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The existence of hidden momentum, i.e., the mechanical momentum of a body the constituents of
which move in a stationary manner but the center of mass of which is at rest in an external static
field of force, is shown to follow from the general requirements of relativistic mechanics of
continuous media, independently of whether the external forces are electromagnetic or gravitational.
The hidden mechanical momentum is compensated by the momentum of the static fields in the
system, necessitating, in the gravitational case, the existence of a gravinetic quasistatic gravitational
field, which, in analogy to the magnetostatic field, is generated by a quasistationary current of mass
and acts on a moving mass. ©1997 American Association of Physics Teachers.
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I. INTRODUCTION

A body the center of mass of which is at rest can carr
nonzero mechanical momentum, called hidden moment
Since the discovery of this surprising result some 30 ye
ago,1 in investigations of the forces that an electrically ne
tral current loop can experience in an electric field, the d
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cussion of hidden momentum has focused on electrodyna
aspects of the phenomenon, such as the implications of
den momentum for the force on a magnetic dipole in
electromagnetic field,2 or the role of hidden momentum in
the electromagnetic mass of a body carrying both charge
current.3 Hidden momentum can arise, however, not on
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when electric currents are located in electric fields4—it is
shown in the present paper that the existence of hidden
mentum follows from the general requirements of spec
relativity, independently of whether the forces in questi
are of electromagnetic or gravitational nature.
In relativistic mechanics of continuous media, mac

scopic bodies such as fluids and solids are described b
energy-momentum four-tensorTmn. When the body is an
ideal fluid,5 the components of the four-tensorTmn give the
body’s energy densityu, momentum densityg and stress
tensorsi j as

6

u5T005g2~u01pv2/c2!, ~1!

gi5T0i /c5g2~u01p!v i /c
2, ~2!

s i j52Ti j52g2~u01p!v iv j /c
22pd i j , ~3!

whereu0 is the local-rest-frame energy density,p is the pres-
sure in the body,7 v i are the components of the velocityv of
the macroscopic motion of the volume element of the bo
at a given point in space, andg5~12v2/c2!21/2 with v5uvu.
Equations~1!–~3! also give the energy-momentum tens
Tmn of a solid body in an approximation that neglects po
sible violations of Pascal’s law in the local rest frame of t
solid.8

The energy-momentum tensorTmn satisfies the equation o
motion

]Tmn

]xn 5 f m, ~4!

where fm5~f–v/c,f! is the four-vector of an external forc
density acting on the body.9 The time~m50! component of
Eq. ~4! gives an equation of continuity for the energy dens
u,

]u

]t
1“–~c2g!5f–v. ~5!

The energy flux density is thusc2 times the momentum den
sity g, which is the relation between these quantities tha
demanded by special relativity, independently of the parti
lar form @as, e.g., that of Eqs.~1!–~3! for an ideal fluid# that
the components of the energy-momentum tensorTmn take.
The space components of Eq.~4! with the energy-momentum
tensor of Eqs.~1!–~3! lead to the following relativistic gen
eralization of Euler’s equation:

g

c2
~u01p!F]~gv!

]t
1~v–“ !~gv!G1

g2

c2 F]p]t 1v–“pGv
52“p1f. ~6!

II. HIDDEN MOMENTUM

The momentumP of a body of finite dimensions can b
obtained by integrating the momentum densityg as

Pi5E gid
3r5E “–~xig!d3r2E xi“–gd

3r

52E xi“–gd
3r , ~7!

where the integral over“–~xig! is zero as it can be trans
formed into the surface integral of an integrand that vanis
outside the body. Using Eq.~5! for the divergence of the
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momentum density, the body’s momentum~7! is expressed
as

P52
1

c2 E r S f–v2
]u

]t Dd3r . ~8!

This momentum turns out to be not necessarily zero e
when the body’s elements move in a stationary manner,
its center of mass is at rest. When the motion of the bod
elements is stationary,]u/]t50, and, furthermore, the exter
nal force densityf is derivable from a potentialf by f
52r“f, wherer is the density of the body’s ‘‘charge’’ tha
is acted on by the external force, the momentum~8! is given
as

P52
1

c2 E r ~v–f!d3r5
1

c2 E r ~rv–“f!d3r

52
1

c2 E f jd3r . ~9!

Here, the localized current densityj5rv is assumed diver-
genceless, and the second integral is transformed using
integral identity

E ahd3r52E r ~h–“a!d3r , ~10!

which holds for any well-behaveda and localized diver-
gencelessh.10 Equation~9! gives the hidden momentum o
the body.11

The body’s ‘‘charge’’ referred to above is the electr
charge when the external force in question is due to an e
tric field,12 or it is the rest mass when the external force
due to a gravitational field. Thus, for example, according
Eq. ~9!, a disk of radiusr and uniformly distributed electric
chargeq, spinning with an angular velocityv about its sym-
metry axis but the center of mass of which is at rest in
uniform electric fieldE, carries a hidden momentum

P5
qr2

4c2
v3E, ~11!

while a similar disk, of uniformly distributed rest massm
and spinning in a uniform gravitational fielde, has a hidden
momentum

P5
mr2

4c2
v3e. ~12!

These results are obtained most easily by using the form
P5~1/c2!m3E, with m5~qr2/4!v the magnetic dipole mo-
ment; this formula, expressed in terms of electromagn
quantities, is equivalent to Eq.~9! when the external field in
question is uniform.13

III. TWO LIMITING CASES

The expression~9! for hidden momentum was obtaine
from the relativistic connection of Eq.~5! between the en-
ergy flux density and momentum density, which does
provide an insight into the physical origin of hidden mome
tum. There are two limiting cases in which the hidden m
mentum of a body can be calculated easily by integrat
directly the momentum density~2!: ~i! when the body is a
sufficiently rarefied gas the pressure of which can be
glected; and~ii ! when the linear, or angular, velocity of th
body’s elements is constant, which occurs in the flow o
516V. Hnizdo
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fluid of negligible compressibility constrained by a straight14

or circular, tube of a constant cross section, and in the r
tion with a constant angular velocity of a solid body of ne
ligible compressibility.
First, let us consider case~i!. Using the momentum densit

~2! with p50 and u05n0m0c
2, wheren0 andm0 are the

local-rest-frame density and rest mass of the gas partic
respectively, we get the hidden momentumP as

P5
1

c2 E g2n0m0c
2v d3r5E gm0nv d

3r , ~13!

where n5gn0 is the laboratory-frame density of the pa
ticles. In a steady motion of the particles in a static exter
potentialf, the total mechanical energyE of each particle is
the same conserved quantity

E5gm0c
21qf5const, ~14!

whereq is the ‘‘charge’’ of each particle. Thus, the mome
tum ~13! can be expressed in the same way as in Eq.~9!,

P5
1

c2 E ~E2qf!nv d3r52
1

c2 E f j d3r . ~15!

Here, the first term in the first integral yields zero as t
particle current densitynv is divergenceless in a stationa
situation;j5qnv.
Now let us calculate the hidden momentum for case~ii !.

Assuming a stationary case, in which all partial time deriv
tives vanish, and projecting onto the direction of the veloc
v of the body’s element at a given point, the relativistic E
ler’s equation~6! simplifies to

g2v–“p1
g

c2
~u01p!v–@~v–“ !~gv!#5f–v. ~16!

When the velocityv is constant, or the motion is circula
with a constant angular velocity~i.e., v5v3r with v con-
stant!, the second term on the left-hand side of Eq.~16!
vanishes,15 resulting in16

g2v–“p5f–v. ~17!

Integrating the momentum density~2! and using Eq.~17!
with f52r“f, the hidden momentumP is calculated, again
in a full agreement with Eq.~9!, as

P5
1

c2 E g2u0v d
3r1

1

c2 E g2pv d3r

52
1

c2 E r ~g2v–“p!d3r

5
1

c2 E r ~ j–“f!d3r

52
1

c2 E f j d3r . ~18!

Here, the first integral vanishes asu0 is constant and
“–~g2v!50 in the motion with a constant linear or angul
velocity,17 and the second and fourth integrals are tra
formed using the integral identity~10!.
These calculations show that hidden momentum arise

case~i! from the relativistic variation of the mass of the g
particles with their speed,18 while, in case~ii !, it can be
traced to the relativistic properties of the pressure in a b
of low compressibility.19
517 Am. J. Phys., Vol. 65, No. 6, June 1997
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IV. HIDDEN MOMENTUM AND THE FIELD
MOMENTUM

An important aspect concerning hidden momentum is t
it is compensated by an equal and opposite momentum o
external field combined with the field created by the curr
j in the system, so that the total linear momentum, i.e.,
mechanical one plus that of the fields, vanishes in a fin
system of a stationary distribution of matter and sta
fields.20 This can be shown to follow immediately from th
requirement of special relativity that the total-momentu
densitygtot of a closed system, which is the sum of the m
chanical partg and a field part, satisfies the continuity equ
tion

]utot
]t

1“–~c2gtot!50, ~19!

which expresses the conservation of the total energy, w
densityutot , of the closed system. As the system is assum
finite, including the sources of the fields, the tota
momentum densitygtot vanishes at least as 1/r 4 at infinity.
The total linear momentumPtot of the system is then given a

Pi tot5E gi tot d
3r

5E “–~xigtot!d
3r2E xi“–gtot d

3r

50. ~20!

Here, both the second and third integrals are zero: the sec
one because it can be transformed into the surface integr
an integrand that vanishes sufficiently fast at infinity, and
third one on the account of Eq.~19! and the stationary con
dition ]utot/]t50.
In the electromagnetic case, the result that the total lin

momentum in a finite stationary system vanishes is verifi
immediately on transforming the expression~9! for hidden
momentum into one in terms of the external electric fie
E52“f and the magnetic fieldB created by the currentj
~i.e.,“3B5m0j !,

P52
1

c2 E f j d3r

52e0E f“3B d3r

52e0E “3~fB!d3r1e0E “f3B d3r

52e0E E3B d3r . ~21!

Here, the third integral is zero as it can be transformed int
surface integral of a vanishing integrand; the last express
is the negative of the usual formula for the momentum of
electromagnetic field~E,B!.
In the gravitational case, the requirement that the to

linear momentum of a finite stationary system must van
necessitates the existence of quasistatic ‘‘gravinetic’’ fiel
which, in analogy to magnetostatic fields, are generated
quasistationary currents of mass and act on moving m
and, when combined with ordinary, ‘‘gravistatic’’ fields, ca
contain linear momentum. Gravinetic effects are predic
by general relativity, but arguments based solely on spe
517V. Hnizdo
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relativity only have been made for the existence of qua
static gravinetic fields on several occasions.21 Following
Bedford and Krumm,22 a gravinetic fieldb can be defined so
that it is created by a quasistationary rest-mass current
sity jm according to a gravitational analog of Ampe`re’s law:

“3b52
4pG

c2
jm , ~22!

whereG is the gravitational constant; the gravinetic fieldb
acts on a particle of rest massm, moving with a velocityv,
with the force

F5mv3b. ~23!

Postulating that the quasistatic-gravitational-field moment
densitygg is given by23

gg5
1

4pG
b3e, ~24!

wheree52“f is the ordinary, gravistatic, gravitational fiel
with a potentialf, the gravitational-case hidden momentu
2~1/c2!*fjmd

3r can be transformed into the negative of t
gravitational-field momentum~1/4pG!*b3ed3r in exactly
the same manner as it is done for the electromagnetic ca
Eq. ~21!.
In conclusion, it is emphasized that the close analogy,

ploited in this paper, between electromagnetic and grav
tional fields holds only when the fields are quasistatic. Mo
over, it is obvious that, in the framework of the gene
theory of relativity, the concept of the quasistatic gravine
field b in a flat space-time can be introduced meaningfu
only in a low-field approximation.

1W. Shockley and R. P. James, ‘‘ ‘Try simplest cases’ discovery of ‘hidd
momentum’ forces on ‘magnetic currents,’ ’’ Phys. Rev. Lett.18, 876–879
~1967!; H. A. Haus and P. Penfield, ‘‘Force on a current loop,’’ Phys. Le
A 26, 412–413~1968!.
2L. Vaidman, ‘‘Torque and force on a magnetic dipole,’’ Am. J. Phys.58,
978–983~1990!; V. Hnizdo, ‘‘Comment on ‘Torque and force on a mag
netic dipole,’ ’’ ibid. 60, 279–280~1992!.
3V. Hnizdo, ‘‘Hidden momentum and the electromagnetic mass of a cha
and current carrying body,’’ Am. J. Phys.65, 55–65~1997!.
4L. Vaidman, Ref. 2, discusses briefly the hidden momentum in grav
tional systems.
5An ideal fluid has a negligible viscosity and thermal conductivity, and
cannot support any shear stresses.
6L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon, Oxford,
1987!, 2nd ed., Sec. 133;The Classical Theory of Fields~Pergamon, Ox-
ford, 1975!, 4th ed., Sec. 35. The mechanical stress tensorsi j , as usually
defined, equals the negative of the momentum flux densityTı j .
7The pressure in an ideal fluid is an invariant scalar, see C. Mo” ller, The
Theory of Relativity~Clarendon, Oxford, 1972!, 2nd ed., pp. 191–192.
8A solid can support nonzero shear stresses, which may result in a l
rest-frame stress tensors i jÞ2pd i j , in a violation of Pascal’s law~see the
first footnote in Sec. 35 of L. D. Landau and E. M. Lifshitz,The Classical
Theory of Fields, Ref. 6!.
9Strictly speaking, the force densityf acting on a given element of the bod
should include the contributions from the ‘‘body’’~as opposed to ‘‘sur-
face’’! forces due to all the other elements of the body, but we s
assume that such contributions can be neglected in comparison wit
518 Am. J. Phys., Vol. 65, No. 6, June 1997
i-

n-

in

x-
a-
-
l
c

n

e

-

t

al-

ll
he

external forces~see Ref. 12, however, for a case where such an assump
cannot be made!.

10This can be proved separately for each component, using Eq.~7! with
gi5ahi and the fact that“–~ah!5h–“a for a divergencelessh.

11Following the already accepted terminology, by ‘‘hidden momentum’’
thus meant a nonzero mechanical momentum of a body the center of
of which is at rest; however, in a recent paper of E. Comay, ‘‘Expos
‘hidden momentum,’ ’’ Am. J. Phys.64, 1028–1034~1996!, the term
‘‘hidden momentum’’ is used in a rather less restricted way.

12The potentialf appearing in Eq.~9! is then, strictly speaking, that of the
total electric field acting on the body, including that which originates fro
the charge distribution within the body itself. When the body that carr
the electric currents is a conductor, the external electric field induce
surface charge distribution on the conductor such that the net potentf
in the body is constant and thus, according to Eq.~9!, the hidden momen-
tum vanishes, as*jd3r50 for a divergencelessj .

13With the quantitiesj5rv andf52E–r an electric current density and th
potential of a uniform electric fieldE, respectively, Eq.~9! can be rewrit-
ten asc2P52*r „j–E…d3r52E3*r3jd3r2*j „E–r …d3r52m3E1*fjd3r
52m3E2c2P, wherem5

1
2*r3jd3r is the magnetic dipole moment, re

sulting inP5~1/c2!m3E.
14A strictly straight tube cannot confine the fluid to a finite region of spa
the tube has to have bends that fashion it into a closed loop. One
assume, however, that the bends are negligible in size compared t
straight sections of the tube.

15That this is true forv5v3r with v constant~‘‘constant angular veloc-
ity’’ ! is seen most easily by using cylindrical coordinatesr,w:
v–@~v–“!~gv!#5v–@v]~gv!/r]w#50, as putting thez axis along v, v
5~2v sinw,v cosw,0! with v5uvu5vr.

16This equation can be obtained also by transforming Euler’s equation f
the local rest frame of a constant-velocity fluid to the laboratory fram
see, in the electromagnetic setting, V. Hnizdo, ‘‘Hidden momentum o
relativistic fluid carrying current in an external electric field,’’ Am. J
Phys.65, 92–94~1997!.

17For v5v3r with v constant ~‘‘constant angular velocity’’!,
“–@f (v2)v#5f (v2)“–v asv–“v250, while the divergence of the velocity
itself “–v50.

18When the relativistic massgm0 of a gas particle is replaced by the non
relativistic constant massm0, the hidden momentum of Eq.~13! vanishes
as the particle current densitynv is divergenceless in the stationary situ
tion.

19Vaidman, Ref. 2.
20S. Coleman and J. H. Van Vleck, ‘‘Origin of ‘hidden momentum force
on magnets,’’ Phys. Rev.171, 1370–1375~1968!; M. G. Calkin, ‘‘Linear
momentum of the source of a static electromagnetic field,’’ Am. J. Ph
39, 513–516~1971!; Y. Aharanov, P. Pearle, and L. Vaidman, ‘‘Comme
on ‘Proposed Aharanov–Casher effect: Another example of Aharan
Bohm effect arising from a classical lag,’ ’’ Phys. Rev. A37, 4052–4055
~1988!; L. Vaidman, Ref. 2.

21P. Lorrain and D. R. Corson,Electromagnetic Fields and Waves~Free-
man, San Francisco, 1970!, 2nd ed., p. 251; D. Bedford and P. Krumm
‘‘On relativistic gravitation,’’ Am. J. Phys.53, 889–890 ~1985!; P.
Krumm and D. Bedford, ‘‘The gravitational Poynting vector and ener
transfer,’’ Am. J. Phys.55, 362–363~1987!.

22D. Bedford and P. Krumm, Ref. 21.
23It should be noted that the formula of Eq.~24! cannot give the momentum
density of gravitational waves, for which the quasistatic fieldse and b
have no meaning. Note also the reverse order, in comparison with
electromagnetic case, of the factors in the vector productb3e—this is due
to the negative sign in the ‘‘Ampe`re’s law’’ of Eq. ~22!, which, in turn,
comes about because the like gravitational ‘‘charges’’ attract~see D. Bed-
ford and P. Krumm, Ref. 21!. The quasistatic gravitational Poynting vecto
is thenc2gg5(c2/4pG)b3e, as proposed by P. Krumm and D. Bedfor
Ref. 21.
518V. Hnizdo


