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Pulse Radiation from an Insulated Antenna: An
Analog of Cherenkov Radiation from a Moving

Charged Particle
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Abstract—Cherenkov radiation arises when a charged particle
moves with a constant velocity that is greater than the speed of
light in the surrounding medium. This radiation has distinctive
characteristics. Near the charge, the electric field is most intense
along a conical surface with apex at the charge—the Mach
cone. In the far field, the radiation occurs predominantly in one
direction—at the Cherenkov angle. An insulated antenna consists
of a metallic cylindrical conductor covered by a concentric sheath
of dielectric. In use, this antenna is embedded in a medium whose
permittivity is often much greater than the permittivity of the
insulation. When the antenna is excited by a pulse of voltage, a
pulse of charge appears to travel along its length. The apparent
velocity of this charge is close to the speed of light in the insulation,
which, because of the difference in the permittivities, is greater
than the speed of light in the surrounding medium. Thus, the
radiation from the pulse excited, insulated antenna should be
analogous to Cherenkov radiation from the moving charged
particle. In this paper, the pulse-excited, traveling-wave insulated
linear antenna is accurately analyzed using the finite-difference
time-domain (FDTD) method. Results are obtained for the charge
on the conductor, the near field, and the far field. These results
show the striking similarity of the radiation from this antenna to
Cherenkov radiation from the moving charge.

Index Terms—Cherenkov radiation, electromagnetic transient
propagation, FDTD, insulated antennas.

I. INTRODUCTION

I N the 1930’s, the Russian scientists Cherenkov and Vavilov
observed visible radiation in experiments with pure liquids

under the action of fast electrons [1], [2]. This radiation had
distinctive characteristics that could not be explained with any
theory of luminescence: fixed polarization, spatial symmetry,
and absolute intensity. A full theoretical explanation for the ra-
diation based on classical electromagnetic theory was provided
by Frank and Tamm in 1937 [3], [4]. The radiation was caused
by charged particles—electrons—moving with a constant ve-
locity greater than the speed of light in the sur-
rounding liquid. Here, is the relative permittivity of the liquid.
In 1958, Cherenkov, Frank, and Tamm received the Nobel Prize
in Physics for their discoveries. Today, this radiation is called
“Cherenkov radiation” or “Cherenkov–Vavilov radiation.”
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An insulated antenna consists of a metallic, cylindrical con-
ductor covered by a concentric sheath of dielectric with relative
permittivity [5]. Insulated antennas are most effective when
they are used in a material whose electrical properties are quite
different from those of the insulation; that is, either the relative
permittivity or the conductivity of the external medium is
much greater than that of the insulation. All previous analyses
of insulated antennas have been for time-harmonic excitation
[5], [6]. The characteristics of the insulated antenna are then
very different from those of a similar bare antenna whenever

, where and are the complex wavenumbers
in the external medium and the insulation, respectively.

Consider the case where both the insulation and the external
medium have negligible loss, and the ratio of permittivities is
large; that is, . When the antenna is excited by a
pulse of voltage, a pulse of charge appears to travel along its
length. The apparent velocity of this charge is close to the speed
of light in the insulation , which, because of the
difference in the permittivities, is greater than the speed of light
in the surrounding medium . Thus, the radiation
from the pulse-excited insulated antenna should be analogous
to Cherenkov radiation from a moving charged particle [2].

In this paper, the pulse-excited, traveling-wave, insulated
linear antenna is accurately analyzed using the finite-difference
time-domain (FDTD) method. This is an insulated linear an-
tenna with a source at one end and a termination at the opposite
end. Both the source and the termination are constructed to
produce very low reflection. The pulse of charge then appears
to move at approximately constant velocity over a path of
finite length in the external medium. Results are obtained for
the charge on the conductor, the near field, and the far field.
Detailed plots show the striking similarity of the radiation from
this antenna to Cherenkov radiation from the moving charge.

II. CHERENKOV RADIATION FROM A MOVING CHARGE

The general characteristics of Cherenkov radiation for a point
charge moving with constant velocityare shown schematically
in Fig. 1. Near the charge, the field is confined to the interior of
a cone, the Mach cone, with its axis along the path of the charge
and its apex at the charge (the shaded region in the figure). The
obtuse angle between the side of the cone and the velocity vector
is . The field is most intense on the surface of
this cone, where it is also tangential to this surface. The Poynting
vector is normal to this surface; thus, is at the angle to
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Fig. 1. Schematic drawing used to describe Cherenkov radiation.

Fig. 2. Geometry for determining the retarded times.

the velocity vector. When the charge travels over a path of finite
length, the radiation (far field) is most intense at the Cherenkov
angle .

The existence of the Mach cone can be explained with a
simple argument based on the retarded time. Consider the ge-
ometry shown in Fig. 2. The field is being observed at point
at the current time. The current position of the charge is indi-
cated by on the right-hand side of the figure. The field at
was radiated by the charge at the earlier, retarded timewhen
it was at the position . A straightforward analysis obtains
the following expression for the retarded time [2]:

(1)

with

(2)

For angles in the range , where

(3)

Fig. 3. Explanation for the Mach cone.

or

(4)

the retarded times given by (1) are either complex numbers or
violate causality. This explains the absence of field outside the
Mach cone. For angles within the range , that is,
within the Mach cone, there are two retarded times indicated by
the sign in (1).

Recall that for a charge moving in free-space ( ), there is
only one retarded time associated with each positionat time .
The fact that there are now two retarded times is a consequence
of the charge traveling with a velocity greater than the speed
of light in the surrounding medium ( ) and it
is easily explained by a simple geometric argument based on
Fig. 3.

At the retarded time , the charge is at position
from where it radiates a spherical wavefront. This wave-

front arrives at point after the time interval
. In the meantime, the charge continues to move

along its trajectory, reaching the position after the time
interval . The spherical wave-
front radiated by the charge at position arrives at point
after the time interval . From simple
geometry, it is clear that the distances over which the radiation
and charge travel must satisfy the inequality

(5)

However, the time intervals corresponding to these distances can
be equal; that is

(6)

or

(7)

Therefore, radiation originating at the particle at two different
retarded times ( and ) can arrive at the point at the same
time . This result is solely a consequence of the particle trav-
eling with a velocity faster than the speed of light in the sur-
rounding medium .

The discussion presented above is for a moving point charge.
There are more realistic models that assume a charge of finite
size or a bunch of charges. For one such model, the volume
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Fig. 4. Magnitude of the electric field near a moving particle that is a Gaussian
pulse of charge� = 2:0 from [7].

density of charge is a Gaussian function along the path of the
particle ( axis)

(8)

The accompanying volume density of current is

(9)

In these expressions, the parameterdetermines the spatial ex-
tent of the distribution. Analytic expressions have been obtained
for the electromagnetic field of this distribution [2], [7]. Fig. 4
shows the magnitude of the electric field in a region sur-
rounding the charge. Notice that the field is most intense along
the side of the Mach cone and is negligible outside of the Mach
cone.

III. I NSULATED TRAVELING-WAVE ANTENNA

In this section, a model is developed for an insulated antenna
that launches a pulsed signal over a finite length. This antenna
is shown in Fig. 5. At the bottom end, it is driven by a short
section of coaxial line containing a matched source, and at the
top end, it is terminated with a short section of coaxial line con-
taining a matched load. The heightis measured between the
openings of the coaxial lines, and the radius of the insulation

is identical to the inner radius of the outer conductor of the
coaxial lines. The radius of the perfectly conducting center con-
ductor is . Both the insulation and the ambient medium are
assumed to be lossless and nonmagnetic. The relative permit-
tivity for the insulation is , and the relative permittivity for
the external medium is . The antenna is driven by an incident
signal injected at the source plane. With this antenna model, a
wave launched at the drive point propagates over a finite length

until it is almost totally absorbed at the opposite end. The an-
tenna is rotationally symmetric, thus any field pointoutside
the antenna is characterized only by the anglemeasured from
the axis and the radius measured from the origin, which is
at the drive point.

Fig. 5. Model of the insulated traveling-wave antenna.

Fig. 6. Gaussian function versus normalized time.

The time-domain analysis of this antenna is performed with
an incident Gaussian voltage pulse of the form

(10)

where is the characteristic time of the pulse. In Fig. 6, the tem-
poral dependence of the normalized Gaussian function

is shown. For future reference, the pulse width is de-
fined to be approximately , which is the time interval be-
tween the points at which the amplitude is ten percent of its max-
imum value.

Arguments similar to those used with Fig. 3 for the charged
particle can be applied to predict the far-field characteristics of
the insulated traveling-wave antenna. Notice that a time-domain
investigation is especially useful for explaining the phenomenon
of Cherenkov radiation, where delay and arrival times play sig-
nificant roles. The analogous Cherenkov anglefor the insu-
lated linear antenna can be determined easily with the following
simple argument. Recall first that under the assumption that the
permittivity of the external medium is greater than that of the
internal medium, the pulse of charge on the antenna appears
to travel at a speed greater than the speed of light in the
external medium . Maximum radiation occurs when the ra-
diation from the drive point and the opposite end coincide in
time at the far-field observation point, as illustrated in Fig. 7.
Since the path that includes the antenna heightand the dis-
tance is spatially longer than the distance, for constructive
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Fig. 7. Schematic drawing used to describe the radiation from the insulated
traveling-wave antenna.

interference the wave in the insulation must travel with a speed
greater than that in the external medium. This is satisfied for the
above mentioned properties, i.e., . Simple geometry
and matching of the retardation times ( ) result in
the equation for the analogous Cherenkov angle

(11)

Notice that this angle is exactly the same as found for the
Cherenkov angle of the charged particle (4) if the speed of light
in the internal medium is replaced by the velocity of the
charge .

The results to be presented in the following section were ob-
tained using the finite-difference time-domain (FDTD) method.
This numerical scheme as applied to this antenna is described
in more detail in [8]. Due to the antenna’s rotational symmetry,
the analysis is carried out with a discretization in two dimen-
sions and . In the FDTD analysis, a “one-way” injector is
placed at the source plane within the coaxial line [8]–[10]. This
launches the incident pulse in one direction—up the antenna.
The reflected pulse is monitored at a point below the one-way
injector. The discretized domain is truncated near the antenna
with the cylindrical, perfectly-matched layer (PML), absorbing
boundary condition [11]. Its uniaxial anisotropic material ab-
sorbs the outgoing electromagnetic energy with negligible re-
flection; typically, the reflected field is less than 0.1% of the in-
cident field. Since the PML is truncating the FDTD lattice close
to the antenna, only the near field is directly computed. To obtain
the radiated field (far field) a near-field to far-field transforma-
tion is used. This transformation is based on Huygens’ principle,
and the radiated field is determined from the tangential compo-
nents of the field on a cylindrical surface close to the antenna
using a convolution [8], [10].

IV. NUMERICAL RESULTS

For the insulated linear antennas used in this study, the ratio of
the permittivity of the external medium to that of the insulation
is . The analogous Cherenkov angle (11) is then

, which is a convenient value for use with graphical

TABLE I
PARAMETERS FOR THETHREE ANTENNAS

Fig. 8. Reflected voltage within the lower coaxial line as a function of
normalized time for the three different antenna lengths.

results. The radius of the insulation relative to that of the center
conductor is . The coaxial sections at the top and
bottom of the antenna areand long, respectively, and both
are formed from perfect conductors of thickness.

Three different lengths for the antenna are considered:
, 310, and 620. The characteristic time for the Gaussian

voltage pulse is chosen to make
, and , where is the time for light

to travel the length of the antenna in the insulation. These three
lengths correspond to roughly 2.2, 4.3, and 8.7 pulses fitting
along the length of the antenna. The parameters for these three
antennas are summarized in Table I.

A. Reflected Voltage

The terminations in the coaxial lines at the two ends of the
antenna should completely absorb any incoming TEM waves.
However, since the waves along the insulated section of the an-
tenna are not purely TEM, there are some small reflections.
Fig. 8 shows the normalized reflected voltage mea-
sured in the lower coaxial line just below the one-way injector.
Results are shown for the three lengths of the antenna versus
normalized time, . In each case, there is a sharp peak near

whose amplitude is about 0.09. This reflection arises
at the transition between the lower coaxial line and the insu-
lated antenna, that is, where the outer conductor of the coaxial
line stops. A second smaller and much broader peak occurs at
about (the round-trip time on the antenna). This
is the reflection from the top end of the antenna. The longer the
antenna, the lower is this reflection; however, in all three cases
it is less than 0.04.
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Fig. 9. Charge on the antenna conductor as a function of time and space for
antennas of length. (a)h=a = 155. (b)h=a = 310. (c)h=a = 620.

B. Charge Distribution

The normalized charge density on the center conductor of the
antenna is shown as a function of the normalized time and
the normalized position in Fig. 9. The thick black line on
each plot indicates the location of the end of the outer conductor
of the lower coaxial line. These graphs show some interesting
features. First, the pulse of charge, as expected, appears to travel
up the antenna roughly at the speed of light in the insulation;
the time for the pulse to travel from the source to the top end

of the antenna is roughly in all three cases. Second,
the pulse is attenuated as it travels along the antenna. For the
shortest antenna, Fig. 9(a), the amplitude of the pulse is reduced
by about a factor of two by the time it reaches the top end, while
for the longest antenna, Fig. 9(c), it is reduced by nearly a factor
of ten. Third, the reflection of the charge from the top end of the
antenna is very small.

C. Near Field

Figs. 10 and 11 are grayscale plots of the magnitude of
the electric field near the antenna with length
( ). The three plots in Fig. 10 are for
different times: (a) when the pulse of charge is halfway up the
antenna ( ); (b) when the pulse of charge has just
reached the top ( ); and (c) when the reflected pulse
has traveled halfway down the antenna ( ). In all of
these plots, only the right-hand side of the antenna is shown,
and the field within the insulation has been reduced by a factor
of 37.

A conical surface, which is similar to the Mach cone shown
in Fig. 4 for the charged particle, is clearly seen. For the first two
times, Figs. 10(a) and (b), the apex of the cone is at the center
of the pulse of charge. The angle between the base and side of
the cone, shown in Fig. 10(c), is measured to be 67.5, which
matches the analogous Cherenkov anglecalculated from the
relative permittivities of the insulation and the external medium
(11).

Fig. 11 shows the details of the electric field near the antenna
( ) at the later time . A conical wavefront,
which makes the angle with the axis of the antenna, has been
established and is propagating away from the antenna. The ends
of the wavefront are spherical surfaces and centered on
the two ends of the antenna. The small graphs on the right of
Fig. 11 show the two components of the electric field at five
points along the conical wavefront. Notice that the tangential
component of the field is much larger than the normal com-
ponent . This finding is in close agreement with what is ob-
served for Cherenkov radiation from a moving charged particle
[2], [7].

Notice that the field in Fig. 11 is very intense around the
two ends of the antenna. This is a result of charge accumula-
tion at these points. When the positive pulse of charge leaves
the source, it leaves behind an equal amount of negative charge
in the bottom coaxial line, and when the positive pulse of charge
enters the termination at the top of the antenna, it deposits charge
in the coaxial line.

D. Far Field

The radiated or far fields for the three antennas are shown in
Fig. 12. Each of the graphs (a, b, and c) presents the following
information. Consider a large spherical surface of radiuscen-
tered at the lower end of the antenna. Observers are stationed at
the polar angles on the surface of this
sphere. Each observer measures the electric field as a function
of time, and the eight plots in each of the graphs show these
measured fields. The field is graphed positive in the clock-
wise direction as the arrow at the angle indicates.
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Fig. 10. Grayscale plots showing the magnitude of the electric field near the antenna withh=a = 310 for three different times. (a)t=� = 0:5. (b) t=� = 1:0.
(c) t=� = 1:5. Only the right-hand side of the antenna is shown.

Fig. 11. Grayscale plot showing the magnitude of the electric field near the
antenna withh=a = 310 for the timet=� = 3:0. Small figures on the right
show the electric field components normal and tangential to the surface of the
Mach cone.

The dashed curves marked and connect the times of
arrival for wavefronts that originate at the lower end and upper
end of the antenna, respectively. The curve foris a circle; for
all of the observers, the radiation from the bottom end arrives at
the same time

(12)

This is a consequence of the spherical surface being centered at
the bottom end of the antenna. The curve for is not a circle;
the time of arrival for relative to changes with the angle
of observation

(13)

or

(14)

The two wavefronts and cross at the analogous
Cherenkov angle . For angles ,
arrives before . However, for angles , arrives
before , even though the signal for travels over a longer
path than the signal for . This is a consequence of the speed
of light in the insulation being greater than the speed of light
in the external medium.

Notice from the results in Fig. 12 that the pulse of radiation
is largest at the analogous Cherenkov angle. This finding is
again in close agreement with what is observed for Cherenkov
radiation from a moving charged particle [2], [7]. Also, notice
that the amplitude of the radiation at the analogous Cherenkov
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Fig. 12. Radiated electric field for three lengths of the insulated, traveling-wave antenna. (a)h=a = 155. (b)h=a = 310. (c)h=a = 620.

angle increases relative to the radiation at other angles as the
length of the antenna is increased. This observation is shown
quantitatively in Fig. 13, where the ratio of the maximum elec-
tric field at to the maximum electric field at ,
that is

is plotted (line with solid dots) as a function of the normal-
ized length of the antenna for antennas up to about twelve pulse
widths long ( ).

Results for this ratio can also be obtained from a simple
theory [2], [8]. When the charge/current distribution along the
antenna is assumed to be a decaying exponential of the form

, this ratio can be determined analytically

(15)

For (no attenuation, dashed line on the graph), the
ratio is a linear function of the antenna length. For the value
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Fig. 13. Amplitude of the maximum electric field at the Cherenkov angle
relative to that at broadside as a function of the normalized length of the antenna.

(solid line), which was determined from
the graphs of the charge distribution in Fig. 9, the ratio is seen to
reach a plateau as the length of the antenna is increased, in close
agreement with the FDTD results. Thus, increasing the length
of the antenna increases the relative radiation at the analogous
Cherenkov angle to a point, and beyond this point little addi-
tional radiation results from an increase in the length.

V. CONCLUSIONS

A realistic model for the pulse-excited, insulated trav-
eling-wave antenna was accurately analyzed using the FDTD
method. Graphical results were presented for the charge on the
center conductor, the near field, and the radiated field (far field)
of this antenna. These results show that the radiation from this
antenna is analogous to Cherenkov radiation from a moving
charged particle. The field near the antenna is most intense
along a conical surface that is similar to the Mach cone for the
charge, and the electric field is directed predominantly along
the surface of this cone as it is for the charge. In the far field,
the radiation from the antenna is primarily at the analogous
Cherenkov angle, just as the radiation from a charged particle
moving over a path of finite length is at the Cherenkov angle.
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