Generalization of the Schott energy in electrodynamic radiation theory
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We discuss the origin of the Schott energy in the Abraham-Lorentz version of electrodynamic
radiation theory and how it can be used to explain some apparent paradoxes. We also derive the
generalization of this quantity for the Ford-O’Connell equation, which has the merit of being
derived exactly from a microscopic Hamiltonian for an electron with structure and has been shown
to be free of the problems associated with the Abraham-Lorentz theory. We emphasize that the
instantaneous power supplied by the applied force not only gives rise to radiation (acceleration
fields), but it can change the Kinetic energy of the electron and change the Schott energy of the
velocity fields. The important role played by boundary conditions is noted. © 2006 American Association

of Physics Teachers.
[DOLI: 10.1119/1.2142753]

I. INTRODUCTION

Since its introduction in 1912," there has been much con-
fusion concerning the nature of the Schott energy, despite the
fact that some authors® " have presented a clear explanation
of its origin. The origin of the Schott energy arises from the
fact that the power supplied by an external force to a charged
particle not only contributes to the energy radiated (accelera-
tion fields) but also to the velocity fields. This feature is not
connected with the well-known deficiencies of the Abraham-
Lorentz theory (for example, runaway solutions). Previous
discussions of the Schott energy arose in the context of the
Abraham-Lorentz equation of motion for a radiating elec-
tron.

In this paper we define a (generalized) Schott energy that
is applicable not only to the Abraham-Lorentz theory but to
all theories of a radiating electron. To do so, we start by
recalling the classical Newtonian equation of motion for a
particle of mass M under the action of an external field f(z):

Ma=f, (1)

where a is the acceleration. The only effect of f(z) is to
change the kinetic energy T of the particle, where

T=3Mv?, (2)

and v is the velocity. We stress these elementary facts be-
cause they are often overlooked in the development of radia-
tion theories for a charged particle because for f(r)=0, the
equation of motion should reduce to Ma=0. In particular,
this requirement is not obeyed by the Abraham-Lorentz
equation (so that runaway solutions emerge) whereas it is
obeyed by the Ford-O’Connell theory as we will discuss.

We consider an electron of charge e subject to an external
force f(¢). The total work done by f(¢) during an arbitrary
time interval consists of three parts (1) the change in kinetic
energy AT (which is independent of e), (2) the radiated en-
ergy, which is the energy in the acceleration or far ﬁelds
and (3) the Change in energy in the velocity or near fields,
which does not give rise to radiation. This change can be
positive or negative.
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The energy in the velocity fields is the Schott energy.
Thus, at any time ¢, the instantaneous power, P(), supplied
by f(¢) does not contribute just to the radiated energy. A
feature of the Schott energy is that its time derivative appears
in the expression for P(¢) so that “... if we... consider only
intervals over which the system returns to its initial state,
then the energy in the velocity fields is the same at both ends,
and the only net loss is in the form of radiation .. 4 That is,
the Schott energy is the energy contributed to the velocity
fields by the external field and does not contribute to the
radiated energy (which is due to acceleration fields).

A related question is whether or not radiation can occur
for constant acceleration (because the Larmor result for the
radiated energy depends only on the acceleration squared
whereas the radiation reaction term in the Abraham-Lorentz
equation of motion depends on the rate of change of the
acceleration). The solution to this apparent paradox is sum-
marized succintly in Ref. 2 where it is noted that “... the
radiated energy and the work of the radiation friction are not
equal to each other in the nonstationary state,” due again to
the existence of the Schott energy. For that reason, it is de-
sirable to consider energy exchange between the particle and
the field at each instant of time, rather than using conserva-
tion laws integrated over time.

There has also been a long-standing recognition that the
Abraham-Lorentz analysis has a fundamental flaw related to
the existence of runaway solutions, Wthh are a manifesta-
tion of the fact that causality is violated.” A solutlon to the
latter problem was presented by Ford and O’ Connell,”® who
pointed out the necessity of ascribing structure to the elec-
tron. Their solution led to a second-order equation of motion
that is simple and well-behaved and incorporates quantum
and fluctuation effects and the presence of a potential V.
Here we confine ourselves to the nonrelativistic classical
case with V=0, which is the case most often considered in
the literature.*’

In Sec. II we consider the generalization of the Schott
energy for the radiation reaction force F, (the subscript d
indicates its dissipative nature) without specifying its specific
form. A key feature of our analysis is that because the elec-
tron motion and the rate of radiation are continually chang-
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ing in time, we consider conservation of power [the power
P(t) supplied by the external force to the particle is equal to
the rate of change of the particle’s kinetic energy plus the
rate of change of the velocity fields and the acceleration
fields], as distinct from energy (which is integrated power).
The latter gives less information and obscures the nonsta-
tionary aspect of the problem. As a result, we find that al-
though the radiated power depends on df/dt, the integrated
radiated power, that is, the radiated energy, does not. In Secs.
IIT and IV we apply our general analysis to the Abraham-
Lorentz and Ford-O’Connell theories and describe the physi-
cal nature of the generalized Schott terms. We also empha-
size why the Ford-O’Connell theory is superior to the
Abraham-Lorentz theory. Our conclusions are presented in
Sec. V.

II. GENERAL EQUATION OF MOTION
FOR A RADIATING ELECTRON

The equation of a radiating electron may be written in the
form

Ma=f+Fd, (3)

where a is the acceleration, f is the applied force, and F; is a
dissipative force arising from the back reaction due to the
emitted radiation. All of these quantities are functions of
time. The instantaneous power supplied by the external force
Sf(?) to the electron is

P(t) =f(1) - v(1), 4)
where v(7) is the velocity. From Eq. (3), we obtain
P(f)=Ma-v-v-F, (5a)
dT
=% Y “Fy= Py(1) + Py(1), (5b)

where the kinetic energy T is given by Eq. (2). The rate of
change of the kinetic energy of the electron, Py(r), arises
from the application of Newton’s law when F,;=0. Our main
interest is in the P,(¢) term and, as we will discuss, this term
contributes not only to the radiated electromagnetic energy
but also to the energy in the velocity fields.

The total work done by the external force during the time
interval t,—1 is

W= Wity,t) = f * P (62)

5]
=J P,(t")dt' + AT =W, + AT, (6b)
4
where AT=T(t,)—1T(t,) is the change in the Kinetic energy.
Thus P,(1) is the instantaneous power delivered to the fields
by the external force (only part of which goes into radiated
energy); when P,(1)=0 there is no radiated energy. Note that

W, is the total integrated energy transmitted to the fields.
It is useful to write

W,= W, + Wg, 7)
where from Egs. (5) and (6),
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Wd=f2Pd(t')dl,=_Jzv(tl)'Fd(tI)dt,’ (8)

1 1

W, is the work done on the velocity fields, and Wy is the
radiated energy (associated with the acceleration fields). In
other words, the total work done by the external field on the
electron at time ¢ consists of three parts. The total work
changes the kinetic energy of the electron and concomitantly
contributes both to the acceleration fields (which give rise to
radiation) and the velocity fields (which do not give rise to
radiation).

III. ABRAHAM-LORENTZ THEORY

The Abraham-Lorentz equation of motion™® gives

Fd:MTE’ )

so that Eq. (3) reduces to

Ma=f+Mr 2 (10)
a=f+Mr—,
dt

where 7=2¢/(3Mc3)=6 X 107>*s is proportional to the time
it takes light to travel the classical radius of the electron. We
see that when the acceleration is constant in the Abraham-
Lorentz theory, F, is zero and thus from Eq. (5) there is no
radiated energy. More generally, from Egs. (5) and (9) we
obtain

Pd(l‘)=—M7'v-% (11a)
=—MT[%(v-a)—a2] =PL—%ES, (11b)
where
P, = M7ad* (12)
is the familiar Larmor rate of radiation,5 and
E,=M(v-a) (13)

is the Schott energy. Note that the total time derivative of E
appears in the expression for P,(z). It follows that

Wd=fZPLdt_{Es(tZ)_Es(tl)} (143)

=f2PLdt—MT{v(t2)-a(tz)—v(tl)~a(t1)}. (14b)

1

Thus, if the accelerations are equal at times 7, and ¢, then
W,=0 and W,;=Wp, the usual result for the radiated energy.
Because the initial and find velocities are generally different,
we see from Eq. (6) that W=Wy+AT. The same scenario
approximately occurs when ¢, and t, correspond to the times
at which the applied force is zero and thus from Egs. (3) and
(9) the acceleration is of order 7 and hence very small.

In addition, the Abraham-Lorentz equation (10) has seri-
ous problems. In particular, when f=0, it is clear that Eq.
(10) does not reduce to Newton’s equation as it should, and
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consequently the well-known runaway solutions emerge. We
now turn to the Ford-O’Connell theory which does not mani-
fest this problem.

IV. FORD-O’CONNELL THEORY

The Ford-O’Connell theory6’9 is based on a rigorous mi-
croscopic approach whose starting point is the universally
accepted Hamiltonian of nonrelativistic quantum electrody-
namics generalized to allow for electron structure.'™!! The
use of Heisenberg’s equation of motion (or the corresponding
Poisson equations of motion in the classical case) leads to an
equation of motion that incorporates electron structure and
quantum effects and an arbitrary potential V% In the classical
limit and for V=0, the Ford-O’Connell equation of motion
reduces to the Abraham-Lorentz equation in the limit of a
point particle (and thus, as a bonus, we have the first Hamil-
tonian derivation of the Abraham-Lorentz equation). More
generally, electron structure is taken into account by incor-
porating a form factor®'® (the Fourier transform of the
charge distribution), which is written in terms of a large cut-
off frequency (). The point electron limit corresponds to ()
— oo, More generally, small ) implies an extended electron
structure. As shown in Ref. 6, values of () larger than 7;1
lead to violation of causality. This violation shows that the
problem with the Abraham-Lorentz theory arises from the
assumption of a point electron. In addition, choosing ()
=7';1 (corresponding to the maximum allowed value of ()
and hence to the smallest electron structure consistent with
causality), leads in the classical limit and for V=0 to

af
Fd= TE, (15)
so that Eq. (1) becomes
af
Ma = - 16
a f+7dt (16)

Note that F; depends on both the electron (through the factor
7) and the external field. This dependence contrasts with the
corresponding result given by Eq. (9) for the Abraham-
Lorentz theory, where the external force does not appear ex-
plicitly. Also in the Ford-O’Connell theory, when the applied
force f(z) is constant, F; is zero and thus from Eq. (3) we see
that there is no radiation. It also follows that we can write

Pd(t)z—T(v-Z—JD:—T{%(v ~j)—f-a] (17a)
d d
=7 -f)+ﬂf2+§d—tf2] (17b)
d
=Ppro— EEFO’ (17¢)
where
T
Pro= Mf (18)

is the result obtained in Refs. 7 and 8 for the rate of radia-
tion. In fact, Ford-O’Connell used two different derivations
in obtaining Eq. (18), one based on energy conservation’ and
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another based on a generalization of Larmor’s derivation to
include electron structure.® Also

7,2
Epo=1v-f) - ﬁfz (19)

is the generalization of the Schott energy. It follows that the
negative of the time derivative of the Schott energy is the
power fed into the velocity fields by the external force. It
immediately follows that the integrated power is given by

W,= f 2 Prodt — [ Ero(ty) — Epo(t)]. (20)

1

We note that Epg differs from E; by terms of order 7 and
that Erg also appears as a total time derivative in the expres-
sion for the instantaneous power radiated. In contrast to E,,
Ero vanishes exactly when the applied force is zero (a more
physically appealing boundary condition than in the
Abraham-Lorentz analysis), in which case W,=0 and W, is
equal to the first term in Eq. (20), which is the result ob-
tained in Refs. 7 and 8. Thus, for a constant external field, P,
is always zero except when the field is turned on and off, and
it is then that energy is radiated with an average rate given by
Eq. (18). We point out that Eq. (18) was obtained in Ref. 7
by integrating the equation of motion (16) and then using
energy conservation. The same result was verified in Ref. 8
by generalizing Larmor’s radiation theory to incorporate
electron structure.

V. CONCLUSION

The Schott energy and its generalization corresponds to
energy given to or taken from the velocity fields and always
occurs as a total time derivative in the expression for the
instantaneous power supplied by the external force. Thus the
total work done by the applied force is only equal to the
radiated energy plus the change in kinetic energy when the
boundary conditions ensure that the change in the Schott
energy (the energy of the velocity fields) is equal to zero
during the time interval of interest. These conditions occur
naturally in the Ford-O’Connell theory (as distinct from the
Abraham-Lorentz theory) because f(¢) is zero at the initial
and final times. Moreover, it is immediately clear from the
Ford-O’Connell equation of motion (16), that when f
=constant, Eq. (16) reduces to the Newtonian equation of
motion (1). In other words, there is no radiation reaction
term in the equation of motion reflecting the fact that there is
no radiation when f=constant, a conclusion that also
emerges from a relativistic generaliza‘tion.]2 This result is
also consistent with the conclusion'? that an oscillator mov-
ing under a constant force with respect to the zero-
temperature vacuum does not radiate despite the fact that it
thermalizes at the Unruh temperature. Finally, we remark
that when quantum effects are taken into account, there are
additional fluctuating force terms in the equation of
motion."*
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