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The existence of hidden momentum, i.e., the mechanical momentum of a body the constituents of
which move in a stationary manner but the center of mass of which is at rest in an external static
field of force, is shown to follow from the general requirements of relativistic mechanics of
continuous media, independently of whether the external forces are electromagnetic or gravitational.
The hidden mechanical momentum is compensated by the momentum of the static fields in the
system, necessitating, in the gravitational case, the existence of a gravinetic quasistatic gravitational
field, which, in analogy to the magnetostatic field, is generated by a quasistationary current of mass
and acts on a moving mass. ®97 American Association of Physics Teachers.

I. INTRODUCTION cussion of hidden momentum has focused on electrodynamic
aspects of the phenomenon, such as the implications of hid-
A body the center of mass of which is at rest can carry ajen momentum for the force on a magnetic dipole in an
nonzero mechanical momentum, called hidden momentumyacromagnetic field,or the role of hidden momentum in
Since the discovery of this surprising result some 30 yearg, . electromagnetic mass of a body carrying both charge and

ago! in investigations of the forces that an electrically neu- . . onid Hidden momentum can arise. however. not onl
tral current loop can experience in an electric field, the dis- ' ' ’ y
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when electric currents are located in electric fidldit is momentum density, the body’s momentyi) is expressed
shown in the present paper that the existence of hidden mas

mentum follows from the general requirements of special 1 Ju

relativity, independently of whether the forces in question  p—_ — f r(f-v— —)d3r. )
are of electromagnetic or gravitational nature. c at

In relativistic mechanics of continuous media, Macro-This mementum turns out to be not necessarily zero even
scopic bodies such as fluids 329 solids are described by gfihen the body’s elements move in a stationary manner, and
energy-momentum four-tensar*”. When the body is an s center of mass is at rest. When the motion of the body’s

. . 5 v 1
|deaI,fIU|d, the components of the four-tenstt” give the  glements is stationaryu/dt=0, and, furthermore, the exter-
body’s energy density, momentum densityg and stress 5| force densityf is derivable from a potentialh by f

tensora;; as’ =—pV ¢, wherep is the density of the body’s “charge” that
u="T%=2(uy+ pv%c?), (1)  is acted on by the external force, the momenti@nis given
as
gi=T%c=»*(up+ p)v; /c? @ L L
. —__ . 3 . 3
oj=—Tl=—9*(Upg+p)viv;/c*—ps, ©) P= c? J rv-Hdr c? j r(pv-V ¢)dr
whereu, is the local-rest-frame energy densipyis the pres- 1
sure in the body,v; are the components of the velocityof =~z f @jd3r. (9
the macroscopic motion of the volume element of the body
at a given point in space, ang=(1—-v?/c?)"Y2with v=|v|.  Here, the localized current density=pv is assumed diver-

Equations(1)—(3) also give the energy-momentum tensor genceless, and the second integral is transformed using the
T#” of a solid body in an approximation that neglects pos-integral identity
sible violations of Pascal’s law in the local rest frame of the

solid® o _ f ahd3r=—J r(h-va)dsr, (10)
The energy-momentum tensot” satisfies the equation of
motion which holds for any well-behaved and localized diver-
JTHY genceles$.'° Equation(9) gives the hidden momentum of
_—fu, (4)  the body'*
IxX The body’s “charge” referred to above is the electric

where f#=(f.v/c,f) is the four-vector of an external force charge when the external force in question is due to an elec-

density acting on the bodyThe time (x=0) component of  tric field, or it is the rest mass when the external force is

Eq. (4) gives an equation of continuity for the energy densitydue to a gr_avitationa_l field. Thus, for exz_imple, accordin_g to
u, Eq. (9), a disk of radiug and uniformly distributed electric

chargeq, spinning with an angular velocity about its sym-

au 5 metry axis but the center of mass of which is at rest in a
TV (cig=tv. (5 uniform electric fieldE, carries a hidden momentum
_ . 2
The energy flux density is thue times the momentum den- p— art WwxE (11)
sity g, which is the relation between these quantities that is 4c '

demanded by special relativity, independently of the particu- , . - . . _
lar form [as )égp that of Eqssl)g—(3) fgr an ide)gl fluid tﬁat while a similar disk, of uniformly distributed rest mass
the compor,1er.1ts., of the energy-momentum terBbf take and spinning in a uniform gravitational fiek has a hidden

The space components of E¢) with the energy-momentum momentum

tensor of Eqs(1)—(3) lead to the following relativistic gen- mr?

eralization of Euler’'s equation: P= 7z wxe (12)

Y (V) y? [ap These results are obtained most easily by using the formula
c2 (Uo+Pp) at VYY) |+ c2 E+V'Vp v P=(1/c®>)mxE, with m=(qr?4)e the magnetic dipole mo-

ment; this formula, expressed in terms of electromagnetic
=—Vp+f. (6) quantities, is equivalent to EQ) when the external field in
question is unifornt?
II. HIDDEN MOMENTUM

The momentunP of a body of finite dimensions can be lll. TWO LIMITING CASES

obtained by integrating the momentum dengjtgs The expressior(9) for hidden momentum was obtained
from the relativistic connection of Ed5) between the en-
Pizf gid3r=f V-(xig)d3r—f x;V -gdr ergy flux density and momentum density, which does not

provide an insight into the physical origin of hidden momen-
tum. There are two limiting cases in which the hidden mo-
= —f XV -gd®r, (7 mentum of a body can be calculated easily by integrating
directly the momentum densit§2): (i) when the body is a
where the integral oveV-(x;g) is zero as it can be trans- sufficiently rarefied gas the pressure of which can be ne-
formed into the surface integral of an integrand that vanisheglected; andii) when the linear, or angular, velocity of the
outside the body. Using Ed5) for the divergence of the body’s elements is constant, which occurs in the flow of a
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fluid of negligible compressibility constrained by a straight, 1V. HHDDEN MOMENTUM AND THE FIELD

or circular, tube of a constant cross section, and in the rotaVlOMENTUM

tion with a constant angular velocity of a solid body of neg-

ligible compressibility. An important aspect concerning hidden momentum is that
First, let us consider cagd. Using the momentum density it is compensated by an equal and opposite momentum of the

(2) with p=0 and uy=n,myc?, wheren, and m, are the external field combined with the field created by the current

local-rest-frame density and rest mass of the gas particleg,in the system, so that the total linear momentum, i.e., the

respectively, we get the hidden momentihas mechanical one plus that of the fields, vanishes in a finite
1 systerzrgJ of a stationary distribution of matter and static

P=, J ¥2NMoC2V d3r=j ymonv dr, (13) flelds. This can be s_hown to _follow immediately from the

c requirement of special relativity that the total-momentum

densityg,,; of a closed system, which is the sum of the me-
hanical parg and a field part, satisfies the continuity equa-
on

where n=vyn, is the laboratory-frame density of the par-
ticles. In a steady motion of the particles in a static externaﬁ
potential ¢, the total mechanical energy of each particle is

the same conserved quantity IUyor )
5 +V-(C0or) =0, (19
£=ymyC2+ q¢d=const, (14 ot
whereq is the “charge” of each particle. Thus, the momen- Which expresses the conservation of the total energy, with
tum (13) can be expressed in the same way as in(8y. densityu,y, of the closed system. As the system is assumed

L L finite, including the sources of the fielfds, the total-
_ . 3, _ .3 momentum density,,; vanishes at least asri/at infinity.
P= c? J (E=ad)nv d’r= c? f ¢ d°r. (19 The total linear momenturR,, of the system is then given as

Here, the first term in the first integral yields zero as the p. — 4
particle current densityv is divergenceless in a stationary itot™ | Yitor O°F
situation;j=qnv.
Now let us calculate the hidden momentum for cése _f v 3 f 3
. : . . I . = “(XiGopd™r — | X;V Qo d°r
Assuming a stationary case, in which all partial time deriva- (XiGo) V' Grot
tives vanish, and projecting onto the direction of the velocity

v of the body’s element at a given point, the relativistic Eu- =0. (20
ler's equation(6) simplifies to Here, both the second and third integrals are zero: the second
y one because it can be transformed into the surface integral of
Y2V p+ =5 (Ug+ PIV-[(V-V)(pv)]=F-V. (16  anintegrand that vanishes sufficiently fast at infinity, and the
c third one on the account of E¢L9) and the stationary con-

dition du,,/dt=0.

In the electromagnetic case, the result that the total linear
momentum in a finite stationary system vanishes is verified
immediately on transforming the expressi for hidden
momentum into one in terms of the external electric field
y?v-Vp=f.v. (177  E=-V¢ and the magnetic fiel® created by the current
(i.e., VXB=pg),

When the velocityv is constant, or the motion is circular
with a constant angular velocity.e., v=@Xr with w con-
stan}, the second term on the left-hand side of Efj6)
vanishes? resulting irt®

Integrating the momentum densit@) and using Eq.17)

with f=—pV ¢, the hidden momenturR is calculated, again 1 3
in a full agreement with Eq9), as P=-= J ¢j d°r
1 2 3, L 2 3
PZ? y“ugv d r+? yopv d°r :_EOJ(bVXBdBr
1 2 3
==z | riyv-Vp)d*r =—eOJVx(¢>B)d3r+eOJ V$xB d°r
1 H 3
Y f r(j-ve)dsr =—eof ExB d’r. (21)

1 Here, the third integral is zero as it can be transformed into a
=2 f ¢j d°r. (18)  surface integral of a vanishing integrand; the last expression
c ; .
is the negative of the usual formula for the momentum of the
Here, the first integral vanishes asg, is constant and electromagnetic fieldE,B).
V-(¥v)=0 in the motion with a constant linear or angular In the gravitational case, the requirement that the total
velocityl” and the second and fourth integrals are translinear momentum of a finite stationary system must vanish
formed using the integral identit§10). necessitates the existence of quasistatic “gravinetic” fields,
These calculations show that hidden momentum arises iwhich, in analogy to magnetostatic fields, are generated by
case(i) from the relativistic variation of the mass of the gas quasistationary currents of mass and act on moving mass,
particles with their speetf, while, in case(ii), it can be and, when combined with ordinary, “gravistatic” fields, can
traced to the relativistic properties of the pressure in a bodgontain linear momentum. Gravinetic effects are predicted
of low compressibility® by general relativity, but arguments based solely on special
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relativity only have been made for the existence of quasi- external forcegsee Ref. 12, however, for a case where such an assumption
static gravinetic fields on several occasiéhsFollowing  cannot be made _ _
Bedford and Krumn?? a gravinetic fieldb can be defined so °This can be proved separately for each component, using#apith

that it | ted b istati t td g;=ah; and the fact tha¥-(ah)=h-Va for a divergencelesb.
at It 1s creared by a quasistationary rest-mass curren eIE'l'Following the already accepted terminology, by “hidden momentum” is

sity jm according to a gravitational analog of Ampés law: thus meant a nonzero mechanical momentum of a body the center of mass
477G of which is at rest; however, in a recent paper of E. Comay, “Exposing
V xXb=— 5 jm, (22) hidden momentum,”” Am. J. Phys64, 1028-1034(1996, the term

“hidden momentum” is used in a rather less restricted way.

. oL . e 2The potentialg appearing in Eq(9) is then, strictly speaking, that of the
whereG is the gravitational constant; the gravinetic fidid total electric field acting on the body, including that which originates from

acts on a particle of rest mass moving with a velocityv, the charge distribution within the body itself. When the body that carries
with the force the electric currents is a conductor, the external electric field induces a
surface charge distribution on the conductor such that the net potential
F=mvxb. (23) g potgn

in the body is constant and thus, according to &g, the hidden momen-

Postulating that the gasistatic—gravitational—field momentun];x/r?hvtinishes,t?ﬁjq3r:0 fczjr ; divEergencelleS;S't _ ¢ density and th
H : H I e quantitieg =pv an =—E-I an electric current aensity an e
densityg, is given b d 3=p

potential of a uniform electric fiel&, respectively, Eq(9) can be rewrit-
ten asc®P=—[r(j-E)d®r=—Ex fr xjd3 — [j(E-r)d°r =2mxE+ [ ¢jd°r
gg=n bxe, (24 =2mxE—c?P, wherem=3[r xjd® is the magnetic dipole moment, re-
T sulting in P=(1/c)mxE.
wheree=—V 4 is the ordinary, gravistatic, gravitational field 144 strictly straight tube cannot confine the fluid to a finite region of space;
with a potential¢, the gravitational-case hidden momentum the tube has to have bends that fashion it into a closed loop. One can

. . . assume, however, that the bends are negligible in size compared to the
—(1/c?) [ ¢j a3 can be transformed into the negative of the straight sections of the tube. g1 P

gravitational-field momentun(11/47-rG)fbxed3r in exactly  15that this is true fov=wxr with @ constant(“constant angular veloc-

the same manner as it is done for the electromagnetic case iy ) is seen most easily by using cylindrical coordinatpse:

Eq. (22). v-[(v-V)(W)]=V-[vd(yv)Ipdp]=0, as putting thez axis along @, Vv

In conclusion, it is emphasized that the close analogy, ex: =(~v sin e cose,0) with v =|v|=wp. _ _

pIoited in this paper, between electromagnetic and gravita-GTh'S equation can be obtained also by trgnsformmg Euler's equation from

tional fields holds only when the fields are quasistatic. More- 1€ local rest frame of a constant-velocity fluid to the laboratory frame,
L. . . see, in the electromagnetic setting, V. Hnizdo, “Hidden momentum of a

over, it Is Ob\_”(_)us that, in the framework. of Fhe ge_neral relativistic fluid carrying current in an external electric field,” Am. J.

theory of relativity, the concept of the quasistatic gravinetic pnys. 65 92-94(1997.

field b in a flat space-time can be introduced meaningfully’’For v=wxr with @ constant (“constant angular velocity},

only in a low-field approximation. V-[f(v?)Vv]=f(v?)V-v asv-Vu?=0, while the divergence of the velocity
itself V.v=0.
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