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In a recent paper, Dmitriyev1 described a simple and el-
egant method for deriving the electric and magnetic fields of
a charged particle moving at constant velocity. The main
simplification lies in the author’s method for obtaining the
scalar and vector potentials,w and A, in the Lorentz gauge
for a constant-velocity particle.

In this comment, I describe a possibly even simpler
method that utilizes elementary properties of Fourier trans-
forms and linear, second-order ordinary differential equa-
tions, and the well-known~and easily derivable! fact that
1/k2 and 1/r are three-dimensional Fourier transform pairs:

E dk

~2p!3

1

k2 exp~ ik•r !5
1

4pr
. ~1!

Following Ref. 1, I assume that the potentials are caused
solely by a point particle of chargeq moving at a constant
velocity v5v i1 , wherei1 is a unit vector. I will derivew for
this particle. The derivation forA is almost identical.

In the Lorentz gauge, the scalar potential in SI units is
given by
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c2

]2w
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qd~x2vt !
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. ~2!

Let the three-dimensional spatial Fourier transform ofw be
w̃(k,t)[*dxw(x,t)exp(2ik•x). The spatial Fourier trans-
form of Eq. ~2! gives2
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1k2w̃5

q

e0
e2 ik•vt. ~3!

The complete solution of a linear, inhomogeneous, second-
order ordinary differential equation includes the homoge-
neous and particular~or inhomogeneous! parts.3 The homo-
geneous solution of Eq.~3! corresponds to potentials caused
by other particles, which vanishes by the assumption that the
potentials are due solely to the chargeq. The particular so-
lution is4

w̃~k,t !5
q

e0

e2 ik•vt

k22~v•k/c!2 . ~4!

We take the inverse Fourier transform of Eq.~4!, change
variables tok15gk18 ~whereg5@12(v2/c2)#21/2), and ap-
ply Eq. ~1!, and find
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which is the SI version of the desired result, Eqs.~18! and
~19! in Ref. 1.

Which method, the one in Ref. 1 or the one presented
here, the reader finds easier is a matter of personal taste. In
any case, it does not hurt to have an alternative derivation.

This work is supported in part by the Research Corpora-
tion and the U.S. DOE.

a!Electronic mail: benhu@physics.uakron.edu
1Valery P. Dmitriyev, ‘‘The easiest way to the Heaviside ellipsoid,’’ Am. J.
Phys.70, 717–718~2002!.

2One can easily show, using integration by parts and assuming thatw van-
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4One can obtain this unique solution by guessing it has the form
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