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The operation of the laws of momentum and angular momentum conservation in the interactions
between current-carrying bodies and charged particles is analyzed using the correct expression
for the force on a magnetic dipole, which takes into account the possible presence of hidden
momentum in a current-carrying body. At nonrelativistic velocities, Newton’s third law holds for
the interactions, and thus the mechanical momentum associated with the motion of current-
carrying bodies and charged particles in a closed system is conserved itself in the nonrelativistic
limit. There is no conflict with overall linear momentum conservation because the
electromagnetic field momentum is equal and opposite to the hidden momentum of the current-
carrying bodies. However, the field angular momentum in a system is not compensated by hidden
angular momentum, and thus only the sum of mechanical angular momentum, which must
include any hidden angular momentum, and field angular momentum is conserved.

I. INTRODUCTION

In classical electrodynamics, the total energy, momen-
tum, and angular momentum of a closed system of charged
particles, interacting via their electromagnetic fields, are
conserved. It is important, however, to stress that the con-
served quantities must include the energy, momentum, and
angular momentum of the electromagnetic fields in the sys-
tem, because the corresponding quantities of the particles
alone are not conserved in general. While these laws of
microscopic electrodynamics are in principle clear and
simple, the operation of the conservation laws in systems
consisting of macroscopic current-carrying bodies and
moving charged particles can be often surprisingly subtle
and involved. Thus it was for a long time commonly held"
that the momentum associated with the motion of a
charged particle and current-carrying body is not con-
served in their interaction even at nonrelativistic velocities,
or in other words, that here Newton’s third law does not
hold and that one has to include the momentum of the
combined electric field of the charge and the magnetic field
of the current-carrying body in order to arrive at an overall
momentum balance in the system. This view had to be al-
tered with the realization of more than 20 years ago that a
current-carrying body can contain a “hidden”” momentum
which is not associated with the motion of its center of
mass.”? Closely related to the possible presence of hidden
momentum in a macroscopic body is the problem of the
correct expression for the force on a magnetic dipole,
which has been the subject of an interesting controversy.?

In this paper, we consider the interaction of a charged
particle of vanishing magnetic moment with a body of zero
net charge, but carrying a nonzero current whose distribu-
tion can be sufficiently accurately characterized by its mag-
netic dipole moment, which of course amounts to assuming
that the dimensions of the body are sufficiently small com-
pared to the distances at which its interaction with the
charged particle is studied. No assumptions or detailed
models are made as to the nature and mechanism of the
electric currents in the body, nor as to the body itself, apart
from assuming that the currents are stationary, or at most
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quasistationary. Thus, for example, the body can be a con-
ducting solenoid, or two counter-rotating nonconducting
disks charged with opposite charges, or a permanent mag-
net.* When the current-carrying body is a conductor, an
electric dipole moment and possibly higher-order electric
multipole moments will be induced in it by the charged
particle, and thus there will be an electrostatic interaction
between the body and the charge, apart from the interac-
tion between the magnetic dipole moment of the body and
the charge. However, electrostatic interactions automati-
cally satisfy Newton’s third law, and so need not be consid-
ered in our investigation, which is concerned with momen-
tum and angular momentum conservation. In any case, one
may assume that the dimensions of the current-carrying
body are so small that already the electric field of any in-
duced electric dipole moment can be neglected at the dis-
tances considered.

Using the correct expression for the force on a magnetic
dipole, which involves in an essential way the possible pres-
ence of hidden momentum in a macroscopic body, we shall
show that already the mechanical momentum associated
with the motion of the charged particle and the body, as-
suming that the motion is slow (i.e., nonrelativistic), is
conserved. The conservation of overall linear momentum is
not affected because the electromagnetic field momentum
is compensated by the hidden momentum of the current-
carrying body. This will confirm and illustrate in a trans-
parent way the general, but rather more complicated calcu-
lations of Furry, made more than 20 years ago.” We shall
also examine the conservation of angular momentum in the
interaction of a charge with a magnetic dipole, paying at-
tention to the possible presence of hidden linear and angu-
lar momenta. Here it will turn out that no part of the me-
chanical angular momentum is conserved alone and that
only the sum of the mechanical angular momentum and
the field angular momentum is a conserved quantity. The
mechanical angular momentum contains in general a hid-
den angular momentum that does not arise from the mo-
tion or rotation of the charged particle and the current-
carrying body.
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II. LINEAR MOMENTUM

The force on a magnetic dipole m at rest in an external
magnetic field B and an external electric field E is given
correctly by® (S.I. units will be used here)

F = V(m'B) _ii(me) (1)

This expression takes account of the possible presence of
the hidden momentum (m X E)/c? in the body that carries
the current that gives rise to the magnetic dipole moment
m. The rate of change of the total momentum P of the body
is given by the commonly used expression

4 p_v(mB), )
dt

but this momentum is the sum of the momentum associat-
ed with the motion of the center of mass of the body MV
and the hidden momentum,

P=MV+ (1/c*)mXE, (3)

and thus theforce onthe dipole,asF = (d /dt)M V,isgiven
by Eq. (1). We stress that Eq. (1) holds only in an inertial
frame in which the translational velocity V of the center of
mass of the body vanishes at the given instant of time. Our
conclusions regarding conservation laws will however be
valid also in any other inertial frame, as long as the veloc-
ities will remain small compared to the speed of light. This
follows from the fact that forces are invariant except for
terms of order ¥'%/c%.

The existence of hidden momentum in a stationary body
can be seen as a necessary consequence of the fact that the
total momentum (mechanical plus electromagnetic) in a
system of any static distribution of charge and current is
zero.” As the momentum of the electromagnetic fields in
such a system does not vanish in general,® there must be an
equal and opposite momentum “hidden” in the static dis-
tribution of charge and current. In the case of the body that
carries the currents being a conductor, it turns out that the
electromagnetic field momentum actually vanishes due to
the fact that the net electric potential inside a conductor is
constant.’ Then the hidden momentum of the conducting
body must be zero too, but one can show that the force on a
magnetic dipole in a conducting body is still given by Eq.
(1), where the term ( — d /dt) (mX E)/c? now arises from
the interaction between the magnetic dipole moment m and
the current induced in the conductor by the time-varying
external electric field E.'°

After these preliminaries, let us now consider a magnetic
dipole m momentarily at rest, interacting with a charge ¢
moving with a velocity v, whose magnitude is small com-
pared to the speed of light. The moving charge creates a
magnetic field B, = vXE,/c’, where E is the electric field
of the charge. The magnetic field B, and the electric field
E, of the charge act on the magnetic dipole with a force
given by Eq. (1),

F, =V,(mB, )———(me )

= (m,)B, — ldm g

S IXE, 4)

where V, is the gradient operator with respect to the radius
vector r,; of the magnetic dipole and where we used the
vector identity
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V,;(m'B,) = (m'V,)B, + mX (V,XB,)
and Maxwell’s equation
1 d
T
where J, = 0 at the magnetlc dipole. Let us assume first

that the magnetic dipole moment is constant in time, i.e.,
(d /dt)m = 0. Then

F, = (1/¢)(mV,) (vXE,), (3)

where we expressed the magnetic field B, in terms of the
electric field of the charge E, .

The force with which the magnetic dipole moment m
acts on the moving charge ¢ is, on the other hand, given by

VaXB, =ped, +3

F, =qvXB,, (6)
where
B, = — (uo/4m)V, (mr/r) (7

is the magnetic field of the magnetic dipole at the charge.
Here, V, is the gradient operator with respect to the posi-
tionr, of the charge, andr = r, — r, is the displacement of
the charge from the magnetic dipole. As the electric field of
the charge at the dipole is, in the nonrelativistic limit, given
by

— (g/4mey) (x/7), (8)

and using that V, X E, = Oin transforming V, (m'E, ) into
(m'V_)E,, we can write Eq. (6) as

F, = (1/)vX(mV)E,. (9)
Comparing Eqgs. (5) and (9), we see that

F,= —F, (10)
as V, = —V, for functions of r =r, —r,. Thus action

does equal reaction in the interaction of a magnetic dipole
with an electric charge at nonrelativistic velocities. Note
that if the usual expression F;, =V, (m*B,) was used for
the force on the magnetic dipole, we would get

’ 1 d Eq
F; F, + = mX at
and Newton’s third law would be violated.
Let us now relax the condition (d /dt)m = 0. Then the
force on the charge g is

Fq =qvad +qu, (12)

where E, is the electric field at the charge due to the time
variation of the magnetic field of the dipole B,. This elec-
tric field is given by

aAd _ Ho dmx__
ot 4 dt TP’

where A, is the vector potential of the magnetic dipole at
the charge, which is now time dependent. Using Eq. (8),
we can write the additional force gE, on charge ¢ as

1 d)
g€, = m>< E,.

(11)

Ed= - (13)

(14)

Comparmg Eq. (14) with the term due to (d /dt)m in Eq.
(4), we see that the additional force on the charge that is
due to the time variation of m is equal and opposite to the
corresponding term in the force on the magnetic dipole.
Newton’s third law, Eq. (10), thus holds also in the general
case when the magnetic dipole moment m varies with time.
We can write Eq. (10) as
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LMV +mv) =0, (15)
dt

where MV and mv are the momenta associated with the
motion of the magnetic dipole and the charge, respectively.
Equation (15) expresses conservation of the mechanical
momentum that is due to the motion of the charge and the
magnetic dipole. In this statement no need arises to refer to
the momentum of the electromagnetic field in the system,
which in general does not vanish but is equal and opposite
to the hidden momentum.

IIT, ANGULAR MOMENTUM

Let us now calculate the torque 7, on the charge g with
respect to the center of mass of the magnetic dipole m. This
torque is given by

= - _&ﬂzg

T, r)(Fq rXq(vad Y X =)
Here, r is the displacement of the charge from the center of
mass of the magnetic dipole and the second term on the
right-hand side is due to the force (14) on the charge that
arises from a possible time variation of the dipole moment
m. For our purpose, it will be advantageous to use in Eq.
(16) the usual explicit expression

B=ﬁ%ﬂzﬁ)
o R

(16)

d (17
for the magnetic field B, of the magnetic dipole rather than
that given in Eq. (7). Of interest now is the electromagnet-
ic field angular momentum M; in a system of a current-
carrying body and an electric charge. For a sufficiently
large displacement r of the charge from the body, so that
the magnetic dipole approximation holds, this can be
shown to have the value''

M, = 12Jr’x(quB)d3r'=%rx-T——x—r, (18)

HoC 45 r

provided that the charge itself does not have a magnetic
moment. Here, B and m are the magnetic field and the
magnetic dipole moment of the current-carrying body, re-
spectively, and the angular momentum is calculated about
the center of mass of the body. Using Eqs. (16)-(18), we
obtain for the sum of the torque 7, on the charge and the
rate of change of the field angular momentum M; the fol-
lowing expression:
4 g, = o (.gz_

Tq+dt M, yom mX vx’s mXxB,, (19)
after straightforward vector algebra, calculating the time
derivative according to the rule d /dt=3/dt + (v'V,).
The right-hand side of Eq. (19) is the negative of the well-
known expression'? for the torque 7, on a magnetic dipole
m at rest in a magnetic field B,. Thus Eq. (19) can be
written as

4 M, =0.
dt
Equation (20) can be cast in a form that expresses the
conservation of angular momentum. The torque on the
charge is the rate of change of the angular momentum M,
of the motion of the charge,
d

T, = E(erv) = 5—t M,

T, + T+ (20)

(2h)
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and the torque on the magnetic dipole ©, must equal the
rate of change of the intrinsic angular momentum M, of
the magnetic dipole,

d
T, =—My,,
d dt d
as M, is here defined with respect to the center of mass of
the dipole. Using Egs. (21) and (22), we can write Eq.
(20) as

(22)

4 (M, +M, +M)) =0, (23)
dt

which expresses conservation of the overall angular mo-
mentum of a closed system consisting of a magnetic dipole
and an electric charge. Note that the field angular momen-
tum M, has to be included with the mechanical angular
momenta M, and M, of the charge and the dipole, respec-
tively, in order to obtain a conserved quantity.

The intrinsic angular momentum M, of the magnetic
dipole must contain any angular momentum that is “hid-
den” in the sense that it would not appear in the overt
rotational motion of the body that carries the currents that
give rise to the magnetic dipole moment. Such hidden an-
gular momentum may be for example due to relativistic
effects in the motion of the charge carriers in the body, '? or
it can be simply the angular momentum of the charge carri-
ers that is not compensated by the angular momentum of
charge carriers of opposite sign, which would move in op-
posite direction. Hidden intrinsic angular momentum thus
depends on details of the mechanism of charge transport in
the body and it does not necessarily vanish in the limit of a
pointlike body; the ratio of angular momentum of the
charge carriers in the body to the magnetic dipole moment
of the body can be finite even for a vanishing body size.
There is no simple relation between hidden intrinsic angu-
lar momentum and the field angular momentum in the sys-
tem, apart from the conservation requirement of Eq. (23),
where hidden intrinsic angular momentum must be includ-
ed in the intrinsic angular momentum M, of the body that
carries the magnetic dipole moment. Unlike hidden linear
momentum, hidden intrinsic angular momentum is not
equal and opposite to the field angular momentum in the
system.

It is instructive to examine the effect of displacing the
origin with respect to which the torques and angular mo-
menta are calculated in our problem. Let us consider a new
origin, displaced by a vector a from the center of mass of
the magnetic dipole, thus

(24)

where 1’ is the radius vector of the charge with respect to
the new origin. The angular momentum M, of the charge
can be written as

M, =M, +aXmy,

r=r'+a,

(25)

where M is the angular momentum of the charge calculat-
ed about the new origin and myv is the momentum of the
charge. A similar equation should hold for the angular mo-
menta of the magnetic dipole with respect to the old and
new origins. However, we cannot use here only the momen-
tum M V of the motion of the center of mass of the dipole,
which is anyway assumed to vanish at the given instant of
time, but must use instead the total momentum of the di-
pole that includes its possible hidden momentum, given by
Eq. (3). Thus
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M, =M, +axX[MV + (1/¢)mXE,]. (26)

Equation (26) expresses the fact that the angular momen-
tum M, of the magnetic dipole, taken about an origin that
is displaced from the center of the mass of the dipole, can
contain a hidden angular momentum — aX (mXE,)/c
arising from the possible hidden linear momentum of the
dipole mXE,/c’. We may call it a hidden orbital angular
momentum, even though it is not due to an orbital motion
of the dipole, to contrast it with the hidden intrinsic angu-
lar momentum discussed above.
The field angular momentum transforms as follows:

M, =M; +axP,. (27)

Here, M is the field angular momentum calculated with
respect to the new origin and P, is the field linear momen-
tum in the system. This field momentum can be shown to
have the value' :
1 f 30— Qo oo T
P,=— | ExBd» =%omx L,
ot J ° 47 X r
which is equal and opposite to the hidden linear momen-
tum (mXE,)/c* in the system. Substituting Eqs. (25)-
(27) into Eq. (23), we obtain

(28)

4 (M, + M + M)

+ ax%<mv + MV +LmxE, + Pf) —0.  (29)
¢

Conservation of angular momentum must not depend on

the choice of the origin with respect to which angular mo-

menta are calculated, as long as the origin is at rest in an

inertial system. Thus we must have that

%(mv+MV+—Clgmeq +Pf)=0,
which is indeed true on the strength of Egs. (15) and (28).
Note that the hidden orbital angular momentum
—aX(mXE, )/c* was needed to establish the conserva-
tion of the overall angular momentum taken about an ori-
gin that is displaced from the center of mass of the dipole.

(30)

IV. CONCLUDING REMARKS

Using the magnetic dipole approximation for the force
on a current-carrying body, we showed that the forces act-
ing between an electric charge and a current-carrying body
satisfy Newton’s third law, with the electromagnetic field
momentum and the hidden momentum of the current-car-
rying body balancing each other. Similarly, the conserva-
tion of angular momentum in the system of the current and
current-carrying body was examined here relying on the
magnetic dipole approximation. But this approximation
was used only because the simple expression for the force
on a magnetic dipole enabled us to perform the calculations
in a simple and transparent way. The conservation state-
ments arrived at here hold in general for any nonrelativistic
motion of the bodies, without the restriction to distances at
which the magnetic dipole approximation applies. This
was shown by Furry, for linear momentum in a detailed
and complete manner, already more than 20 years ago.'’

Examples of systems of current-carrying bodies interact-
ing with charged particles are often analyzed with a view to
illustrating the physical reality of the linear and angular
momenta of static or quasistatic electromagnetic fields. As
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the mechanical linear momentum of the motion of the ma-
terial bodies in such systems is conserved in the nonrelativ-
istic limit, such examples are flawed as far as linear mo-
mentum is concerned because the existence of linear
momentum of static electromagnetic field can be detected
only through violations of Newton’s third law. However,
angular momentum is different in this respect, because
field angular momentum is not compensated by hidden an-
gular momentum and has to be included with the mechani-
cal angular momentum of the motion of the bodies in the
system and with hidden angular momentum in order to
obtain a conserved quantity. Thus examples such as the
famous and much discussed Feynman’s disk ‘““paradox”'®
are valid illustrations of the physical reality of the angular
momentum of a static electromagnetic field. But a detailed
analysis of such examples would have to take account of
the hidden angular momentum in the systems under consi-
deration.

ACKNOWLEDGMENT

The author wishes to thank E. C. H. Silk for his helpful
comments on the manuscript.

!See, e.g., G. T. Trammel, “Aharonov-Bohm paradox,” Phys. Rev. B
134, 1183-1184 (1964); M. G. Calkin, “Linear momentum of quasistat-
ic electromagnetic fields,” Am. J. Phys. 34, 921-925 (1966).

2W. Shockley and R. P. James, ““Try simplest cases’ discovery of *hidden
momentum’ forces on ‘magnetic currents,” ” Phys Rev. Lett. 18, 876
879 (1967); H. A. Haus and P. Penfield, “Force on a current loop,”
Phys. Lett. 26A, 412413 (1968).

3 A recent discussion of this controversy is by L. Vaidman, “Torque and
force on a magnetic dipole,” Am. J. Phys. 58, 978-983 (1990).

*The magnetic moment of a permanent magnet can be modeled by elec-
tric current loops. Indeed, the intrinsic magnetic moments of electrons
and nuclei can be modeled accurately by circulating electric currents;
for a recent discussion see T. H. Boyer, “The force on a magnetic di-
pole,” Am. J. Phys. 56, 688-692 (1988).

*W. E. Furry, “Examples of momentum distributions in the electromag-
netic field and in matter,” Am. J. Phys. 37, 621-636 (1969).

$This formula was first given by Haus and Penfield, Ref. 2; its validity for
various models of current loops has been discussed recently by Vaid-
man, Ref. 3.

M. G. Calkin, “Linear momentum of the source of a static electromag-
netic field,” Am. J. Phys. 39, 513-516 (1971); Y. Aharanov, P. Pearle,
and L. Vaidman, “Comment on ‘Proposed Aharonov-Casher effect: an-
other example of an Aharonov-Bohm effect arising from a classical
lag,” ” Phys. Rev. A 37, 40524055 (1988).

¥ General proofs of this are, e.g., in Furry, Ref. 5; Calkin, Ref. 7; Ahar-
anov, Pearle, and Vaidman, Ref. 7.

?This is shown by Furry, Ref. 5 and Calkin, Ref. 7.

'9V. Hnizdo, “Comment on ‘Torque and force on a magnetic dipole,’ by
L. Vaidman,” Am. J. Phys. 60, 242246 (1992).

! A general formula for the electromagnetic field angular momentum of a
system of a charge and a stationary current distribution in terms of the
vector potential of the currents was derived by Trammel, Ref. 1. Our
Eq. (18) is Trammel’s formula with the vector potential of a magnetic
dipole. Note that the magnetic field does not have to be exactly that of a
point magnetic dipole, i.e., given as in our Eq. (17), down to small
distances. In the nonrelativistic treatment, the contributions of the mag-
netic field B, of the slowly moving charge ¢ and of the electric field E, of
the slowly changing magnetic dipole moment m, to the field angular
momentum M, are neglected. i

'2 Unlike with the force on a magnetic dipole, there has been no controver-
sy as to the correct expression for the torque on a magnetic dipole, see
Vaidman, Ref. 3.

B G. E. Stedman, “Observability of static electromagnetic angular mo-

V. Hnizdo 245



mentum,” Phys. Lett. A 81, 15-16 (1981).

14See, e.g, Trammel, Ref. 1, who gives a general formula for the electro-
magnetic field momentum of a system of a charge and a stationary
current distribution in terms of the vector potential of the currents.
Similar comments to those of Ref. 11 apply here too.

'3 Furry, Ref. 5.

'R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures
on Physics (Addison-Wesley, Reading, MA, 1964), Vol. II, pp. 17-5~
17-6; an example most recently analyzed in this Journal is by A. S. de
Castro, “Electromagnetic angular momentum for a rotating charged
shell,” Am. J. Phys. 59, 180-181 (1991), where references to other
papers on this topic are given.

A laboratory course in computer interfacing and instrumentation

Carl A. Kocher

Department of Physics, Oregon State University, Corvallis, Oregon 97331

(Received 18 March 1991; accepted 13 July 1991)

The rationale and content are described for an electronics-oriented course in computer-aided
measurements. Performed on a prototyping board connected to an IBM PC-AT, the experiments
emphasize digital-to-analog and analog-to-digital conversion at the chip level. Techniques are
presented for parallel and serial communication; waveform generation; the acquisition, display,
and analysis of data; the use of graphics; control and feedback; mechanical positioning with
stepper motors; and signal averaging. Students have undertaken a wide range of original projects.

1. COURSE CONCEPT

Advances in integrated-circuit electronics have revolu-
tionized the possibilities for laboratory applications of
small computers. Not only can an interfaced computer
save time by accurately performing repetitive measure-
ments, but its speed and flexibility make new experiments
possible. To meet the need for instruction in this new field,
Oregon State University has developed a 10-week laborato-
ry course devoted to the uses of computers as scientific
instruments. The class meets in two 3-h laboratory sessions
per week and is open to students who have completed a
prerequisite course in digital and analog electronics.

In a research experiment, the operation of a fundamental
measuring device is of critical importance and must be well
understood. The electronics for data acquisition, while also
important, may come to be regarded as a “black box” that
can be trusted to perform its function in a predictable way.
In the establishment of courses dealing with computerized
instrumentation, an important question of philosophy
must be settled near the outset: What will be the boundary
of the “black box?

Computer structure and architecture are discussed only
briefly in our course, allowing time for the students to ex-
plore the hardware, software, and methodology for linking
a digital computer to the analog world of the laboratory.
Interfacing circuits are therefore kept “outside the box,”
and the experiments are set up on a prototyping bread-
board, where the role and properties of digital-to-analog
(D/A) and analog-to-digital (A/D) converters can be
studied. This approach strikes a balance between two ex-
tremes: (1) a preoccupation with first principles, using
primitive single-board computers and discrete interfacing
circuits that may give poor results; and (2) specialized
(and expensive) packaged data acquisition systems with
factory-designed multifunction interfaces and commercial
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software.! The latter can be of real value in research, but in
a course their use might obscure the comprehension of in-
terfacing techniques. From the standpoint of pedagogy, the
use of a breadboard offers the advantage of full access to the
circuit, which is essential if experimentation and innova-
tion are to be encouraged.

The IBM PC-AT was adopted as the computer for the
course because it has become a de facto standard and be-
cause an abundance of inexpensive software is available for
it. Various manufacturers® offer “clones” of the AT for less
than $600. As noted in Sec. II, the standard IBM serial/
parallel input/output (I1/0) board, with minor modifica-
tions, is satisfactory for use in an instructional laboratory.

During the first week the students become acquainted
with the instruments on their table, including the computer
and its graphics capability. Next the parallel and serial in-
terfaces are studied, followed by consideration of the func-
tion and uses of D/A and A/D converters. Applications,
selected for their relevance to research in physics and relat-
ed fields, include on-line data acquisition, the display and
analysis of data, signal averaging, and several control and
feedback situations. The demonstrations and exercises are
given in Microsoft QuickBASIC, which is convenient and
easy to learn; programs can be run in both interpreted and
compiled modes.

Working in pairs, the students keep notebooks showing
programs, circuits, and results, together with suggestions
for future development or improvement. Toward the end
of the term, each member of the class selects and develops
an original interfacing project, demonstrates it to the class,
and writes a descriptive paper. This combination of direct-
ed and independent study provides balance, stimulates in-
terest, and helps students discover ways to cope with unfa-
miliar situations in a research context.

Since its inception the course has been very popular. It
has been taught 25 times, by five members of the faculty,
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