Fig. 3. Ared comparison of Fig. 3 fa-
cilitated by superposing the triangle
on the curve. The two shaded areas
are the same.

weights of the two shapes cut from the same uniform plate.

An even easier way to compare the areas, at least for a
cursory eyeball approximation, is this: Flip over the trian-
gle so that it is superposed on the curve, as in Fig. 3. Your
eye tells you at once that the two shaded areas are very
closely the same. Conclusion: When the force is k /72, the
potential energy is — &k /r.

Finally, what constant force is equivalent, in terms of
work done, to the variable inverse-square force, again over

F %F| _____ %u Fig. 4. The constant force F,/2 does
& the same work as the variable force
| | T [ in Fig. 3.
0 r w21 2r, 3, g
r

the displacement from r, to 27,? The net work done is still
F,r,/2, so the constant force has the magnitude F,/2 (see
Fig. 4). It is easy to confirm that the curve crosses the
horizontal line at 2'/?r,, which is the geometric mean of r
and 2r,..

'], V. Mallow, Am. J. Phys. 54, 944 (1986).
M. Tona, Am. J. Phys. 55, 776 (1987).

Angular momentum in the field of an electron

Jack Higbie

Department of Physics, University of Queensland, Brisbane, Australia 4067

(Received 3 November 1986; accepted for publication 23 February 1987)

Normally we represent the electron as a little charged
sphere in our introductory physics courses. We realize of
course that this is wrong and only a coniceptual approxima-
tion that we must use. Nevertheless, it is instructive to see
how far down on the length scale we can go with our classi-
cal concepts of fields before there is a major breakdown.
Feynman' shows that if we extend the classical coulomb
field all the way down to 3 of the classical electron radius
(r, = afi/mc), the entire mass of the electron is contained
in its field. However, as he points out, there are problems
since the calculation ignores the mass of the “‘self-energy”
forces which, according to the classical ideas, must bind the
electron together. So we see that at about the level of 7, our
classical treatment certainly breaks down.

Another physical property of the electron is its spin an-
gular momentum of magnitude 3#/2. If we consider a
“billiard ball” electron of radius #,, it would need a maxi-
mum surface speed of about 300 times the speed of light to
have this much angular momentum. However, just as some
of the electron’s mass is contained in its coulomb field,
perhaps some of its angular momentum could be contained
in the field pattern as well. In order to see how this could
come about, consider the following thought experiment,
also presented by Feynman?:

Imagine an insulating disk suspended by a silken thread
along its axis. Around the periphery of the disk are several
metal balls, not touching and all charged with + Q cou-
lombs. At the center of the disk and coaxial with it is a
superconducting ring containing a current of 7 amperes so
that initially there is a magnetic dipole field and an approx-
imately radial electric field. Initially the disk is not rotat-
ing. As the temperature of the ring is raised above its criti-
cal value, the current suddenly stops, the magnetic field
collapses, and, by Faraday’s law, an induced electric field
appears briefly in the vicinity of the charged balls tangen-
tial to the disk. The disk receives a torque and starts to
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rotate. Where does the angular momentum come from? If
you believe it is due to the stopping of the motion of the
charge carriers in the ring, reverse the sign on the charge of
the metal balls to get a rotation in the opposite direction.
We are still left with a problem: the final angular momen-
tum of the disk appears to come from “nowhere.” We can
do one of two things at this point. We can decide that angu-
lar momentum is not conserved in electromagnetic interac-
tions, or we can assign an angular momentum to the field
pattern itself in much the same way we assign mass or iner-
tia to an electromagnetic field. (It is well known that elec-
tromagnetic radiation exerts a “radiation pressure.”) The
basic problem is that the magnetic component of the inter-
action introduces a noncentral force to the system and thus
changes its angular momentum. In order to conserve angu-
lar momentum we must assign the difference to the field
pattern itself. This is most directly seen in the case of right
and left circularly polarized photons that carry one unit #
of angular momentum. This amount of angular momen-
tum is required to balance the change in angular momen-
tum experienced by the atomic system that created the
photon (which is actually just a smaller version of the
thought experiment presented here).

Having established that the initial field pattern contains
angular momentum, we notice that at distances greater
than the disk radius the electric and magnetic fields are
“crossed”; i.e., Poynting’s vector N = ExXH, circulates
around the disk axis. This vector gives the energy flux in
the electromagnetic field pattern (energy flux = energy
density X ¢).> We obtain the volume density of linear mo-
mentum from this by dividing Poynting’s vector by ¢* (mo-
mentum density = energy density/c):

p=N/c*=DXB.
The fields of the electron are
D= —er/4nr,
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= [3(per)r/r? — pl/dmec’r,
where p is the magnetic dipole moment. This gives
p = e(rXp)/e,(4mc)?r® = ro(rXp)/ (e/m)4mr®,
where, as above, 7, is the classical electron radius
ro = €*/4megme’ .
The volume density of angular momentum is given by
l=rxp= (- )rX(rxp) = () [r(rp) —pw’].

When we align p with the z axis and use spherical polar
coordinates, the z component of I is

I = — (- )ursin’é.
The total angular momentum in the field extending from
r = a to infinity is given by the integral
= f LdV= —(2/3)ryu/a(e/m) .

For a = (2/3)r, we have
= —u/(e/m),

which just happens to be the entire spin angular momen-
tum of the electron! Recall that it was for this radius that
Feynman found the entire mass of the electron in its field.

This can only be regarded as an amazing coincidence, al-
beit an interesting one. Notice also that we get the correct
“g factor” of g, = 2:

w=(—e/2m)g,S

This is the value Dirac obtained from his relativistic quan-
tum theory and since relativity is just an extension of classi-
cal electromagnetism, perhaps this calculation helps us ap-
preciate a little better that the electron g factor is primarily
a property of the electron’s field pattern rather than some
incomprehensible feature of Dirac’s theory.

Feynman stresses the fact that no classical model of the
electron is possible, and these calculations emphasize the
idea that quantum theory is needed below a certain limit.
However, they can be used as an interesting application of
the energy and momentum contained in an electromagnet-
ic field pattern.

'R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on
Physics (Addison-Wesley, Reading, MA, 1964), Vol. II, Chap. 28.

2Reference 1. The problem is posed as a paradox in Sec. 17-4 and resolved
in Sec. 27-6.

3W. Panofsky and M. Philtips, Classical Electricity and Magnetism (Ad-
dison-Wesley, Reading, MA, 1962), 2nd ed., Secs. 10-5 and 10-6. Notice
particularly the last paragraph of Chap. 10.

The energy eigenvalues of the Dirac hydrogen atom

T. Roy
92, Regent Estate, Calcutta-92, India

(Received 14 July 1986; accepted for publication 5 February 1987)

The solution of the Dirac equation for the hydrogen
atom is well known and can be found in any good textbook
on relativistic quantum mechanics. However, we shall see’
in the following that we can obtain the eigenvalues and
bypass the complication of eigenfunctions for the relativis-
tic case. In fact, we shall cast the relativistic hydrogen
equation in a form that is of exactly the same type as the
second-order differential equation of the nonrelativistic
case. Thus by comparison we obtain the energy eigenval-
ues, thus bypassing the calculation of the eigenfunctions.

The Dirac equation of the hydrogenlike atom is

[ela, p. +a,p, +a, p,) +Bmc* —ze*/r|¢ = Ey.
(1)
Multiplying both sides of Eq. (1) from the left by ar/r, we

get (see Appendix)
L R O L e
-+(2)s >

We now have a lemma,?
(oL + #)* = L?* + #* — #ioL + 2#oL
= [L+ (#/2)0)? + > =j(j+ DI + 1
= (J+ 1) =k*#. |
However, in Dirac’s book it has been shown that (oL + #)
anticomments with (ap) and therefore we have taken the
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B(oL = #i) as the required quantity. This S(oL + #) also
has the same property with the additional feature that it
commutes with the Hamiltonian. Thus Eq. (2) turns out to

b
A8 (s )32 (2)s
-(2)s
ie.,
Ao (e2)(2)s
+mcz( )1//—£IE}L5¢ (3)

Multiplying from the left by (ﬁc/z) (@/9r + 1/r), we get
d  1\[fd , 1
re(Ze D)2
ar + rJ\or t r
2
_g(a +L) [E+£(ﬂ)
ar r r \r

e )58,

r

“[(E+ ) () < melo ) -5

- tZ(@e
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