanovic´
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the charge distributes itselfuniformly over the volume. Is
this perhaps ageneralresult, independent of the shape of t
conductor? It is. For if we taken5(32e), and assumer is
constant, the potential inside a conductor is

V~r !5
r

4pe0
E 1

ur2r 8u32e
d3r 8, ~48!

and we need only show that this integral is independentr
in the limit e→0. ~We dare not sete→0 at the start, becaus
the integral blows up.! Calculating the divergence in spher
cal coordinates, we find that

1

r 32e
5

1

e
“"S r̂

r 22eD , ~49!

and hence

1

ur2r 8u32e
52

1

e
“8"S r2r 8

ur2r 8u32eD . ~50!

Therefore~invoking the divergence theorem!

V~r !52
r

4pe0

1

e R ~r2r 8!

ur2r 8u32e
"da8. ~51!

The integral itself is now perfectly finite ase→0, and in fact
Gauss’s law tells us that its value is 4p, so

V~r !52
r

e0e
, ~52!

which is indeed independent ofr . qed19

IV. ANALOGS IN ONE AND TWO DIMENSIONS

Finally, we exploit our results from Sec. III to solve som
related problems involving one- and two-dimensional co
ductors.

A. The needle

Consider an infinitesimally thin ‘‘needle’’ of lengthd car-
rying charge densityl(z). The potential at a pointz on the
axis is

V~z!5
1

4pe0
E

2d/2

1d/2 l~z8!

uz2z8un
dz8. ~53!

If the needle is a conductor, thenl(z) must be such thatV is
independent ofz. This is mathematically identical to th
problem of the slab@Eq. ~33!#, only with n→n12, and we
can simply quote the solution~38!:

l~z!5
QG~n11!

FGS n11

2 D G2

dn
S d2

4
2z2D ~n21!/2

, ~54!

where Q is the total charge on the needle. This time t
formula is valid for21,n,1.20

In the limit n→21 all the charge goes to the ends. Th
makes sense: The electric field of a point charge is a c
stant, so a charge placed anywhere on the wire will be
pelled toward the end with the lesser charge. In the limin
→1 ~the Coulomb case! charge distributes itself uniformly
along the length of the needle~this corresponds to the cas
439 Am. J. Phys., Vol. 69, No. 4, April 2001
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n53 in Sec. III!, confirming—from yet another perspec
tive—the emerging consensus that the electrostatic ch
density on a conducting needle is constant.21

B. The ribbon

Imagine an infinite conducting ribbon of widthd, stretch-
ing along they axis and lying in thexy plane. We can think
of it as made up of a collection of infinite parallel wires, ea
carrying a uniform line charges(x)dx. The potential at a
point x on the ribbon can be obtained from Eq.~44!:

V~x!5

GS n21

2 D
4e0ApG~n/2!

E
2d/2

1d/2 s~x8!

ux2x8un21
dx8. ~55!

Our problem is to determines(x) such thatV is independent
of x. This is again mathematically identical to the slab@Eq.
~33!#, with n→n11, and we read off the solution~38!:

s~x!5
LG~n!

@G~n/2!#2dn21 S d2

4
2x2D ~n22!/2

, ~56!

where L is the total charge per unit length on the ribbo
This time the formula is valid for 0,n,2, and the limiting
cases aren50 ~all charge to the edges—though sinceE
[0 it’s not clear what we are to make of this one! and n
52 ~uniform distribution over the surface!. For the Coulomb
case (n51) we recover the standard result22

s~x!5
L

pA~d2/4!2x2
. ~57!
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by Eq. ~54! is clearly not unique.

21See Ref. 2, and articles cited there. The idea of regularizing the integra
modifying the power in Coulomb’s law and then taking the limit is due
N. A. Wheeler, who proved by this means that the charge density is c
stant; see ‘‘Construction and physical application of the fractional cal
lus,’’ Reed College, unpublished report, 1997.

22Reference 5.
THE BERLIN COLLOQUIUM

In the late 1920s and early 1930s, at the zenith of his professional life, Nernst was the director
of the Physics Institute at the Berlin University. At the time, many students who were to become
eminent representatives of the new quantum physics saw Nernst as one of the grand old men of the
field. It was in his institute, formerly directed by W. Rubens, that the famed physics colloquia,
inaugurated by Gustav Magnus . . . ,took place every Friday afternoon. Regardless of the presen-
tations, ‘‘the main performance’’ was provided by the audience. The front rows were occupied by
Einstein, Max von Laue, Planck, Erwin Schro¨dinger, Gustav Hertz, and Nernst, joined by Otto
Hahn, Lise Meitner, and many younger luminaries.

Diane Kormos Barkan,Walther Nernst and the Transition to Modern Physical Science~Cambridge U.P., New York,
1999!, p. 25.
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