
the momentum is P=�m1�1+ 1
2v2 /c2�+m2�1+ 1

2v2 /c2�
+2e1e2 / �c2���v; the energy is E=�m1�c2+ 1

2v2�+m2�c2

+ 1
2v2�+e1e2 /��. There is a factor-of-two discrepancy in the

electromagnetic field contributions corresponding to the
presence of the summation term in Eq. �4�.

�d� For the classical model of the electron, as in case �c�,
forces of constraint are present but do no net work so that
Eq. �4� holds. The forces are applied at points with differing
displacements ri in the direction of motion and so the sum-
mation term in Eq. �4� is non-vanishing. The term involving
the external forces gives an additional contribution so that
we find Eq. �2�, which is not in agreement with the form in
Eq. �1�. This case is discussed in Ref. 9.

The difference between the system �mechanical and elec-
tromagnetic� momentum P and the term d��E /c2�X� /dt in-
volving the system �mechanical and electromagnetic� energy
E is sometimes termed “hidden momentum.”10 We see in Eq.
�3� that this hidden momentum is given by −�i�Fext,i ·vi�ri /c2

and involves forces that are external to the electromagnetic
system. The designation of this term as hidden momentum
tells us little about the character of the non-electromagnetic
energy and momentum flow associated with the external
forces.
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In a recent paper Davis formulated the following generali-
zation of the Helmholtz theorem for a time-varying vector
field:1

F =
1

c2

�

�t
��� +

�A

�t
� + � � �� � A� , �1�

where � and A are the Lorenz gauge retarded potentials. The
purposes of this Comment are to point out that Davis’s gen-
eralization is a version of the generalization of the Helmholtz
theorem formulated some years ago by McQuistan2 and
Jefimenko,3 and more recently by the present author,4–6 and
to show that Davis’s expression for the field F is also valid
for potentials in gauges other than the Lorenz gauge.

The generalized Helmholtz theorem states that a retarded
vector field vanishing at infinity can be written as4

F = − �
 d3x�
��� · F�

4�R
+ �
 d3x�

��� � F�
4�R

+
1

c2

�

�t

 d3x�

��F/�t�
4�R

, �2�

where the square brackets denote the retardation symbol, R
= �x−x��, and the integrals are over all space. If we define the
potentials �, A, and C by

� =
 d3x�
��� · F�

4�R
, �3a�

A =
 d3x�
��� � F�

4�R
, �3b�
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C =
 d3x�
��F/�t�

4�R
, �3c�

then Eq. �2� can be written compactly as

F = − �� + � � A +
1

c2

�C

�t
. �4�

The potentials � and A in this formulation of the theorem
are different from the potentials � and A in Davis’s formu-
lation. It is not difficult to derive the relations �� /�t=−c2�,
��A=A, and �A /�t=C, which imply the formal equiva-
lence between the two formulations.

The standard Helmholtz theorem is usually applied to
solve the equations of electrostatics and magnetostatics. The
generalization of this theorem4 can be used to solve Max-
well’s equations. The generalization proposed by Davis1 can
be used to elucidate the form of Maxwell’s equations. The
two versions of the generalized Helmholtz theorem are
complementary.

In Ref. 1 the electric field −��−�A /�t and the magnetic
field ��A are expressed in terms of the Lorenz gauge po-
tentials, which were used to formulate Eq. �1� for the time-
varying vector field F. Equation �1� can also be formulated
using potentials in other gauges. For example, it can be for-
mulated for potentials in the velocity gauge7 � ·A
+ �1/v2��� /�t=0, a class of gauges containing the Coulomb
gauge �v= � �, the Lorentz gauge �v=c�, and the Kirchhoff
gauge8 �v= ic�. Jackson7 recently derived the gauge function
�v �Eq. �7.5� of Ref. 7�, which transforms the Lorenz gauge
potentials �L and AL to the velocity gauge potentials �v and
Av,

�v = �L −
��v

�t
, �5a�

Av = AL + ��v. �5b�

From Eq. �5� we obtain

��L +
�AL

�t
= ��v +

�Av

�t
�6a�

� � AL = � � Av. �6b�

Equations �6� imply that Eq. �1� is also valid for potentials in
the velocity gauge, which means that it is valid for the Cou-
lomb and Kirchhoff gauges also. The application of Eq. �1�
to potentials in the velocity gauge requires the identification
F=�0J, where J is the current density and �0 the permeabil-
ity of free space.

Davis introduced causality in Eq. �1� when he chose re-
tarded potentials. But we can equally choose acausal ad-
vanced potentials to obtain Eq. �1�. Causality in Eq. �1� is not
a necessary assumption, but it is required to identify −��
−�A /�t and ��A with the retarded electric and magnetic
fields. As pointed out by Rohrlich,9 causality must be in-
serted by hand in classical field theories as a condition.

The reader might wonder why Eq. �1� can also be written
in terms of the Coulomb gauge potentials when the instanta-
neous scalar potential �C in this gauge is clearly acausal. The

explanation is that the Coulomb gauge vector potential AC

contains two parts, one of which is causal �retarded� and the
other is acausal �instantaneous�. Jackson7 recently derived a
novel expression for AC �Eq. �3.10� in Ref. 7� which exhibits
both parts. The fact that AC carries a causality violating in-
stantaneous component has also been recently emphasized
by Yang.10 The effect of the acausal part of AC vanishes
identically when we take the curl and obtain ��AC=�
�AL. A direct calculation gives7 −�AC /�t=−��L−�AL /�t
+��C. The last �acausal� term cancels exactly the instanta-
neous electric field −��C generated by �C and we again
obtain −��C−�AC /�t=−��L−�AL /�t. This expression has
also been recently demonstrated in Ref. 11 using a different
approach �see Eq. �29� in Ref. 11�. In other words, the ex-
plicit presence of an acausal term in Eq. �1�, when it is writ-
ten in terms of the Coulomb gauge potentials, is irrelevant
because such a term is always canceled, which means that
causality is never effectively lost.

Similar conclusions can be drawn when Eq. �1� is ex-
pressed in terms of the Kirchhoff gauge potentials �K and AK

�Ref. 8�. In this case the potential �K propagates with the
imaginary speed ic and generates the imaginary field −��K.
The Kirchhoff gauge vector potential AK contains three
parts: one is causal �retarded�, one is imaginary, and the re-
maining one mixes imaginary and retarded contributions �see
Eq. �42� in Ref. 8�. The effect of the imaginary terms in the
last two parts vanishes identically when we take the curl and
obtain ��AK=��AL. A direct calculation gives8 −�AK /�t
=−��L−�AL /�t+��K. The last term cancels exactly the
imaginary field −��K and we again obtain −��K−�AK /�t
=−��L−�AL /�t. The explicit presence of an imaginary term
in Eq. �1� when it is written in terms of the Kirchhoff gauge
potentials is irrelevant because such a term is always can-
celed, which means that causality is never effectively lost.

In the same sense that the Helmholtz theorem is consid-
ered as the mathematical foundation of electrostatics and
magnetostatics, the generalized Helmholtz theorem can be
considered as the mathematical foundation of electromagne-
tism. I advocate the use of both formulations of the general-
ized Helmholtz theorem12 in courses of electromagnetism
and invite instructors to decide which formulation they find
more useful.
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In a recent paper Davis, Lineweaver, and Webb make the counterintuitive assertion that a galaxy
held “tethered” at a fixed distance from our own could emit blueshifted light. This effect was derived
from the simplest Friedmann-Robertson-Walker �FRW� spacetimes and the 	M =0.3, 	
=0.7 case,
which is believed to be a good late time model of our universe. In this paper, we recover their results
in a more transparent way, revise their calculations, and propose a formulation of the tethered galaxy
problem based on radar distance rather than comoving “proper” distance. This formulation helps to
remove the coordinate-dependent nature of the tethered galaxy problem and establishes consistency
between the empty FRW model and special relativity. In the general case, we see that, although the
radar distance tethering reduces the redshift of a receding object, it does not do so sufficiently to
cause the blueshift as found by Davis, Lineweaver, and Webb. We also discuss some important
issues raised by this approach relating to the interpretation of the redshift, velocity, and distance in
relativistic cosmology. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

The homogeneous and isotropic expansion of the universe
is described by Friedmann-Robertson-Walker �FRW�
spacetimes.1 In these spacetimes, we may construct a co-
moving frame in which the spacetime manifold of general
relativity is treated as expanding, while on average matter is
at rest. If we wish to study independent dynamical objects
within an expanding universe, we would like to quantify the
effect of imposing such a cosmological background. We fol-
low Davis et al.2 by considering a galaxy endowed with a
large peculiar velocity that characterizes the velocity devia-
tion from the universal expansion or Hubble flow. The teth-
ered galaxy problem considers the physics of the extreme
case, where a galaxy is endowed with sufficient peculiar ve-
locity so as to cancel the Hubble flow and remain, in some
sense, at a fixed distance from a co-moving observer who
follows the Hubble flow. We study how light from such a
galaxy would be redshifted and propose modifications to the
previous calculations2 that suggest that a receding source
could be significantly blueshifted.

By recasting the problem in a coordinate independent
form, with the radar distance as our measure, we achieve
results that are more intuitive than previous work.2 With this
construction, tethered galaxies in the empty FRW universe
have zero redshift and the problem may be reconciled with
the notion of constant spatial separation in special relativity.

We find that the reduction in redshift is much lower than
that obtained by the previous analysis.2 The effect of impos-
ing the tether is not sufficient to cause the blueshift of an
object in an expanding universe and is only significant at
very large distances, at which we would not expect propor-
tionally large peculiar velocities.

Throughout this paper, we shall refer to the unevaluated
quantity 1+z as the redshift of a light source, but note that a

value of z�1 will actually correspond to a blueshift. Simi-
larly, the condition for light to be received with zero redshift
implies that it is observed at its emission frequency, that is, is
neither redshifted nor blueshifted.

In Sec. II, we review the tethered galaxy problem as posed
in Ref. 2. We remove the explicit redshift dependence from
their calculations and recover their results as a combination
of cosmic redshift and the special relativistic Doppler shift.
We are thus able to demonstrate why the peculiar velocity
required to cancel the cosmic redshift does not correspond to
that proposed to tether a galaxy against the Hubble flow.

We then discuss two problems with this approach. First,
we note that the peculiar velocities do not correspond to a
quantity we might regard as a worldline velocity except in
the special relativistic limit. In Sec. III, we construct a gen-
eral relativistic condition on the 4 velocity of a luminous
particle in order that light is received at the fixed spatial
origin without redshift. In Sec. IV, we discuss the limitations
of the distance scale used in the original formulation. Using
this measure, we show that for the Milne model under a
coordinate transformation, the problem does not—as we
might expect—agree with the analogous system in special
relativity. More details of this example appear in Appendix
A.

Motivated by this example, we propose recasting the teth-
ered galaxy problem in terms of a theoretically observable
quantity, the radar distance. We construct this new system of
observers in Sec. V and propose a method for solving the
system in terms of light signals. In Sec. VI, we compare the
phenomenological results with a physical model. We see that
the effects of the tethered galaxy problem persist although
they are comparatively small below scales of 104–105 mega-
parsec �Mpc�.
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