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Thus, in view of (1), if [A ]. denotes the matrix representation ofA with respect to the
basis c, then [A ]. TD, where T is the upper triangular matrix with T () for <= j
and D is the diagonal matrix with D j. Since Tj 1, the eigenvalues of [A ]., and

/2m+lhence of A, indeed are equal to j m-j ). TO prove that Afp(X) Xpfp(X), it suffices
to show that

or, in view of (2),

z. (- 1)j-q
(p- q)!(p+j)!(m -p)!

j=q (p-j)!(j- q)!(m +j+ 1)!

This is easily proved using the beta integral. Thus

P (p- q)!(p +j)!(m -p)!
2 (--1)j-q
j=q (p-j)!(j- q)!(m +j+ 1)!

(m-q)!(p+q)!
(m+p+ 1)!

(f2)0(- 1)J-q tP+J(1 t)m-p dt
j=q

tp+q(1 -t)m-qdt

as required.

(m-q)!(p+q)!
(m+p+ 1)!
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Radiation from a System of Uniformly Circling Charges

Problem 89-5, by V. HNIZDO (University of the Witwatersrand, Johannesburg,
South Africa).
Recently it has been shown by numerical calculations that the power radiated

by a classical system of two particles of equal (like or unlike) charge and mass, which
orbit uniformly and diametrically opposite each other on a circle, equals the rate at
which work is done on the particles against their retarded electromagnetic interactions
and the Lorentz-Dirac radiation reaction forces. Thus, it has been demonstrated
numerically that, contrary to a previous claim [2], the Lorentz-Dirac equation and
the retarded Lienard-Wiechert potentials of classical electrodynamics satisfy energy
conservation in such systems.

The total power P radiated by such a system can be calculated using Fourier
series methods, and is given exactly [3] by

o[(dJ.(nw sin 0)2 (J.(nw sin 0)2] sin OdO,(1) P= 4w4 .=,3,5,...Y n2
[\ f b ] q-/72 cOS2 0k n b /

(n=2,4,6,...)

where J.(x) are the Bessel functions and

cos
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is the angular frequency of the orbital motion, with being the angle subtended at
the position of each particle by the retarded and current positions of the other particle
(units such that the speed of light, the radius of the circle, and the magnitudes of each
charge are all unity are used). The sum in (1) runs over only n odd or only n even,
depending on whether the system is that of unlike or like charges, respectively. On
the other hand, the rate Wofwork done against the Lorentz-Dirac radiation reaction
forces and the retarded Lienard-Wiechert fields is given by

4094
3( 09 2)2

09[(09 cos 2- sin 4)(1 _092)+ 242(sin + 09)1
2(1 + 09 sin b) COS2

where the plus and minus signs are for the systems of unlike and like charges,
respectively. Prove for the systems of both unlike and like charges that

(2) P=W

for real w such that w] < 1. For the system of unlike charges, (2) has been shown to
hold up to order 09

6 in [1], and up to order 09
o in [4], by expanding P and W in

powers of 09.

Once (2) is proved, the following simpler equality results immediately.

09
4 Z dJ"(n09 sin 0) J(n09 sin 0) 2 2094
n=, [\ -GnbJ +r/Zcs2\ ff-w-sZn-O ] jsinOdO=3(1-092)2’

where the fight-hand side gives the well-known radiation rate of a single unit charge
circling uniformly with an angular frequency w along a unit radius circle.
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Solution by W. B. JORDAN (Scotia, NY).
Let g(z) J2(z). Then g’(z)= 2J(z)J(z) and g"(z) 2(J’ (z)) 2 + 2J,(z)J’(z).

Using Bessel’s differential equation to eliminate J(z),

and so

( n2)2(J,(z))Z=g"(z)+ g’(z)
+ 2 g(z),

z

PO,E 20O40, t d2
’11--

dg(nz)
z dz + 2 ---5 nZg(nz) sin 0 dO,

z=wsinO

the summation being over only odd (O) or only even (E) values of n. Let PF
denote the expression above with the full sum (over all positive integers) and let
PA denote the corresponding alternating sum in whch the nth term has (-1)"- as a
factor. Then Po (PF + PA)/2 and Pe (PF- PA )/2.
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whose difference is

To compute PF, we sum g and n2g following the Kepler-Bessel analysis of
elliptic orbits as developed in Chapter 17 of[l]. With M E-z sin E and r/a

z cos E, the expansion

a
+ 2 Y J.(nz) cos (nM)

Y n=l

holds. Putting M E 0 and M E z in turn, we get

z
-2 J.(nz) and (-1)"-J.(nz),

n= + Z n=

Now

Z2
2 Y Jzn(2nz).

--Z2
n=l

d(a/r)
-2 Y, n2Jn(nZ) cos (nM)=

dM2

3z sin E z cos E
(1 -z cos E) (1 -zcos E)4’

and again setting M 0 and M rr, we obtain

(1 Z)4 2 =Z nJ.(nz) and
(1 " Z)4=2 Y (-1)"-’nJ(nz),

SO

z______ z_._.___= 16 Y n2Jzn(2nz).
(l-z)4 (1 -I-z) 4 n=l

Replacing z with nx sin in these results and using the formula

(1) J](t)
2

Jz(2t sin )d,
71" ’0

we get

(1 x2)-/2 2 Y g(nx),
n=l

x-(4 + x)(1 x2) -7/- 16 Y n2g(nx).
n=l

(The exponent -2 is misprinted in [1 ].) Thus

dg(nx)
x(1 x2) -3/2,2 ,Y=

dg(nx)
2 ,Z= dx----T- x2) -3/2 + 3xZ( x2) -5/2

To compute PF, we replace x by w sin 0 in the last three formulas, multiply by sin 0
in the last three formulas, multiply by sin 0 and integrate. The required integrals can
all be obtained from

/2 sin"-I 0 cos"-I 0 B(, )
i Z3i Ol;Z dO=(l_w). (u, u>0),



152 PROBLEMS AND SOLUTIONS

and the result is
8o9 4

PF=3(
in agreement with the proposer’s "simpler equality."

To compute PA, we proceed as follows. Put M= -/2 and E r/2 + u, so
z u sec u. Write

so h’ p sec u. Then
h u sec u, p + u tan u,

utan u
Y J,,(nz) cos (mr/2)= Y (-1)"-Jn(2nz),

p n-’-I n--1

so, with sin (u/x) sec u, and again using (1)

2 fr/2 U tan u
Y (- 1)-g(nx)=-! dt.

7I" "0 2p

Write R (x2 h2) /2 x cos t, so dt h’du/R, and get

y (_l),,_g(nx) =_1 Vh(u) tan u
.= r R(x, u)

du,

where U= U(x) satisfies U sec U x. The standard method for differentiating an
integral leads to an unpleasant o-0% so we integrate by parts first:

RdR -hdh -hp see u du
and the integral is

2 (- 1)-lg(nx) LdR
v

R(x,u)L’(u)du,
"it "If

where
sin u

L(u)
P

00 U f 2

y (_l)._,dg(nx)=x L’(u) du=X_ L’(u)
n=l dx "It R(x, u) :o h-" dt,

2 (- )n--I
dg(nx) 1

2 (- 1)"-I dg(nx)
dx2 X dx ot d (’(U)] h(u) au

Thus

Again with M r/2,

8 Y (-1)"-n2j,(nz) 3p-Su2 +p-4u tan u,

where p p(u) + u tan u. Thus

fV3U2 +p(u)u tan u

’ (-1)n-ln2g(nx)=- do p4(u)R(x,u)n=l

A typical integral needed to evaluate P is

I= sinOdO
o

du’

sec u du.
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with x w sin 0. Interchanging the order of integration, we get

oof(-sinOdo,I= u) du -in which R /w sin2 0 h a, sin $ h/w and sec 4 w. The inner integral evaluates
to r/o and so

I=- f(u)du.

Thus

o {dg(nx) sinOdO 1oL ’(u)du
=, dx Jx=wsinO O0

where q + w4 and

E (-- )n-ld2g(nx)

on integrating by parts. Also

sin 0

wq

dg(nx)}X dx sin

du

(cos 24-w sin 40 sin 0
q3 wq

4w n=Y (-1)n-lnZg(nw sin 0) sin OdO= tanu+ p3(u.idu

oo ’ ) h(u)(3p__ u
2 tan u du

\ p(u) p (u)

sec
du_wq-3 + (1 u tan U)p3(u

_wq-3 q_ q-2 sec tan

(sin -o cos 2qs)q-3 sec: .
Combining these results, we obtain

PA=4W2[w+sinck+( -51) sin 4- w cos2qS]4wq-s J

q3 COS
[2w 2 cos 4(w + sin ) + (1 w2)(w cos 2 sin 40].

Since Po (PF + PA)/2 and Pe (PF- PA)/2, the fact that P W is verified.
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Also solved by C. C. GROSJEAN (State University of Ghent, Belgium), O. P. LOSS-
ERS (Eindhoven University of Technology, Eindhoven, the Netherlands), MARK
STAMP (Texas Tech University), and the proposer.

A Definite Integral Arising in Ohmic Dissipation

Problem 92-4 (Quickie).
Let -r < z < 7r and 0 < p < 1. From

In(1 + 2pcos x + p2) In(1 + pe) + ln(1 + pe-ic),

ln(1 + z) (-11nzn, Izl _< 1, z#-l,
n--1

we get the Fourier cosine expansion

ln(1 + 2p cos x + p2) -2 (- 1) COS

n:l

Then by Parseval’s relation,

ft._ p2n
In2 (1 + 2p Cos x + p2)dx 27r

n2
7r n--i

O_<p<_l.

For p _> 1, we write

ln(1 + 2pcosx + p2) 21np+ ln(1 + 2p-1 cosx + p-2)

and apply the previous results. Then by Parseval’s relation again,

ln2(1 + 2pcos x + p2)dx 87r In2 p + 27r
p 2n

n2
n=l

Errata

Problem 89-5, Radiationfrom a System of Uniformly Circling Charges, March, 1990.

p. 150, line 16.
integrand to n2.
p. 151, line 5.

line 6.
line -12.
line -3.
line -1.

Insert an n2 after the summation sign; change n2 in the

Change T to
Insert a 2 before the second summation sign.
Change nx sin to x sin
Delete "in the last three formulas, multiply by sin 0."
Insert a 2 before the integrand.

p. 153, line 7.
line 9.
line 11.
line -9.
line -5.

Insert (- 1)’- after the summation sign.
Change w99 to w sin .
Change (sin 0) fivq to (sin )/wq.
Change sec to sec u.
Change 4w to 4w4.

2We are grateful to Vladimir Hnizdo for noting these typographical corrections.


